
Concept and Concept+
The integrated assembler/linker package for Wheels 64 and Wheels 128.
Operates in both 40 and 80 column modes on the 128.
Copyright 1999 by Maurice Randall

Assembler and linker operation is based on the original GEOASSEMBLER and
GEOLINKER from the GeoProgrammer package, by Berkeley Softworks.

Disclaimer - This version of Concept is being provided free of charge to anyone
interested in assembly language programming on a Commodore 64 or 128 computer
operating in the Wheels environment. This software may be freely distributed.
Permission is granted to distribute this software through electronic means, Internet
FTP sites, BBS’s, through computer user groups, on magazine cover disks,
commercial disk magazines, etc. The only limitation is that this may not be sold for
profit by itself, other than for the cost of copying a disk and mailing said disk. That cost
should not exceed $5.00. Permission for any other means of distribution should be
obtained from the author in writing.

There are no restrictions placed on any software that is created using Concept. Let’s
create new software and share our work with others, commercial, shareware, free, or
otherwise.

If you’re familiar with using GeoProgrammer, then you’ll easily understand how to use
this software. If you do not already own GeoProgrammer, I highly recommend that you
obtain your own copy of it. It may be downloaded free of charge from:

http://cmdrkey.com

Or it can be purchased for $20 which includes the complete printed manual and disks
from Click Here Software Co.

1-866-CMDRKEY (order line)
1-517-543-5202 (for information)

Also available is the "Official GEOS Programmer’s Reference Manual" and "The
Hitchhiker’s Guide To GEOS". Both of these manuals are essential for software
development in GEOS and Wheels.

Wheels 64 and Wheels 128 may also be ordered from Click Here Software.

Concept
The integrated assembler/linker package for Wheels 64 and Wheels 128.
Operates in both 40 and 80 column modes on the 128.
Copyright 1999 by Maurice Randall

Assembler and linker operation is based on the original GEOASSEMBLER and
GEOLINKER from the GeoProgrammer package, by Berkeley Softworks.

This guide assumes you are already familiar with the use and functions of the
geoProgrammer package which includes both geoAssembler and geoLinker.

USING CONCEPT

Concept may be used to create software for GEOS or Wheels as well as non-GEOS
software that would run from BASIC. You can also create software for other 6502
based computers and/or other equipment. In addition, Concept+ can be used to
create software for 65C02 and 65816 based machines.

You’ll find that using Concept to do your programming will be just about the easiest
assembler program you’ve ever used. Load and run it just like you would any other
GEOS or Wheels application. When it first starts up, you’re presented with a screen
showing 6 icons. Each icon allows you to perform a specific task. In the top row of
icons, one is for the assembler, one is for the linker, and one allows you to turn on or
off the .dbg and .sym file generators. In the lower row of icons, one icon allows you to
launch GeoWrite, another allows you to choose from a file requestor any application,
desk accessory, or auto-exec file to run, and the last icon quits Concept and takes you
back to the Dashboard.

When Concept is loaded into memory, it installs itself as your default desktop. This is
how it is able to run applications such as GeoWrite. Upon exiting GeoWrite, you’ll be
returned right back to Concept. This makes it very easy to edit, assemble, and link
your source code files. And since you can run any app, DA, or auto-exec, you can
even test your newly created software right from Concept.

IMPORTANT: If you’re using Concept in a native partition or native
ramdisk, you must put it either in the root directory or within the system
directory that’s visible to the root directory. This is so that the operating
system can find it when you exit an application. If it’s buried within a
subdirectory, you’ll be requested to insert a disk containing Concept. Try
to avoid this.

Concept loads itself entirely into memory. There is no need to keep a disk in the drive
with Concept on it, except for when you exit an application to return to Concept.

When you launch the assembler or linker, you have the option of choosing a source
directory and a destination directory. In the dialogue boxes for choosing the source
and destination, there is also a "Subdir" icon. By clicking on this, you can change
partitions or subdirectories. This allows you to read source code and assemble
anywhere on your system. All four drives are available for use.

While assembling or linking, the source directory is always checked for the source
files first. If a needed file is not found, then the currently open partitions on the other 3
drives will be searched also.

IMPROVEMENTS FROM GEOPROGRAMMER

Many of the bugs that you’ve grown used to in GeoProgrammer are now gone in
Concept. You might not notice this right away or maybe never. But here’s a few of the
things that are gone for good:

Try this with geoAssembler:

lda r0L,y

You’ll get an "Illegal addressing mode" error. The cure was always to do something
like this:

.byte $b9,[r0L,]r0L

Concept recognizes what you want to do and instead of giving you an error, it
assembles the code as absolute,y just like you intended.

