Scope: Alternative Scoping System Page 3

Scope 2.0

Alternative

Scoping Mechanism

for

HTML TADS

[image: image1.wmf]

The Scope Alternative Scoping System Author’s manual

Copyright 1999 by Kevin Forchione.

This manual is the copyrighted property of Kevin L. Forchione. Permission is granted to distribute this material by digital and/or physical means on the provision that the material is distributed in an unmodified form for non-profit purposes. It is prohibited to redistribute any sub-section from this material separately without the consent of the author. The author makes no warranty of any kind with respect to this material, and disclaims all warranties, including any implied warranties of merchantability or fitness for any particular purpose, or the continued accuracy of this manual for future versions of the product. I have made every attempt to make this documentation accurate, but will not be held responsible for any loss of productivity resulting from errors.

Manual version 1.0
(May 1999)

Written by Kevin L. Forchione,

c/o Lysseus Dream Ltd.,

1 Bramford Terrace,

23 Westfield Park

Redland

Bristol UK BS6 6LT.

e-mail:
 Lysseus@msn.com

If you have any questions or queries about Scope, you may either write or email me.

Scope 2.0 is Copyright 1999 by Kevin Forchione for Lysseus Dream Ltd.

Contents

Preface
About Scope
4

1
Scope Fundamentals
9

2
The Object-tree
12

3
Scope-level Definitions
13

4
Scope Functions
14

5
Changes to ADV.T
17

6
Adding Objects to Scope
19

7
Additional Object-tree Functions
21
Preface

—————————————————————————————————————

About Scope

Scope 2.0 is an extension for HTML TADS’ default parsing/adventuring system contained within ADV.T. Games that use ADV.T can be modified to run with Scope with minimal changes, and receive the immediate benefits of the system.

Scope 2.0 provides an enhancement of the accessibility rules provided by ADV.T. The scope() function will return a list of all objects which are valid for a vantage for a particular scope-level.

To fully understand how the scope extension works you will need to understand how accessibility works within the ADV.T library. One of the fundamental ideas of TADS is that the accessibility rules are not built into the parser, but are part of ADV.T and adaptable to the requirements of the author. ADV.T provides a basic set of accessibility rules which are efficient and more than adequate for the behaviour of its basic set of classes.

Scope came about through my studies of the accessibility mechanisms of ADV.T and the implementation of the enterable class (requires TADS 2.4.0 or higher). This class is an openable that acts like a room and has some very complex hybrid behaviours. The requirements of allowing actors access to these locations meant modifying ADV.T's basic accessibility mechanisms.

Accessibility governs concepts like visibility (what can be seen) and reachability (what can be taken). As a process it lies along a spectrum between command tokenization and object resolution and disambiguation. It is helpful, when thinking about accessibility, to keep the phrase candidate objects in mind, as the result of the application of accessibility rules should be a list of objects which are valid candidates for object resolution. We are not concerned at this stage with the mechanisms of object resolution, verification, action, or listing.

The guiding philosophy behind Scope has always been one of least change to the existing library mechanisms. Since accessibility is largely governed through deepverb's validXoList() and validXo() methods one can simply plug the new scoping mechanism into these methods to replace the ADV.T basic mechanism. Two other points of contact remain, however: the thing class verifyRemove() and isVisible() methods. These are the minimal requirements to allow an actor inside of an openable to behave reasonably with regard to its scope.

Secondly, efficiency is an important consideration. Because scoping is an iterative process attempts have been made to keep the amount of code execution to a minimum. Because the anticipated behaviours of objects is more complex than the basic classes provided in ADV.T somewhat more precise determinations of accessibility are involved which means slightly longer processing time. The added time should, however, appear negligible on most modern machines.

Finally, modularity and simplicity of design was aimed for. Scope 2.0 provides a minimal set of functions that meet the requirements of TADS' accessibility mechanism. Providing one central location for scoping definitions made a trade-off in efficiency for ease of maintainability. Defined constants have been used, as well as meaningful parameter and variable names, in an attempt to make the functions consistent and self-documenting.

