patch-2.1.80 linux/include/asm-arm/proc-armo/pgtable.h

Next file: linux/include/asm-arm/proc-armo/processor.h
Previous file: linux/include/asm-arm/proc-armo/pgtable-flat.h
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.1.79/linux/include/asm-arm/proc-armo/pgtable.h linux/include/asm-arm/proc-armo/pgtable.h
@@ -0,0 +1,403 @@
+/*
+ * linux/include/asm-arm/proc-armo/pgtable.h
+ *
+ * Copyright (C) 1995, 1996 Russell King
+ * Modified 18/19-Oct-1997 for two-level page table
+ */
+#ifndef __ASM_PROC_PGTABLE_H
+#define __ASM_PROC_PGTABLE_H
+
+#include <asm/arch/mmu.h>
+#include <linux/slab.h>
+
+#define LIBRARY_TEXT_START 0x0c000000
+
+/*
+ * Cache flushing...
+ */
+#define flush_cache_all()			do { } while (0)
+#define flush_cache_mm(mm)			do { } while (0)
+#define flush_cache_range(mm,start,end)		do { } while (0)
+#define flush_cache_page(vma,vmaddr)		do { } while (0)
+#define flush_page_to_ram(page)			do { } while (0)
+#define flush_icache_range(start,end)		do { } while (0)
+
+/*
+ * TLB flushing:
+ *
+ *  - flush_tlb() flushes the current mm struct TLBs
+ *  - flush_tlb_all() flushes all processes TLBs
+ *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
+ *  - flush_tlb_page(vma, vmaddr) flushes one page
+ *  - flush_tlb_range(mm, start, end) flushes a range of pages
+ */
+#define flush_tlb()			do { } while (0)
+#define flush_tlb_all()			do { } while (0)
+#define flush_tlb_mm(mm)		do { } while (0)
+#define flush_tlb_range(mm, start, end) do { } while (0)
+#define flush_tlb_page(vma, vmaddr)	do { } while (0)
+
+/*
+ * We have a mem map cache...
+ */
+extern __inline__ void update_mm_cache_all(void)
+{
+	struct task_struct *p;
+
+	p = &init_task;
+	do {
+		processor.u.armv2._update_map(p);
+		p = p->next_task;
+	} while (p != &init_task);
+
+	processor.u.armv2._remap_memc (current);
+}
+
+extern __inline__ void update_mm_cache_task(struct task_struct *tsk)
+{
+	processor.u.armv2._update_map(tsk);
+
+	if (tsk == current)
+		processor.u.armv2._remap_memc (tsk);
+}
+
+extern __inline__ void update_mm_cache_mm(struct mm_struct *mm)
+{
+	struct task_struct *p;
+
+	p = &init_task;
+	do {
+		if (p->mm == mm)
+			processor.u.armv2._update_map(p);
+		p = p->next_task;
+	} while (p != &init_task);
+
+	if (current->mm == mm)
+		processor.u.armv2._remap_memc (current);
+}
+
+extern __inline__ void update_mm_cache_mm_addr(struct mm_struct *mm, unsigned long addr, pte_t pte)
+{
+	struct task_struct *p;
+
+	p = &init_task;
+	do {
+		if (p->mm == mm)
+			processor.u.armv2._update_mmu_cache(p, addr, pte);
+		p = p->next_task;
+	} while (p != &init_task);
+
+	if (current->mm == mm)
+		processor.u.armv2._remap_memc (current);
+}
+
+#define __flush_entry_to_ram(entry)
+
+/* Certain architectures need to do special things when pte's
+ * within a page table are directly modified.  Thus, the following
+ * hook is made available.
+ */
+/* PMD_SHIFT determines the size of the area a second-level page table can map */
+#define PMD_SHIFT       20
+#define PMD_SIZE        (1UL << PMD_SHIFT)
+#define PMD_MASK        (~(PMD_SIZE-1))
+
+/* PGDIR_SHIFT determines what a third-level page table entry can map */
+#define PGDIR_SHIFT     20
+#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
+#define PGDIR_MASK      (~(PGDIR_SIZE-1))
+
+/*
+ * entries per page directory level: the arm3 is one-level, so
+ * we don't really have any PMD or PTE directory physically.