Sometimes you may have troubles getting symbols properly recognized.
GeoAssembler had a problem in the way it would resolve symbols. Sometimes it
would flag them incorrectly as it passed the remainder of the task along to the linker.
And other times, it would resolve a symbol when it didn’t really know the value of the
symbol yet. In those cases, only the linker can resolve a symbol. These problems are
now gone with Concept.

GeoAssembler always wanted you to add an "a" to any accumulator opcode:

asl a

This is not a big deal, but nevertheless, it’s something you have to remember to do.
Concept let’s you put the "a" in there, or you can leave it out. It’s up to you.

When you get errors during assembling or linking, you have the option of launching
GeoWrite immediately to view the error file. Concept will launch the correct version of
GeoWrite depending on if you’re using Wheels 128 or Wheels 64. The .err files as
well as the .sym files are formatted using BSW128. This font will show up in GeoWrite
64 as plain BSW. So, the same files will look good on either system.

One thing you might notice if you’re paying attention is that each module listing in the
.sym file ends with a formfeed. GeoLinker failed to do this and you could cause
GeoWrite to crash if you tried to edit the text. Each page ended with a zero byte and
GeoWrite doesn’t appreciate that. A zero byte at the end of a GeoWrite page can play
havoc with GeoWrite. Feel free to edit an .err file or .sym file that was created by
Concept.

In the .err files, the page numbers and line numbers for the errors have been
eliminated. This was done mainly because it’s too difficult to keep track of the exact
position within the source code where the error occured. When a source code file is
read in, all but the ascii text is stripped and precise positioning is lost. This is
evidenced by the fact that GeoProgrammer never showed the correct location of the
errors. Concept does this differently now. It will display the name of the routine where
the error occurs. Plus, in many cases, the actual source code line is displayed. Using
GeoWrite’s search function will take you right to the error in question.

GeoLinker would always go nuts if you had more than 99 errors in your files. Concept
keeps on going through the rest of the linking process, but stops recording errors
when it reaches 99. Take care of those 99 errors first and link again to see more.

Whenever you had too many local labels in a routine, GeoAssembler would fill up
your .err file with many meaningless local label errors. Chances are, you had no idea
where the actual error was. Concept shows one error, the routine where the excess

local labels are.

There were times when you might forget to put a local label in a routine, even though
you had something in the routine that was making reference to one. And sometimes,
GeoAssembler wouldn’t catch this error. This really made for some tough debugging
sessions. Concept catches all the local label errors and lets you know about them.

Most of the same limits that GeoAssembler and GeoLinker have are still the same in
Concept. This version of Concept is designed to run on a normal Wheels system with
just the minimum required ram expansion. However, Concept has a buffer for the .rel
file object code that is roughly about 200 bytes larger than GeoProgrammer uses.
This may not sound like much, but there are times when you’ll just barely exceed the
buffer limit and wish there was just a touch more. The symbol limits are the same. You
can have 20 characters in a symbol, but only the first 8 count.

If you’re running the assembler in 40 column mode, you’ll notice a lot of screen
activity. This is where the symbol tables are being built. The second half of the tables
appear in the foreground screen memory. This was originally done during the
development of Concept for debugging reasons. The intention was to color the screen
so you couldn’t see this. However, it was left alone because it’s handy to see how
close you’re getting to the symbol table limit. At the bottom of the screen, it says
"Assembling". To the left of this is a dash mark. If the screen activity continues down to
this bottom line and touches this dash mark, the symbol table will be full. You’ll have a
visible idea now of how close you are to this limit. In 80 column mode, this doesn’t
show up. So, from time to time, you might want to use 40 column mode for debugging
purposes.

Concept+
The integrated assembler/linker package for Wheels 64 and Wheels 128
using a SuperCPU with SuperRAM.
Operates in both 40 and 80 column modes on the 128.
Copyright 2001 by Maurice Randall

This section pertains only to the extra features of Concept+. Be sure to read the
previous section about Concept since everything supported by Concept is also
supported by Concept+.

THINGS YOU NEED TO KNOW ABOUT CONCEPT+

The .rel files that are generated by the assembler are not compatible with the linker in
Concept or GeoLinker. Likewise, the .rel files generated by Concept and
GeoAssembler are not compatible with the linker in Concept+. The biggest reason is
due to the difference in symbol sizes. Concept allows you to use symbols and labels
up to 20 characters long, but only the first 8 characters are actually used. When
Concept creates a .rel file, only the first 8 characters of each symbol are stored.
Concept+ stores all 20 characters.

This doesn’t mean that you can’t share your source code between the two systems.
As long as you keep within the guidelines and limits of Concept, you can freely
exchange source code between them. This means that you must make sure all your
symbols are unique within the first 8 characters. Once you decide to utilize the full
capability of Concept+, then you’ll lose the ability to exchange source code between
the two. Of course, that’s the whole idea...take advantage of this new software!