A full copy of the Scope system, including this manual can be found at Internet location:

ftp.gmd.de in the /if-archive/programming/tads/examples directory

FREEWARE SOFTWARE LICENSE

—————————————————————————————————————

This is the Scope Author's Manual. You may use and redistribute this software, free of charge, with the following restrictions:

1. You must include this file and the copyright notice with all copies.

2. You may not require or collect a fee for copies of this software, or any part of this software, that you give to other people.

3. You may not include this software with any other software for which a fee is collected.

4. You may not modify this software in any way, and each copy you make and distribute must be a full and complete copy of the software you originally received.

5. Anyone to whom you give a copy of this software receives all of the same permissions that you did under this license.

You are permitted to create and distribute translations of this software into other layout languages or formats; any such translation shall be subject to the restrictions of this license as well. You may also make hardcopies of the documentation; hardcopies are also subject to these restrictions.

These files are distributed without warranty of any kind, including without limitation any warranties of merchantability or fitness for a particular purpose. THE READER ASSUMES FULL RISK AND RESPONSIBILITY FOR USE OF THESE FILES. UNDER NO CIRCUMSTANCES IS LYSSEUS DREAM, LTD. LIABLE FOR ANY DAMAGES, DIRECT OR INDIRECT, RESULTING FROM USE OF THIS DOCUMENTATION.

—————————————————————————————————————

About Version 2.0

This manual was written in Microsoft Word 97.

New With Scope 2.0

Version 2.0 is a major enhancement over version 1.0 and it is highly recommended that you upgrade to version 2.0 as it contains some nontrivial bug fixes and added features which greatly increase the flexibility and power of the scope() function.

Changes from version 1.0 include:

· Addition of the scope ceiling limit parameter to the scoping functions. This parameter allows an enforced limit on the calculation of scope ceiling. The function will then determine scope from within a scope ceiling that is a subset of the limit.

· Addition of the addToScope() function and thing.scopelist. This function adds the special scopelist of the vantage to its scope.

· Fixed a bug involving the selection of floatingItem. Version 1.0 included the floatingItem in the scope list only if its scope ceiling was the same as the scope ceiling of the vantage. Version 2.0 includes the floatingItem in the scope list if its scope ceiling is an element of the scope list, which is more logical.

· Fixed a bug with scopeCeiling() so that top-level locations will return themselves as scope ceilings. Version 1.0 returned nil, which caused problems when accessing an object that was also a top-level location.

· Renamed isScope() function inScope(). Changed the ordering of its parameters to reflect those of TADS C-style find() function. Simplified the inScope() function logic by replacing the for/next looping with find() logic.

· Removed the version 1.0 scoping verbs (scopeVerb and levelVerb), placing them in a separate source file scopedbg.t. This allows the author to include the scope verbs for testing, and remove them at implementation time.

· Added objtree.t file to the scope.zip package. This file contains object-tree oriented functions which have been included for completeness as an adjunct to the scope functions.

—————————————————————————————————————

Acknowledgements

Much gratitude is owed to Michael J. Roberts, author of TADS, whose efforts have enabled others to put their dreams and ideas into the works of Interactive Fiction. It is hoped that this manual will provide both instruction and food for the imagination.

—————————————————————————————————————

Required System Files

In addition to requiring HTML TADS the Scope system is composed of the following two files:

scope.t XE "Files:TimeSys.t"
This file contains the scoping functions and changes to thing and deepverb necessary to plug Scope into the ADV.T library.

—————————————————————————————————————

Additional Files

The following files are not required by Scope 2.0, but have been included to assist authors in the development of their games.

scopedbg.t XE "Files:Room.t"
This file contains scopeVerb and levelVerb useful for debugging purposes.

smartlist.t XE "Files:Room.t"
This file contains the listing function used by scopedbg for an sentence-structured display of the elements in the vantage's scope.

objtree.t
This file contains several functions pertaining to object-tree relationships.