+ *
+ * 18-Oct-1997 RMK Now two-level (32x32)
+ */
+#define PTRS_PER_PTE    32
+#define PTRS_PER_PMD    1
+#define PTRS_PER_PGD    32
+
+/* Just any arbitrary offset to the start of the vmalloc VM area: the
+ * current 8MB value just means that there will be a 8MB "hole" after the
+ * physical memory until the kernel virtual memory starts.  That means that
+ * any out-of-bounds memory accesses will hopefully be caught.
+ * The vmalloc() routines leaves a hole of 4kB between each vmalloced
+ * area for the same reason. ;)
+ */
+#define VMALLOC_START	0x01a00000
+#define VMALLOC_VMADDR(x) ((unsigned long)(x))
+
+#define _PAGE_PRESENT		0x01
+#define _PAGE_READONLY		0x02
+#define _PAGE_NOT_USER		0x04
+#define _PAGE_OLD		0x08
+#define _PAGE_CLEAN		0x10
+
+#define _PAGE_TABLE     (_PAGE_PRESENT)
+#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_OLD | _PAGE_CLEAN)
+
+/*                               -- present --   -- !dirty --  --- !write ---   ---- !user --- */
+#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY | _PAGE_NOT_USER)
+#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_CLEAN                                  )
+#define PAGE_COPY       __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY                 )
+#define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY                 )
+#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT                                | _PAGE_NOT_USER)
+
+/*
+ * The arm can't do page protection for execute, and considers that the same are read.
+ * Also, write permissions imply read permissions. This is the closest we can get..
+ */
+#define __P000  PAGE_NONE
+#define __P001  PAGE_READONLY
+#define __P010  PAGE_COPY
+#define __P011  PAGE_COPY
+#define __P100  PAGE_READONLY
+#define __P101  PAGE_READONLY
+#define __P110  PAGE_COPY
+#define __P111  PAGE_COPY
+
+#define __S000  PAGE_NONE
+#define __S001  PAGE_READONLY
+#define __S010  PAGE_SHARED
+#define __S011  PAGE_SHARED
+#define __S100  PAGE_READONLY
+#define __S101  PAGE_READONLY
+#define __S110  PAGE_SHARED
+#define __S111  PAGE_SHARED
+
+#undef TEST_VERIFY_AREA
+
+extern unsigned long *empty_zero_page;
+
+/*
+ * BAD_PAGETABLE is used when we need a bogus page-table, while
+ * BAD_PAGE is used for a bogus page.
+ *
+ * ZERO_PAGE is a global shared page that is always zero: used
+ * for zero-mapped memory areas etc..
+ */
+extern pte_t __bad_page(void);
+extern pte_t *__bad_pagetable(void);
+
+#define BAD_PAGETABLE __bad_pagetable()
+#define BAD_PAGE __bad_page()
+#define ZERO_PAGE ((unsigned long) empty_zero_page)
+
+/* number of bits that fit into a memory pointer */
+#define BYTES_PER_PTR			(sizeof(unsigned long))
+#define BITS_PER_PTR                    (8*BYTES_PER_PTR)
+
+/* to align the pointer to a pointer address */
+#define PTR_MASK                        (~(sizeof(void*)-1))
+
+/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
+#define SIZEOF_PTR_LOG2                 2
+
+/* to find an entry in a page-table */
+#define PAGE_PTR(address) \
+((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
+
+/* to set the page-dir */
+#define SET_PAGE_DIR(tsk,pgdir)						\
+do {									\
+	tsk->tss.memmap = (unsigned long)pgdir;				\
+	processor.u.armv2._update_map(tsk);				\
+	if ((tsk) == current)						\
+		processor.u.armv2._remap_memc (current);		\
+} while (0)
+
+extern unsigned long physical_start;
+extern unsigned long physical_end;
+
+#define pte_none(pte)		(!pte_val(pte))
+#define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT)
+#define pte_clear(ptep)		set_pte((ptep), __pte(0))
+
+#define pmd_none(pmd)		(!pmd_val(pmd))
+#define pmd_bad(pmd)		((pmd_val(pmd) & 0xfc000002))
+#define pmd_present(pmd)	(pmd_val(pmd) & _PAGE_PRESENT)
+#define pmd_clear(pmdp)		set_pmd(pmdp, __pmd(0))
+
+/*
+ * The "pgd_xxx()" functions here are trivial for a folded two-level
+ * setup: the pgd is never bad, and a pmd always exists (as it's folded
+ * into the pgd entry)
+ */
+#define pgd_none(pgd)		(0)
+#define pgd_bad(pgd)		(0)
+#define pgd_present(pgd)	(1)
+#define pgd_clear(pgdp)
+
+/*
+ * The following only work if pte_present() is true.