You might also find yourself taking advantage of the fact that Concept+ can have
more than 10 .rel files in each .mod. It can also have more local labels within each
routine. The .lnk file can span multiple pages whereas Concept’s .lnk file must all fit
onto the first page. You can add many, many more macros. You can have so many
macros, you could probably write a new programming language utilizing macros. You
can have more symbols in each file. I doubt you’ll get the "symbol table overflow" error
with Concept+.

Concept+ also doesn’t create a .dbg file, currently. GeoDebugger can’t handle the
20-character symbols. Perhaps we’ll get a new debugger eventually. In the meantime,
you can still use GeoDebugger, but without showing the symbol names that are
provided by the .dbg file.

NEW ASSEMBLER DIRECTIVES

We’ve got 13 new directives for use in the assembler. They are:

.long works like .word but generates 3 bytes

.lword works like .word but generates 4 bytes

.wordr works like .word but with the two bytes in reverse order.

.longr works like .long but with the three bytes in reversed order.

.lwordr works like .lword but with the four bytes in reversed order.

.hex generates bytes from hex data.

.pet same as .byte except ascii characters are converted to petascii.

.scode same as .byte except ascii characters are converted to cbm
screencode.

.org establish a new value for the program counter.

.raw similar to .include except no assembly is done.

.6502 allow only 6502 opcodes and addressing modes.

.65c02 allow only 65C02 opcodes and addressing modes.

.65816 (the default) allow all 65816 opcodes, addressing modes, and aliases.

In the case of .lword and .lwordr, the most significant byte will always be a zero since
results are always a maximum of 24-bits. Even though the fourth byte is wasted, a
table containing 4-byte values is usually easier to index into than a table of 3-byte
values.

With the .hex directive, you can enter hex data without using the leading "$" character
and also without a comma separating each hex byte. Here’s an example:

.hex 760F12DE63E0 ;this is a .hex example.

The line must include two hex characters for each byte. If an odd number of
characters is entered, the assembler will report an error message. Also, you can only
use valid hex characters. You can use your choice of upper or lower case, it doesn’t
matter. The only other thing that can be on a .hex line is a comment beginning with a
semi-colon. The .hex directive should be handy for entering large amounts of raw
data.

THE .ORG DIRECTIVE

The .org directive requires you to enter an address such as this:

.org $4000

When the assembler encounters the .org directive, it will begin a section that will
establish values for any global labels found in this section. When it encounters the
next .psect, .ramsect, or .zsect directive, the current .org section will end. The .org
section will load right along with your .psect code and not at the address where it is
defined to be. The difference is that the global labels found within the .org section will
have addresses based on the value given as the parameter to the .org directive.

Creating an .org section is most likely to be used for assembling code that you will
copy to another portion of memory. In the above example, the code is intended to be
copied to address $4000. If your application requires different chunks of code to
appear in different areas of memory, the .org directive is handy because it allows you
to assemble these sections into one file and then your program can move them to
where they belong. Here’s a small example of how this could work:

MainInitCode:
LoadW r0,#extraCode
LoadW r1,#$4000
LoadW r2,#(endExtra-extraCode)
jsr MoveData
. . .

;Then this can call the routine...
LoadB topArea,#32
LoadB botArea,#127
LoadW leftArea,#64
LoadW rightArea,#255
jsr ClearArea
. . .

extraCode:
.org $4000

ClearArea:
lda #0
jsr SetPattern
MoveB topArea,r2L
MoveB botArea,r2H
MoveW leftArea,r3
MoveW rightArea,r4

jmp Rectangle

topArea:
.block 1

botArea
.block 1

leftArea
.block 2

rightArea
.block 2

.psect
endExtra:

The .org directive can come in handy for some of your projects. In the past, I’ve had to
use some equates to accomplish the same thing. I would have written the above code
as follows:

EC==$4000

MainInitCode:
LoadW r0,#extraCode
LoadW r1,#$4000
LoadW r2,#(endExtra-extraCode)
jsr MoveData
. . .

;Then this can call the routine...
LoadB EC+topArea-ClearArea,#32
LoadB EC+botArea-ClearArea,#127
LoadW EC+leftArea-ClearArea,#64
LoadW EC+rightArea-ClearArea,#255
jsr ClearArea
. . .

extraCode:
ClearArea:

lda #0
jsr SetPattern
MoveB EC+topArea-ClearArea,r2L
MoveB EC+botArea-ClearArea,r2H
MoveW EC+leftArea-ClearArea,r3
MoveW EC+rightArea-ClearArea,r4
jmp Rectangle

topArea:
.block 1

botArea
.block 1

leftArea
.block 2

rightArea
.block 2

endExtra:

This always worked, but it wasn’t as handy. And I could easily forget to do it correctly
which could introduce a bug.