Chapter 1

—————————————————————————————————————

Scope Fundamentals

The Scoping Process

Scope 2.0 (and ADV.T for that matter) build an accessibility list for deepverb.validXoList() methods by first determining a high-level location and then filtering down the object-tree. This bubble-up / filter-down approach is practical and efficient for determining the normal scope of the vantage. There are only two fundamental differences in the approach used by Scope as compared with that of ADV.T.

Scope 2.0 first determines a scope ceiling which is valid for the given scope-level, building a scope list as it works down the object-tree. Next it compares each floatingItem object against its scope-level definitions, adding only those which meet its criteria and recursing down into their contents. Finally it adds any objects in the vantage.scopelist to its scope.

By contrast ADV.T always begins the process at the top-level location of the object-tree and works down, bypassing any recursion into the current actor. Next it recurses into the current actor, adding any appropriate contents to its list. Finally it adds the global.floatingList to its accessibility list. This can produces some significant differences between the accessibility list produced by ADV.T and Scope 2.0.

ADV.T provides an excellent and efficient mechanism for determining scope under ordinary circumstances, however there are cases when the basic scoping routines are insufficient, as is the case when actors are inside of openable containers. In these instances Scope 2.0 provides a more realistic alternative.
Basic Terminology

Although the functions contained in scope.t are fairly easy to understand they do require the definition of some basic terminology.

location:
Every object's location attribute will either return another object, or nil. The floatingItem class has a method for its location and does not appear in any contents list. It will, however, return an object or nil when its location method is run.

parent:
An object's location is sometimes called its parent. An object with a nil location is said to have no parent.

top-level

location:
An object whose location is nil is said to be a top-level location. It is also the highest level of an object-tree composed of parents, children, and siblings. An object's top-level location is the result of a recursion upward through its object-tree to the object whose location is nil.
contents:
If an object has another object as its location then the object will be listed in the other object's contents list. Only objects that have another object as their location will be listed in the other object's contents list (see floatingItem, above). It is possible for an object to have a nill contents list.

child:
An object that is listed in the contents list of another object is sometimes called the child or possession of the other object. Thus an object's contents may be called its children or possessions.

sibling:
An object, which has the same non-nil parent as another object, is said to be the sibling of the other object.

orphan:
An object which has a nil location and a nil contents list. This object is said to have neither parent nor children.

object

tree:
An hierarchical structure representing the relationships of parents, children, siblings, and orphans. An object-tree can be a subset of another object-tree. For example, the object-tree whose highest-level is the scope ceiling for the vantage would be a subset of the object-tree whose highest-level is the top-level location for the vantage.

ancestor
One object is an ancestor of another if it lies along the same branch of the object-tree as we move upward from child to parent.

descendant
One object is a descendent of another if it lies along the same branch of the object-tree as we move downward from parent to child.

vantage:
The object whose scope is being determined.

scope:
A list of all objects accessible to a given vantage within a given scope ceiling and scope-level. If no objects are accessible then the list is empty.

scope

level:
The nature of accessibility to be determined. Scope 2.0 provides three levels of accessibility: SCOPE_OBJTREE, SCOPE_VISIBLE, and SCOPE_REACHABLE.

SCOPE_

TOPLEVEL:
Default definition. No constraints on the scopedef. This level produces a list of all the objects down the object-tree for the vantage within the given scope ceiling.

SCOPE_

VISIBLE:
Default definition. (The object is not an openable) or (the object is an openable and is open) or (the object's contents are visible). This level produces a list of all objects "visible" down the object-tree for the vantage within the given scope ceiling.

