observer.t

Overview and Instruction

By Kevin Forchione

21 March 1999

Communicating With Unseen Actors

Suppose the player is in a prison cell. Adjoining the cell is another cell with another actor. Connecting the cells is a small vent through which that actors may communicate. In this case the means of communication is the vent, which is static. Only when the actors are in locations containing the vent can they communicate.

 Another example…

Luke Skywalker, Han Solo and Princess Leia are in a garbage disposal unit on the Deathstar. Luke keeps in constant contact with C3PO, who is in the far-off control room, via his handheld communicator, and must give the ‘droid orders to shut down the disposals. In this case the means of communication is mobile; only when the actors are carrying their communicators can they communicate with one another.

In neither case are the actors visible or reachable under normal circumstances, and player commands directed toward them fail.
The observer Class

An observer is an actor that shadows other actors in your game, standing proxy for the parserGetMe() object. It allows the player to communicate with other actors without having to be in the same location with them and allows the player’s command to reference the parserGetMe() object as either the direct or indirect object.

The observer doesn’t appear in the location description, and is invisible. The advantage of the observer is that it allows the player to command the unpresent actor, and to reference the player object in the commands being issued to the actor.

Commands such as the following are possible with the observer class object:

· Sam, go north

· Sam, take the book

· Harry, tell me about Sam

The observer class is similar to the TADS ADV.T follower class. It requires that the Actor have myobserver defined to point to the observer object for the actor. It also requires that the observer have defined myactor, which points to the actor it is observing.

For example:

luke: Actor

location = garbageDisposal

sdesc = “Luke Skywalker”

….

Myobserver = observerLuke

…

;

observerLuke: observer

myactor = luke

;

Notice that no location is given for the observer. This is because the observer is defined similarly to basicMe, it is a floatingItem Actor. The location of the observer is dependent upon 3 specific conditions:

· If the parserGetMe().location is not equal to the actor.location or their parent locations (the highest room level) are not equal.

· If the observer points to the actor in the player’s command

· If the observer.checkactive returns true.

If each of these conditions is met then when a command such as:

· sam, tell me about harry

then the observer assigned to sam will be present at sam’s location allowing the player to address sam in the command and to represent the parserGetMe() object, by proxy as it were, to satisfy the disambiguation of the direct object “me”. If these conditions are not met then it is assumed that either the player can communicate directly to the actor using normal TADS processes, or that no communication is possible.

observer As Proxy for parserGetMe()
The role of the observer is to act as proxy for the parserGetMe() object which is not present in the location of the actor being address in the player’s command. The observer is a floatingItem Actor which is defined similarly to basicMe, except for certain limitations.

Activating the observer

The process of activating an observer requires the following steps:

· Creation of candidates list of actors through the use of Actor.validActor.

· Setting the observer.isactive property through the deepverb.validDoList() method.

· Positioning the observer through the observer.location method.

Once the observer has passed through these steps it is ready to stand in as proxy for the parserGetMe() object. However, the author can limit the activation of an observer even further through the use of observer.checkactive.

The observer.checkactive method default always returns true, but the author may wish to restrict activation to certain game locations or conditions, such as between rooms connected by an air shaft, or between players carrying walkie-talkies. In these cases the method should return true when communication is permitted; otherwise it should return nil.

Observer.checkactive can become very complicated code, as you will no doubt see from sample.t, if the object of communication is as complex as a vent, but it can also be as simple as whether the actors involved each possess an object of a certain class.

Limiting the Observer Behaviour

It is assumed that the since the parserGetMe() is not present in the actor’s location then actions that would involve its presence are not allowed. This is done through the use of dobjGen() and iobjGen() methods. Overriding these limitations (e.g. one of the actors may have telekinetic ability) can be done through the use of verXoVerb and xoVerb methods for any specific observer.
TADS Library Change Requirements

In order to accomplish the functions of an observer TADS ADV.T requires modification of the actor.validActor method and the deepverb.validDoList() method. The modifications provided in observer.t are minimal, but the allow for the system to recognise an unpresent actor and activate its observer.