Things you must remember when using .org:

* You can’t have a .ramsect or .zsect area within an .org section.
* It’s OK to use .header within an .org section.
* Branch instructions cannot branch outside of an .org section. Think of an .org

section as a large routine that you cannot branch out of. This includes the BRL
instruction. It can be used to branch to an address within the .org section, but not
outside of it. You can use the JMP instruction to jump to an outside address.

* A single .org section cannot span multiple .rel files. It can span multiple
assembler source files as long as each source file is .include’d within the same
.rel file.

* An .org section must be visible during pass 1 and pass 2. Do not put it inside of a
".if Pass1, .endif" section.

THE .RAW DIRECTIVE

The .raw directive is similar to the .include directive except no assembly work is done.
The file will be inserted as raw data. This is handy for adding data to your program.
Here’s an example:

.raw help.txt

This would insert all the data from the file "help.txt" into your program at the point
where the .raw directive is used.

If the file is a non-GEOS type file, every byte from the file will be inserted. If it’s a
GEOS type file and it’s also a sequential format type, all the data except for the
header block will be inserted. If the file is a VLIR type file, then the default is to insert
the data from record #0. If you want a different record to be used, then simply add a
comma followed by the record number to the filename:

.raw LW_Roma,10

The above example would insert record #10 from the LW_Roma file into your
program. As you can guess, this is handy for inserting a font into your code. In this
case, LW_Roma point size 10 is inserted.

Now, if you only wanted the header block of a GEOS type file to be inserted, just add
an "h" after the filename:

.raw GEOWRITE 128,h

This would insert the 254 data bytes from the header block of GEOWRITE 128 into
your program.

Now, maybe you don’t want an entire file or VLIR record to be inserted. You can
specify an optional starting byte and an ending byte using an "s" or "e" followed by a
value. For instance, let’s say we wanted just the icon data from GEOWRITE 128. The
following will do this for us:

.raw GEOWRITE 128,h,s2,e65

Since the first data byte begins at byte 2 in the sector, the above example will fetch
bytes 4-67 from the sector containing the header block of GEOWRITE 128.

If you do not specify a starting byte, then the starting byte will default to byte 0 of the
file. If you do not specify an ending byte, it will default to the last byte of the file (or

header block).

You can also add a "p" parameter. The value added to "p" is allowed to be greater
than the ending byte value. After the data is inserted, this will add additional zero
bytes until the value given for "p" is reached.

.raw GEOWRITE 128,h,s0,e157,p253

The above will load the first 158 bytes from the header block of GEOWRITE 128 and
will add zero bytes to fill out a total of 254 bytes of data. This particular example will
load everything except for the comment field and will zero out the comment field. In
this case, we use both the "e" and "p" parameters. If we had omitted the "e" parameter,
the entire header block would have been loaded as-is since it consists of 254 bytes
and no padding would have been needed.

Think of the above example the same way as the following:

.raw GEOWRITE 128,h,s0,e157

.block 96

That would produce the same results.

I’m sure we will all find a use for the .raw directive once in awhile. I know I’ve needed
it in the past simply to include font data. It’s no fun coding a font using .byte
statements.

NOTE: The .raw directive must be visible in both pass 1 and pass 2 of the assembler.
Do not use code such as:

.if Pass1

.raw PaintImage

.endif

The code will not be properly inserted if you do this.

THE PROCESSOR DIRECTIVES

There are 3 directives that instruct the assembler on which processors it should allow
coding for.

.65816 This is the default mode used when the assembler begins. All
available opcodes, addressing modes, and opcode aliases may be
used.

.6502 This allows only 6502 opcodes and addressing modes to be used.
Opcode aliases are not allowed.

.65c02 This allows only 6502 plus 65C02 opcodes and addressing modes to
be used. Opcode aliases are not allowed.

If you’re coding for the SuperCPU, you need not worry about using the .65816
directive in your code since this is the default mode used by the assembler. However,
if you are coding for non-SuperCPU use, you might want to add the .6502 directive at
the start of each source code file. By doing this, the assembler will help you to catch
typing mistakes should you enter an opcode or addressing mode that the 6502 type
processors do not allow.

For example, you enter:

lda (r0)

But you really intended to use:

lda (r0),y

In the 65816 and 65c02 modes, the assembler would allow your mistake since it’s a
legal addressing mode. But with the .6502 directive being used, your mistake will be
flagged as an error and you’ll have the opportunity to correct it. This will help prevent
long debugging sessions!

This could also be handy if you have just a particular section of code that will be used
for a 65C02 but the majority of the code will be for the 6502. One good example
would be a disk driver used with the FD-4000 which just so happens to use a 65C02
processor. The driver could contain some code that will get transferred into the drive’s
ram and will be run within the drive, but the rest of the driver code remains in the
computer’s memory. That section of code going to the drive could begin with the
.65c02 directive and then at the end of that section, you could put a .6502 directive to
return the assembler to the correct mode for the rest of the driver. This particular
example could also benefit from the use of the .org directive in front of the code that
will be sent to the drive.