SCOPE_

REACHABLE:
Default definition. (The object is not an openable) or (the object is an openable and is open). This level produces a list of all objects "reachable" down the object-tree for the vantage within the given scope ceiling.

scope

ceiling:
The highest-level object in an object-tree valid for a given vantage and scope-level. The scope ceiling for a vantage may vary depending upon the scope-level applied. Top-level locations will always return themselves as scope ceilings. An object is said to be within the scope ceiling if it is a direct descendent of the scope ceiling within an object-tree; otherwise it is said to be out of bounds. Also referred to as ceiling in this document.
scope

ceiling

limit:
An artificially applied constraint on the computation of a scope ceiling. The limit is used to provide a subset of accessible objects based on the constrained scope ceiling. Scope 2.0 will always provide a valid scope ceiling regardless of the scope ceiling limit. If the limit is not a subset of an unconstrained scope ceiling then the limit is ignored. Also referred to as limit in this document.
scope

definition:
A formulation involving object attributes that returns true when access to the objects contents is permissible for the given scope-level. This definition is independent of whether a specific object's contents list is nil or not, and independent of an object's verification and action methods. For example, in the case of SCOPE_VISIBLE the definition should determine whether the vantage can "see" the object's contents, regardless of whether a lightsource is present. Also referred to as scopedef in this document.
Chapter 2

—————————————————————————————————————

The Object-tree

TADS does not have a built-in object-tree. There are no built-in functions to determine or retrieve any information regarding object-tree relationships. For TADS this is unnecessary.

Nevertheless, the object-tree model provides a very useful tool in discussions about scope. TADS utilises concepts of location and contents, but these are terms limited to individual objects, and it can become very confusion when we have to resort to phraseology such as “the contents of the contents of an object.” Instead, using the object-tree we can visualise the relationships between objects and using terminology derived from "family tree" models we can explore various concepts of lineage.

[image: image2.wmf]
In this object-tree, the startroom is the top-level location. It is the parent of glassJar and chair, both of which are a child of startroom and siblings to each other. Moving down the object-tree, we go down each node forming branches of the object-tree.

:

[startroom glassJar candle]

[startroom chair Me flower]

[startroom chair Me book]

Visually, lineage then becomes easy to follow and understand. One object is a descendant of another if it lies along an unbroken line of the object-tree as we move downward from parent to child. For instance, flower is a descendant of chair, but candle is not. Likewise, one object is an ancestor of another it lies along an unbroken line of the object-tree as we move upward from child to parent. In this case chair is an ancestor of flower, but glassJar is not.

Chapter 3

—————————————————————————————————————

Scope-level Definitions

Scope-level definitions, or scopedefs, are at the heart of the entire scoping process. They are the filters through which the various objects must pass to be included in the scope of the vantage. Scope-level definitions consist of two parts: a defined constant which provides a label for the definition and coding which define the nature of the scope-level's accessibility.

It is helpful to keep in mind the bubble-up / filter-down process used by Scope 2.0 when designing scopedefs. First the process determines a scope ceiling based on the appropriate scopedef. The ceiling is then used to generate a list of objects which meet the same scopedef requirements.

Scopedefs act as boundaries between an object and it's location when "bubbling-up" and between an object and its contents when "filtering-down".

Scope 2.0 provides three basic scope-level definitions: SCOPE_OBJTREE, SCOPE_VISIBLE, and SCOPE_REACHABLE. For an object to be added to scope it must meet one of the following scope-level conditions.

The SCOPE_OBJTREE definition:

Basically, there are no constraints on an object for this scope-level definition. However, objects in the vantage.scopelist are not added to scope. Also, as long as the vantage lies along the object tree the scope will not change from object to object.