+ * Undefined behaviour if not..
+ */
+extern inline int pte_read(pte_t pte)           { return !(pte_val(pte) & _PAGE_NOT_USER);     }
+extern inline int pte_write(pte_t pte)          { return !(pte_val(pte) & _PAGE_READONLY);     }
+extern inline int pte_exec(pte_t pte)           { return !(pte_val(pte) & _PAGE_NOT_USER);     }
+extern inline int pte_dirty(pte_t pte)          { return !(pte_val(pte) & _PAGE_CLEAN);        }
+extern inline int pte_young(pte_t pte)          { return !(pte_val(pte) & _PAGE_OLD);          }
+#define pte_cacheable(pte) 1
+
+extern inline pte_t pte_nocache(pte_t pte)	{ return pte; }
+extern inline pte_t pte_wrprotect(pte_t pte)    { pte_val(pte) |= _PAGE_READONLY;  return pte; }
+extern inline pte_t pte_rdprotect(pte_t pte)    { pte_val(pte) |= _PAGE_NOT_USER;  return pte; }
+extern inline pte_t pte_exprotect(pte_t pte)    { pte_val(pte) |= _PAGE_NOT_USER;  return pte; }
+extern inline pte_t pte_mkclean(pte_t pte)      { pte_val(pte) |= _PAGE_CLEAN;     return pte; }
+extern inline pte_t pte_mkold(pte_t pte)        { pte_val(pte) |= _PAGE_OLD;       return pte; }
+
+extern inline pte_t pte_mkwrite(pte_t pte)      { pte_val(pte) &= ~_PAGE_READONLY; return pte; }
+extern inline pte_t pte_mkread(pte_t pte)       { pte_val(pte) &= ~_PAGE_NOT_USER; return pte; }
+extern inline pte_t pte_mkexec(pte_t pte)       { pte_val(pte) &= ~_PAGE_NOT_USER; return pte; }
+extern inline pte_t pte_mkdirty(pte_t pte)      { pte_val(pte) &= ~_PAGE_CLEAN;    return pte; }
+extern inline pte_t pte_mkyoung(pte_t pte)      { pte_val(pte) &= ~_PAGE_OLD;      return pte; }
+
+/*
+ * Conversion functions: convert a page and protection to a page entry,
+ * and a page entry and page directory to the page they refer to.