NOTE: These directives must be visible in both pass 1 and pass 2 of the assembler.
Do not use code such as:

.if Pass1

.6502

.endif

You will get unpredictable results if you do this.

SEMI-COLONS

Another improvement relates to the use of a semi-colon in byte or immediate mode
instructions. Look at the following two lines:

lda #’;’
.byte ’;’

In GeoAssembler and Concept, these two lines would produce an error message
since the semi-colon was seen as the start of a comment. In Concept+, this works
correctly. On the other hand, the following line has always produced the correct code:

.byte "This contains a semi-colon;",0

A semi-colon appearing within a quoted string has always worked correctly.

REFERENCING 24-BIT VALUES

Since we can work with 24-bit values in some of the 65816 "long" addressing modes,
it would be handy if we could make reference to the uppermost byte in any of those
values. We’ve always had the "less-than" and "greater-than" characters to use for
referencing the low-byte or high-byte of a 16-bit value. And we’ve also been able to
use the left and right brackets for the same purpose. I tend to use the left and right
brackets myself. Now, we also have a character that can be used for the upper byte,
or you might refer to it as the "bank" byte. For this, we use the left single quote
character. Look at the following example:

imageTable==$030100 ;we can assign 24-bit values to
;symbols.

.byte [imageTable

.byte]imageTable

.byte ‘imageTable

This code will produce the following three bytes:

$00,$01,$03

You can also do the following to load r0 with a 24-bit value:

lda #[imageTable
sta r0+0
lda #]imageTable
sta r0+1
lda #‘imageTable
sta r0+2

Or a couple of macros will also do this:

LoadW r0,#imageTable
LoadB r0+2,#‘imageTable

You’ll also find a new macro in the included "mac816" file that does this same job,
and you would use it like this:

LoadL r0,#imageTable

Feel free to design your own new macros now. After all, we have a 64K macro buffer
to work with, instead of the 2K buffer that Concept and GeoAssembler use.

The left single-quote character is used to fetch the bank byte from a value. To produce
the left single-quote on your keyboard, you would type CMDR @.

The original 65816 assembler standard calls for the pipe "|" symbol to be used for this
purpose. Or for systems that can’t produce the pipe symbol, then the exclamation
mark "!" symbol is supposed to be used. And then there’s some assemblers that use
the up-arrow "^" symbol. However, all of these symbols are already used as operators
in GeoAssembler and Concept, so I had to come up with a different character and the
left single-quote seems the most fitting. I could have used the forward slash "\", but I’d
prefer to reserve that for future use within C-like strings.

ALIASES

Now, if you plan to code for the SuperCPU and its 65c816 processor, this is where
things get a little tricky. But, I’ve done some programming in Concept+ to make our
lives easier. Here’s a simple example of how coding for the SuperCPU can get
messy:

Let’s say you’ve got the processor switched into native mode and you’re code will be
running within any bank other than bank 0. In this example, you would like to load the
accumulator with a value from address $0030 in the current bank. The following
instruction would accomplish this:

lda $0030

However, the assembler would see this as a request to load from direct page and will
generate the following two bytes of code:

$a5 $30

Direct page is always in bank 0 and that’s not where we want to get our data from in
this example. In order to actually load from the first page of the current bank instead of
direct page we need to use absolute addressing. We could use a .byte statement
such as:

.byte $ad,$00,$00

...but that wouldn’t be very handy. After all, a good assembler is supposed to make
our programming easier, not more difficult. Concept+ has a number of opcode
"aliases" you can use to force the assembler to generate the desired code. The
difference is only in the spelling of the opcode. For instance, to force absolute
addressing when using "lda", we would instead use "laa". Notice the second
character has changed to an "a" for absolute. Likewise, if we want to force a load from
direct page we would use "lza". The "z" stands for zero page. If you want to load from
an absolute address from another bank, this is known as "long absolute" and we
would use "lla" for this purpose. Think of an alias as being a built-in macro because
the same functionality could have been done by creating a macro, but instead it’s built
into the assembler.

Most of the opcodes that use the same name for zero page, absolute, and long
absolute have aliases that you can use. Another handy use for an alias is when you
are operating the processor in native mode with 16-bit registers. Normally, the
following code will load the accumulator with one byte:

lda #25

Previously, it was necessary to do something like the following to get the results we
wanted:

lda #[25
.byte]25

That works, but is not the best way to do things. Some 65816 assemblers require you
to add a directive in front of an area of code to make the assembler use the 16-bit
accumulator mode. One particular assembler uses the following:

.16bit
lda #25
.8bit

With Concept+, you can force the assembler to use 16-bit mode by using the correct
alias. In this case, it’s "laa" again.

laa #25

When you look at this code, you know immediately that the line containing the "laa" is
using 16-bit mode. There are times when you don’t have to use the alias for this
purpose. This would be when the value being loaded is larger than 255. The
assembler knows to generate two bytes for the parameter in this case. The following
example shows this:

lda #$5000

Of course, if you get used to using the aliases, you can do so and your code will look
more consistent throughout and you’ll know for sure that the assembler will generate
the intended code.