The SCOPE_VISIBLE definition:

An object meets the scope-level definition for visibility if it meets the following conditions.

if (level = SCOPE_VISIBLE

 and (not isclass(loc, openable)

 or (isclass(loc, openable) and loc.isopen)

 or loc.contentsVisible))

The SCOPE_REACHABLE definition:

An object meets the scope-level definition for reachability if it meets the following conditions:

if (level = SCOPE_REACHABLE

 and (not isclass(loc, openable)

 or (isclass(loc, openable) and loc.isopen)))

Chapter 4
—————————————————————————————————————

Scope Functions

The accessibility mechanism consists of six functions which provide the author with various means of determining scope for a vantage for a given scope-level. Each function plays an important role in the process and is summarised below.

scope(vantage, limit, level)

Use this function when you wish to obtain a list of all objects that are valid for a given vantage and scope-level. The parameters are as follows:

vantage
object whose scope is being determined.

limit
scope ceiling limit. The highest-level object you wish the scope ceiling to be determined for; otherwise this should be nil.

level
Set this to the scopedef constant that is the level of the scope ceiling for which you wish to determine an object’s scope.

Examples:

Suppose in our startroom we have a candle inside of a closed glass jar.

scope(candle, nil, SCOPE_REACHABLE)

Will return the list:

[glassJar candle]

While

scope(candle, nil, SCOPE_VISIBLE)

Will return the list:

[startroom glassJar candle theFloor Me]

scopeCeiling(vantage, limit, level)

Use this function when you wish to obtain an object which is the scope ceiling for the given vantage, limit, and scope-level. The parameters are the same as those for scope().

Using our example above, if we wanted to constrain our scope ceiling to the glassJar we would set limit to the glassJar, thus:

Scope(candle, glassJar, SCOPE_VISIBLE)

This would return visibility limited to just those objects within the glassJar:

[glassJar candle]

Notice that

Scope(glassJar, glassJar, SCOPE_VISIBLE)

Will return

[glassJar candle]

This is what we would expect. However, the following:

scope(startroom, glassJar, SCOPE_VISIBLE)

Would return

[startroom glassJar candle theFloor Me]

This is because scopeCeiling begins its determination from startroom, working its way up the object-tree. Since glassJar does not match the vantage nor any ancestor in the object-tree the limit is ignored and a valid ceiling is determined for startroom using the scope-level definitions as the only constraint. It is important to bear this in mind when providing a limit to scopeCeiling() that its primary function is to produce a valid scope ceiling for the vantage given the scope-level and it will do so regardless of the value of limit.

If the limit does not match the vantage or any ancestor in the object-tree the limit is ignored and a valid ceiling is determined for the vantage using only the scope-level definitions as the constraint.

Using our example, if we chose startroom as the scope ceiling limit and the glassJar is closed then the following:

scope(candle, startroom, SCOPE_REACHABLE)

Would return

[glassJar candle]

Here scope() begins with a scope ceiling of glassJar, not with startroom, because the valid scope ceiling for the candle is further constrained by the scope-level definitions, which override the limit constraint.

scopeList(loc, vantage, ceiling, level)

This is a recursive function that builds and returns a list of all objects for a given vantage, scope ceiling, and scope by working its way down the object-tree. The parameters are as follows:

Loc

vantage
object whose scope is being determined.

limit
scope ceiling limit. The highest-level object you wish the scope ceiling to be determined for; otherwise this should be nil.

level
Set this to the scopedef constant that is the level of scoping you wish to determine an object’s scope for.

addToScope(scope, vantage)

This function adds the objects from vantage.scopelist to the list produced by scope(). This function allows an object that falls outside of the “bubble-up/filter-down” mechanism of scopeList() to be included in the scope of the vantage. The parameters are as follows:

scope
scope list created for the vantage by scope() process.

vantage
object whose scope is being determined and whose scopelist is to be added as part of its scope.

isScopedef(loc, level)

This function determines if the given location meets the requirements of the given scope-level definitions. If it does then the function returns true; otherwise, it returns nil. The purpose of this function is to consolidate the scope-level definitions into one function. The parameters are as follows:

loc
the object whose scope-level access is being determined.

level
the scope-level being determined. The default scope-levels for version 2.0 are SCOPE_OBJTREE, SCOPE_VISIBLE, and SCOPE_REACHABLE.