+ */
+extern __inline__ pte_t mk_pte(unsigned long page, pgprot_t pgprot)
+{
+	pte_t pte;
+	pte_val(pte) = __virt_to_phys(page) | pgprot_val(pgprot);
+	return pte;
+}
+
+/* This takes a physical page address that is used by the remapping functions */
+extern __inline__ pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
+{
+	pte_t pte;
+	pte_val(pte) = physpage + pgprot_val(pgprot);
+	return pte;
+}
+
+extern __inline__ pte_t pte_modify(pte_t pte, pgprot_t newprot)
+{
+	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
+	return pte;
+}
+
+#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
+
+extern __inline__ unsigned long pte_page(pte_t pte)
+{
+	return __phys_to_virt(pte_val(pte) & PAGE_MASK);
+}
+
+extern __inline__ pmd_t mk_pmd (pte_t *ptep)
+{
+	pmd_t pmd;
+	pmd_val(pmd) = __virt_to_phys((unsigned long)ptep) | _PAGE_TABLE;
+	return pmd;
+}
+
+#define set_pmd(pmdp,pmd) ((*(pmdp)) = (pmd))
+
+extern __inline__ unsigned long pmd_page(pmd_t pmd)
+{
+	return __phys_to_virt(pmd_val(pmd) & ~_PAGE_TABLE);
+}
+
+/* to find an entry in a kernel page-table-directory */
+#define pgd_offset_k(address) pgd_offset(&init_mm, address)
+
+/* to find an entry in a page-table-directory */
+extern __inline__ pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
+{
+        return mm->pgd + (address >> PGDIR_SHIFT);
+}
+
+/* Find an entry in the second-level page table.. */
+#define pmd_offset(dir, address) ((pmd_t *)(dir))
+
+/* Find an entry in the third-level page table.. */
+extern __inline__ pte_t * pte_offset(pmd_t *dir, unsigned long address)
+{
+	return (pte_t *)pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
+}
+
+/*
+ * Allocate and free page tables. The xxx_kernel() versions are
+ * used to allocate a kernel page table - this turns on ASN bits
+ * if any.
+ */
+#define pte_free_kernel(pte) pte_free((pte))
+#define pte_alloc_kernel(pmd,address) pte_alloc((pmd),(address))
+
+/*
+ * allocating and freeing a pmd is trivial: the 1-entry pmd is
+ * inside the pgd, so has no extra memory associated with it.
+ */
+#define pmd_free_kernel(pmdp)
+#define pmd_alloc_kernel(pgd,address) ((pmd_t *)(pgd))
+
+extern __inline__ void pte_free(pte_t * pte)
+{
+	kfree (pte);
+}
+
+extern const char bad_pmd_string[];
+
+extern __inline__ pte_t *pte_alloc(pmd_t * pmd, unsigned long address)
+{
+	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+
+	if (pmd_none (*pmd)) {
+		pte_t *page = (pte_t *) kmalloc (PTRS_PER_PTE * BYTES_PER_PTR, GFP_KERNEL);
+		if (pmd_none (*pmd)) {
+			if (page) {
+				memzero (page, PTRS_PER_PTE * BYTES_PER_PTR);
+				set_pmd(pmd, mk_pmd(page));
+				return page + address;
+			}
+			set_pmd (pmd, mk_pmd (BAD_PAGETABLE));
+			return NULL;
+		}
+		kfree (page);
+	}
+	if (pmd_bad (*pmd)) {
+		printk(bad_pmd_string, pmd_val(*pmd));
+		set_pmd (pmd, mk_pmd (BAD_PAGETABLE));
+		return NULL;
+	}
+	return (pte_t *) pmd_page(*pmd) + address;
+}
+
+/*
+ * allocating and freeing a pmd is trivial: the 1-entry pmd is
+ * inside the pgd, so has no extra memory associated with it.
+ */
+#define pmd_free(pmd)
+#define pmd_alloc(pgd,address) ((pmd_t *)(pgd))
+
+/*
+ * Free a page directory.  Takes the virtual address.
+ */
+extern __inline__ void pgd_free(pgd_t * pgd)
+{
+	kfree ((void *)pgd);
+}
+
+/*
+ * Allocate a new page directory.  Return the virtual address of it.
+ */
+extern __inline__ pgd_t * pgd_alloc(void)
+{
+	pgd_t *pgd;
+	
+	pgd = (pgd_t *) kmalloc(PTRS_PER_PGD * BYTES_PER_PTR, GFP_KERNEL);
+	if (pgd)
+		memzero (pgd, PTRS_PER_PGD * BYTES_PER_PTR);
+	return pgd;
+}
+
+extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
+
+#define update_mmu_cache(vma,address,pte)
+
+#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
+#define SWP_OFFSET(entry) ((entry) >> 8)
+#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) <<  8))
+
+#endif /* __ASM_PROC_PAGE_H */
+

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen, slshen@lbl.gov