In all cases but 6 of the aliases, only the middle character is changed. This makes it
easy to remember what the alias is used for. Let’s look at the full list.

In each case, the middle character either represents zero page, absolute addressing,
or long absolute. It can also mean the difference between 8 bits and 16 bits as in the
case of the immediate mode instructions.

Original opcodes Available aliases

adc azc,aac,alc

and azd,aad,ald
asl azl,aal
bit bzt,bat
cmp czp,cap,clp
cpx czx,cax
cpy czy,cay
dec dzc,dac
eor ezr,ear,elr
inc izc,iac
lda lza,laa,lla
ldx lzx,lax
ldy lzy,lay
lsr lzr,lar
ora oza,oaa,ola
rol rzl,ral
ror rzr,rar
sbc szc,sac,slc
sta sza,saa,sla
stx szx,sax
sty szy,say
stz szz,saz

The following aliases are the six that have the last character changed instead of the
middle one.

dec a dea
inc a ina
jmp jml
jsr jsl
trb trz,tra
tsb tsz,tsa

For the above 6 aliases, dea, ina, jml, and jsl are used since they are already in wide
use in other assemblers. You would use jml for a jmp long and jsl for jsr long. In the
case of trb and tsb, the middle character couldn’t be changed since both the first and
third characters are the same.

The more you use the aliases, the more you will appreciate them. Let’s say you are
operating in bank 3 and want to use absolute,x addressing to load some values from
address $4000 in bank 0. Normally, you would use the following code:

lda $004000,x

In reality, this is the same as "lda $4000,x". And that’s how the assembler will treat it.
The following code will be generated:

$bd,$00,$40

But this will load data from the current bank instead of bank 0 (unless your code has
changed the data bank register). So, the answer is to use an alias.

lla $004000,x

This will generate the correct "absolute long indexed,x" addressing mode and
produce the following bytes:

$bf,$00,$40,$00

Likewise, if you wanted to jsr from bank 3 to bank 0, you can’t use "jsr $004000"
because this would jsr to $4000 in the current bank. Instead, you use "jsl $004000" to
force the assembler to use the jsr long mode. If you were going the other way, "jsr
$034000" would work correctly since the assembler sees that you’re using an
address greater than 64K. But in this case, it’s still wise to use jsl since you’ll know
when you look at the code that you’re performing a jsr long.

Another reason to use the aliases is when you are assembling code from one source
file, but using symbols that are defined in other source files. In these cases, the
assembler has no clue as to the actual values of the symbols. It will be up to the linker
to resolve the values, but in the meantime, the assembler needs to know exactly how
many bytes to establish for each instruction, and then the linker fills in the values.

Let’s say that one source code file establishes a particular symbol value, but you’re
referencing it from another file. One file might contain:

IMAGE_DATA==$203000

And then in another file, we use the following code:

lda IMAGE_DATA,x

Since IMAGE_DATA is defined in one source file and not in the other, it will be up to
the linker to resolve the value where "lda" is being used. But in the meantime, the
assembler has no clue that IMAGE_DATA is a 24-bit value. So, we need to use an
alias here:

lla IMAGE_DATA,x

And the assembler will create the correct code for us and the linker will be able to fill
in the correct value at link time.

Once again, aside from the six opcodes, dec, inc, jmp, jsr, trb, and tsb, all the aliases
have just the middle character altered. In each case, the aliases use a z, a, or l for the
middle character.

z is used for 1 byte or zero page (direct page)
a is used for 2 bytes or absolute addressing
l is used for 3 bytes or long addressing.

Some addressing modes have no alias since they don’t need one. For instance, "clc"
has no need for an alias. And neither does "lda ($10)" since that will always use a
zero page address. If you try to use "lda ($1000)" the assembler will report an error
message, as it normally would. Likewise, if you try to use "laa ($10)", the assembler
will also report an error message.

Here’s a table of all the available aliases.