inScope(vantage, target, limit, level)

Use this function to determine if the target is in the scope of the vantage for a given limit and scope-level. If this is the case then the function returns true; otherwise it returns nil. This function uses scope() in making its determination, so objects in the vantage.scopelist as well as floatingItem class objects will be taken into consideration. The parameters are as follows:

vantage
object whose scope is being evaluated.

target
object being examined to determine if it is within the scope of the vantage.

limit
scope ceiling limit. The highest-level object you wish the scope ceiling to be determined for; otherwise this should be nil.

level
set this to the scopedef constant that is the level of scoping you wish to determine an object’s scope for.

Chapter 5

—————————————————————————————————————

Changes to ADV.T

Scope 2.0 makes modifications to the thing class verifyRemove() and isVisible() methods to incorporate the new scoping mechanisms. The special scopelist list is also added to thing, allowing for non-ordinary scoping for any object that inherits from thing class. Finally, modification are applied to deepverb validXoList() and validXo() methods as well as for inspectVerb. These modifications allow Scope to plug into the standard ADV.T library with minimal changes to the current library mechanism.

thing.scopelist

scopelist is a special list that can be modified in the author's code to add objects to scope outside of the normal "bubble-up/filter-down” scoping mechanism. Objects added to this list will be in scope regardless of the scope-level and therefore available for all actions which use scope() to determine their validXoList() and validXo() methods. It should therefore be used only for very exceptional cases.

scopelist should never include the object itself or anything ordinarily within the scope of the object, as these are handled by normal scoping processes and will already be part of scope.

The default is an empty list.

thing.verifyRemove()

Modifies verifyRemove() to 'bubble up' verGrab() check, but only as high as thescope ceiling. This allows us to grab things when we're inside closed locations, such as enterables
.

thing.isVisible(vantage)

The method now uses inScope() in place of the standard ADV.T mechanism. This is necessary because the parser calls isVisible() after it has run deepverb.validDoList() in order to determine how it should word accessibility error messages.

The function call is:

isVisible(vantage) = { return(inScope(vantage, self, nil,

SCOPE_VISIBLE));}

deepverb.validDoList(actor, prep, xobj)

validDoList() should return a list of all valid objects. ADV.T applies visibility checks using visibleList() to produce this list. Scope 2.0 uses the following function call in order to determine the scope of the actor.

Scope(actor, nil, SCOPE_VISIBLE)

deepverb.validDo(actor, obj, seqno)

The validDo() method should return true if the object is valid for the accessibility rule; otherwise it should return nil. ADV.T uses reachability rules to determine the accessibility of the object. Scope 2.0 uses the following function call in order to determine if the object is valid for the scope of the actor.

inScope(actor, obj, nil, SCOPE_REACHABLE)

deepverb.validIo(actor, obj, seqno)

This method is modified similarly to validDo(). Again, ADV.T uses reachability rules to determine the accessibility of the object. Scope 2.0 uses the following function call in order to determine if the object is valid for the scope of the actor.

inScope(actor, obj, nil, SCOPE_REACHABLE)

inspectVerb.validDo(actor, obj, seqno)

The validDo() method for inspectVerb is a special case of deepverb. ADV.T uses visibility rules to determine the accessibility of the object. Scope 2.0 uses the following function call in order to determine if the object is valid for the scope of the actor.

inScope(actor, obj, nil, SCOPE_VISIBLE)

Chapter 6
—————————————————————————————————————

Adding Objects to Scope

The basic mechanism of Scope is to "bubble up" the object-tree from the vantage until we have determined a valid scope ceiling for our scope-level definitions and then "filter down" the object-tree from that point, selecting objects that meet our scopedef criteria. This "percolation" process is the same as that used by the basic accessibility methods of ADV.T and serves as an efficient mechanism for determining the scope of the vantage.