ADC
AZC $00 65 Direct page
AAC #$0000 69 Immediate 16-bit
AAC $0000 6D Absolute
ALC $000000 6F Absolute long
AZC $00,x 75 DP indexed,x
AAC $0000,x 7D Absolute indexed,x
ALC $000000,x 7F Abs long indexed,x

AND
AZD $00 25 Direct page
AAD #$0000 29 Immediate 16-bit
AAD $0000 2D Absolute
ALD $000000 2F Absolute long
AZD $00,x 35 DP indexed,x
AAD $0000,x 3D Absolute indexed,x
ALD $000000,x 3F Abs long indexed,x

ASL
AZL $00 06 Direct page
AAL $0000 0E Absolute
AZL $00,x 16 DP indexed,x
AAL $0000,x 1E Absolute indexed,x

BIT
BZT $00 24 Direct page
BAT $0000 2C Absolute
BZT $00,x 34 DP indexed,x
BAT $0000,x 3C Absolute indexed,x
BAT #$0000 89 Immediate 16-bit

CMP
CZP $00 C5 Direct page
CAP #$0000 C9 Immediate 16-bit
CAP $0000 CD Absolute
CLP $000000 CF Absolute long
CZP $00,x D5 DP indexed,x
CAP $0000,x DD Absolute indexed,x
CLP $000000,x DF Abs long indexed,x

CPX
CAX #$0000 E0 Immediate 16-bit
CZX $00 E4 Direct page
CAX $0000 EC Absolute

CPY
CAY #$0000 C0 Immediate 16-bit
CZY $00 C4 Direct page
CAY $0000 CC Absolute

DEC
DEA 3A Accumulator
DZC $00 C6 Direct page
DAC $0000 CE Absolute
DZC $00,x D6 DP indexed,x
DAC $0000,x DE Absolute indexed,x

EOR
EZR $00 45 Direct page
EAR #$0000 49 Immediate 16-bit
EAR $0000 4D Absolute
ELR $000000 4F Absolute long
EZR $00,x 55 DP indexed,x
EAR $0000,x 5D Absolute indexed,x
ELR $000000,x 5F Abs long indexed,x

INC
INA 1A Accumulator
IZC $00 E6 Direct page
IAC $0000 EE Absolute
IZC $00,x F6 DP indexed,x
IAC $0000,x FE Absolute indexed,x

JMP
JML $000000 5C Absolute long

JSR
JSL $000000 22 Absolute long

LDA
LZA $00 A5 Direct page
LAA #$0000 A9 Immediate 16-bit
LAA $0000 AD Absolute
LLA $000000 AF Absolute long
LZA $00,x B5 DP indexed,x
LAA $0000,x BD Absolute indexed,x
LLA $000000,x BF Abs long indexed,x

LDX
LAX #$0000 A2 Immediate 16-bit
LZX $00 A6 Direct page
LAX $0000 AE Absolute
LZX $00,y B6 DP indexed,y
LAX $0000,y BE Absolute indexed,y

LDY
LAY #$0000 A0 Immediate 16-bit
LZY $00 A4 Direct page
LAY $0000 AC Absolute
LZY $00,x B4 DP indexed,x
LAY $0000,x BC Absolute indexed,x

LSR
LZR $00 46 Direct page
LAR $0000 4E Absolute
LZR $00,x 56 DP indexed,x
LAR $0000,x 5E Absolute indexed,x

ORA
OZA $00 05 Direct page
OAA #$0000 09 Immediate 16-bit
OAA $0000 0D Absolute
OLA $000000 0F Absolute long
OZA $00,x 15 DP indexed,x
OAA $0000,x 1D Absolute indexed,x
OLA $000000,x 1F Abs long indexed,x

ROL
RZL $00 26 Direct page
RAL $0000 2E Absolute
RZL $00,x 36 DP indexed,x
RAL $0000,x 3E Absolute indexed,x

ROR
RZR $00 66 Direct page
RAR $0000 6E Absolute
RZR $00,x 76 DP indexed,x
RAR $0000,x 7E Absolute indexed,x

SBC
SZC $00 E5 Direct page
SAC #$0000 E9 Immediate 16-bit
SAC $0000 ED Absolute
SLC $000000 EF Absolute long
SZC $00,x F5 DP indexed,x
SAC $0000,x FD Absolute indexed,x
SLC $000000,x FF Abs long indexed,x

STA
SZA $00 85 Direct page
SAA $0000 8D Absolute
SLA $000000 8F Absolute long
SZA $00,x 95 DP indexed,x
SAA $0000,x 9D Absolute indexed,x
SLA $000000,x 9F Abs long indexed,x

STX
SZX $00 86 Direct page
SAX $0000 8E Absolute

STY
SZY $00 84 Direct page
SAY $0000 8C Absolute

STZ
SZZ $00 64 Direct page
SZZ $00,x 74 DP indexed,x
SAZ $0000 9C Absolute
SAZ $0000,x 9C Absolute indexed,x

TRB
TRZ $00 14 Direct page
TRA $0000 1C Absolute

TSB
TSZ $00 04 Direct page
TSA $0000 0C Absolute

NOTES ON MVN and MVP

The memory move instructions are confusing until you’ve used them a few times.
What’s really odd is that the code we write isn’t the same as what the assembler
generates. But this is the way the 65816 designers wanted the assemblers to do it
and this is the way Concept+ does it too.