Implicit Limitations of Bubble-up/Filter-down

The first and most important limitation is that all accessible objects must share the same top-level location and lie along an unbroken path in the object-tree of the vantage. The accessibility mechanisms of ADV.T assume this, and Scope 2.0 enforces this to an even greater degree through its evaluation of the floatingItem class objects.

There may be instances where you wish to apply a new accessibility rule for a special case verb. In this instance you need to decide if the bubble up/filter down model of Scope 2.0 (and ADV.T) is appropriate. It then becomes a matter of creating a new scope-level definition and replacing the isScopedef() function. Further than that you may need to make changes to verification and action methods to round out object behaviour.

But what if you have instances when you wish to include an object that is not part of the vantage's object-tree into its scope?

Scope 2.0 provides a mechanism for this.

Using addToScope()

The addToScope() function allows the author to add objects to the scope of the vantage easily by including the desired objects in the vantage.scopelist. This list should contain any object not already in the scope of the vantage. It will be added to the scope of the vantage regardless of the requirements of scope-level definitions. In essence this allows the vantage access to the objects in its scopelist under all circumstances, although they may still be subject to verification and action restrictions.

Having access to an object placed in scope through the addToScope() function does not mean that the vantage has access to the object's contents or it's location. If the author desires access to an object's contents or location they must be included in the vantage.scopelist.

Example:

joe.scopelist = [harry]

Will provide Joe with access to Harry, restricted by the various verification and action methods of harry and those imposed by the vantage and vantage.location. This is similar to assigning harry.validActor = true, but there are differences. An examination of harry will reveal any possessions he is carrying, but the error message returned when you attempt to take them will be different, unless you add them to scope as well.

Joe.scopelist = [harry, harry.contents]

Is not valid under version 2.0. Instead the author will need to add the objects of the contents individually to the vantage scopelist.

Chapter 7
—————————————————————————————————————

Additional Object-tree Functions

As stated earlier, TADS does not have a built-in object-tree, or any built-in functions to determine object-tree relationships. Although Scope 2.0 does not make use of the object-tree functions provided in objtree.t, they can be useful in the verification and action stages of the command execution process and have been provided for completeness.

In particular, it may be useful to know whether an object is an ancestor of another, especially in the case when the player is attempting to manipulate the ancestor while he is inside one of its descendants. This can happen in the case of enterables, when the player attempts to take the object he is inside. Without a special check a stack-overflow is likely to occur as an infinite recursion of contents is created.

Limitations of TADS isIn() Method

Caution must be used with the isIn() function provided by ADV.T as this function only returns true if the object is visibly within another object. This is sufficient for resolving most accessibility questions, however, it can be misleading, especially when using scoping definitions that do not take into account the contentsVisible attribute or when objects have been added to scope through the use of thing.scopelist.

The following is a brief summary of the object-tree functions:

parent(obj)

This function returns the object that is the location of the object. In the case of floatingItems the location property is run to determine the objects location. If the object has location nil then it returns nil.

child(obj)

This function returns a list of the contents of the object. If the object has no contents it returns an empty list.

sibling(obj)

This function will return a list of all the siblings for an object. This is done by determining the object's location and then excluding the object in question from it's location contents list. If the object has no location, or the location's contents list is empty then it will return an empty list.

ancestor(obj)

This function will return a list of all the ancestors for the object. This is done by exploring the object-tree recursively upward, listing each successive parent until the top-level location is reached. If an object has no ancestors then an empty list is returned.

descendant(obj)

This function will return a list of all descendants for the object. This is done by exploring the object-tree recursively downward, listing each successive child until the process is exhausted. If an object has no descendants then an empty list is returned.
� EMBED MS_ClipArt_Gallery ���

startroom

glassJar

candle

Me

flower

chair

book

� The enterable class to be introduced through enterable.t sometime in the near future. The concept basically involves openables which allow access to actors, both inside and outside.

_977854429