For instance, the following code will move 16K of data bytes from $C000 in bank 0 to
$8000 in bank 3.

rep #%00110000 ;16 bit a,x,y
lax #$c000 ;address of source.
lay #$8000 ;address of destination.
laa #$4000-1 ;total bytes minus 1.
phb ;save data bank register.
mvn 0,3 ;source is 0, dest is 3.
plb ;restore data bank register.
sep #%00110000 ;back to 8 bit registers.

(the phb and plb are needed because the processor will leave the data bank register
to be whatever the destination bank is)

Here’s where you need to know what’s going on. Let’s say you put a label in front of
the mvn instruction so that you can alter the destination bank.

 . . .
mvnSpot:

mvn 0,3
 . . .

Now, you can send data to bank 4 by doing:

lda #4
sta mvnSpot+2

But wait, that’s not right! But it sure looks correct. However, your application refuses to
work correctly. The reason is because the assembler arranges the order of the source
and destination banks OPPOSITE of what you write in your code. When you write
"mvn 0,3", the assembler will generate "$54,$03,$00". This is something you need to
remember if you ever use mvn or mvp and use code modifying as in the above
example.

mac816 MACRO FILE

Included with this release is a macro file I put together, called "mac816". Most of the
file is a variation of the geosMac file. I removed the "bra" macro since we now have a
bra opcode in the 65816. Also, I added some new macros that will extend the
capability of the branch instructions. How many times have you had a rather long
routine and you needed to branch back from near the end to somewhere near the
beginning of the routine only to get a "branch out of range" error message. In the past,
you had to add an extra branch instruction in the middle of the routine to branch
through. Now you can use these new macros to branch as far as you’d like. They
include:

bccl branch on carry clear long
bcsl branch on carry set long
bvcl branch on overflow clear long
bvsl branch on overflow set long
beql branch on equal long
bnel branch not equal long
bmil branch on minus long
bpll branch on plus long

You would use these just like any branch instruction. You can branch to a local label
within the current routine or to any global label even if the global label is in another
source file. Here’s a couple of examples:

bccl 10$
beql SetClock

NEW LINKER DIRECTIVES

The linker has two new directives:

.nongeos same as .cbm without the load address

.raw works just like in the assembler

The .nongeos directive provides the ability to create a non-geos type file that is
basically the same as using the .cbm directive, except that a load address is not
inserted at the start of the file. There might be a time when you will need to create a
non-geos type file without those two extra bytes at the start of it.

The .raw directive works the same way as it does in the assembler. Having this
available in the linker is handy for when you want to insert raw code without having to
assemble a file. I’ll make use of this when I redo the installer program for The Wave.
The installer contains all the files for The Wave in different VLIR records. Setting up a
.lnk file to piece this all together will make it a simple task.

Here’s a small example .lnk file using the .raw directive:

.output Presenter ;output filename

.header PresntrHdr.rel ;header .rel filename

.vlir ;type of structure to use

.psect $0400 ;address of first byte

PresntrSrc.rel ;.rel source files for resident code
PresntrInit.rel
PresntrDisp.rel
PresntrRam.rel ;ramsect code

.mod 1

.raw TitleImage;screen image for startup

.mod 2

.raw BackImage;background screen image

In the above example, the files inserted into records 1 and 2 by the linker could be
screen dumps that were captured by another application. Your main resident code
could be used to fetch these and display them. Without the .raw directive, you would
have to supply the user with 3 files to achieve the same goal. These images would
then have to be loaded from separate files.

It’s OK to mix the .raw directive in amongst your other .rel files such as:

PresntrSrc.rel ;.rel source files for resident code
.raw TitleImage ;screen image for startup

PresntrInit.rel
PresntrDisp.rel
PresntrRam.rel ;ramsect code

In this example, you could have a label at the end of the PresntrSrc source code file
that indentifies the location in memory for the screen image data.

NOTE WHEN CODING:

Keep in mind that this is a 65816 assembler, but that it also works fine when coding
for 6502 machines. You must remember not to use a 65816 opcode if the intended
machine uses a 6502-type processor. When creating GEOS software, it’s normal to
use the geosMac file to support certain macros. In this file is the "bra" macro. There is
also a bra opcode that works on 65C02 and 65816 processors. If you ".include" the
geosMac file, the macro will be used instead of the bra opcode. A matching macro
name takes precedence over an opcode. If you’re coding for the 65C02 or 65816,
make a copy of the geosMac file and delete the bra macro. Call the file something like
"mac816" or whatever suits your taste.

Now, if you are coding for the 6502 and make a typo in your code such as the
following...

lda (r0)

...you will introduce a bug in your program. Perhaps this was supposed to be "lda
(r0),y". Concept+ will happily assemble this line of code without reporting an error
because it is valid 65816 code .

