
FLTK 1.3.0 Programming Manual

Revision 9 by F. Costantini, D. Gibson, M. Melcher,
A. Schlosser, B. Spitzak and M. Sweet.

Copyright 1998-2010 by Bill Spitzak and others.

Generated by Doxygen 1.5.7.1

December 27, 2010

Contents

1 FLTK Programming Manual 1

2 Preface 3

2.1 Organization . 4

2.2 Conventions . 5

2.3 Abbreviations . 5

2.4 Copyrights and Trademarks . 5

3 Introduction to FLTK 7

3.1 History of FLTK . 8

3.2 Features . 8

3.3 Licensing . 9

3.4 What Does "FLTK" Mean? . 9

3.5 Building and Installing FLTK Under UNIX and MacOS X 10

3.6 Building FLTK Under Microsoft Windows . 11

3.7 Building FLTK Under OS/2 . 12

3.8 Internet Resources . 12

3.9 Reporting Bugs . 13

4 FLTK Basics 15

4.1 Writing Your First FLTK Program . 16

4.2 Compiling Programs with Standard Compilers . 18

4.3 Compiling Programs with Makefiles . 19

4.4 Compiling Programs with Microsoft Visual C++ . 20

4.5 Naming . 20

4.6 Header Files . 20

5 Common Widgets and Attributes 23

5.1 Buttons . 24

5.2 Text . 25

ii CONTENTS

5.3 Valuators . 25

5.4 Groups . 26

5.5 Setting the Size and Position of Widgets . 27

5.6 Colors . 27

5.7 Box Types . 28

5.8 Labels and Label Types . 30

5.9 Callbacks . 34

5.10 Shortcuts . 34

6 Designing a Simple Text Editor 37

6.1 Determining the Goals of the Text Editor . 38

6.2 Designing the Main Window . 38

6.3 Variables . 38

6.4 Menubars and Menus . 39

6.5 Editing the Text . 39

6.6 The Replace Dialog . 40

6.7 Callbacks . 40

6.8 Other Functions . 45

6.9 The main() Function . 46

6.10 Compiling the Editor . 46

6.11 The Final Product . 47

6.12 Advanced Features . 47

7 Drawing Things in FLTK 53

7.1 When Can You Draw Things in FLTK? . 54

7.2 Drawing Functions . 54

7.3 Colors . 56

7.4 Drawing Images . 66

8 Handling Events 71

8.1 The FLTK Event Model . 72

8.2 Mouse Events . 72

8.3 Focus Events . 73

8.4 Keyboard Events . 73

8.5 Widget Events . 74

8.6 Clipboard Events . 74

8.7 Drag and Drop Events . 75

8.8 Fl::event_∗() methods . 75

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

CONTENTS iii

8.9 Event Propagation . 76

8.10 FLTK Compose-Character Sequences . 77

9 Adding and Extending Widgets 79

9.1 Subclassing . 80

9.2 Making a Subclass of Fl_Widget . 80

9.3 The Constructor . 80

9.4 Protected Methods of Fl_Widget . 81

9.5 Handling Events . 83

9.6 Drawing the Widget . 84

9.7 Resizing the Widget . 85

9.8 Making a Composite Widget . 85

9.9 Cut and Paste Support . 87

9.10 Drag And Drop Support . 87

9.11 Making a subclass of Fl_Window . 87

10 Using OpenGL 89

10.1 Using OpenGL in FLTK . 90

10.2 Making a Subclass of Fl_Gl_Window . 90

10.3 Using OpenGL in Normal FLTK Windows . 92

10.4 OpenGL Drawing Functions . 93

10.5 Speeding up OpenGL . 94

10.6 Using OpenGL Optimizer with FLTK . 94

11 Programming with FLUID 97

11.1 What is FLUID? . 98

11.2 Running FLUID Under UNIX . 99

11.3 Running FLUID Under Microsoft Windows . 99

11.4 Compiling .fl files . 99

11.5 A Short Tutorial . 100

11.6 FLUID Reference . 107

11.7 GUI Attributes . 115

11.8 Selecting and Moving Widgets . 122

11.9 Image Labels . 122

11.10Internationalization with FLUID . 124

11.11Known limitations . 126

12 Advanced FLTK 127

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

iv CONTENTS

12.1 Multithreading . 128

13 Unicode and UTF-8 Support 131

13.1 About Unicode, ISO 10646 and UTF-8 . 132

13.2 Unicode in FLTK . 133

13.3 Illegal Unicode and UTF8 sequences . 134

13.4 FLTK Unicode and UTF8 functions . 135

13.5 FLTK Unicode versions of system calls . 138

14 FLTK Enumerations 141

14.1 Version Numbers . 142

14.2 Events . 142

14.3 Callback "When" Conditions . 143

14.4 Fl::event_button() Values . 143

14.5 Fl::event_key() Values . 144

14.6 Fl::event_state() Values . 145

14.7 Alignment Values . 145

14.8 Fonts . 146

14.9 Colors . 146

14.10Cursors . 148

14.11FD "When" Conditions . 148

14.12Damage Masks . 148

15 GLUT Compatibility 149

15.1 Using the GLUT Compatibility Header File . 150

15.2 Known Problems . 150

15.3 Mixing GLUT and FLTK Code . 151

15.4 class Fl_Glut_Window . 151

16 Forms Compatibility 155

16.1 Importing Forms Layout Files . 156

16.2 Using the Compatibility Header File . 156

16.3 Problems You Will Encounter . 156

16.4 Additional Notes . 158

17 Operating System Issues 161

17.1 Accessing the OS Interfaces . 162

17.2 The UNIX (X11) Interface . 162

17.3 The Windows (WIN32) Interface . 168

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

CONTENTS v

17.4 The Mac OS Interface . 170

18 Migrating Code from FLTK 1.0 to 1.1 173

18.1 Color Values . 174

18.2 Cut and Paste Support . 174

18.3 File Chooser . 174

18.4 Function Names . 174

18.5 Image Support . 175

18.6 Keyboard Navigation . 175

19 Migrating Code from FLTK 1.1 to 1.3 177

19.1 Migrating From FLTK 1.0 . 178

19.2 Fl_Scroll Widget . 178

19.3 Unicode (UTF-8) . 178

19.4 Widget Coordinate Representation . 178

20 Developer Information 179

20.1 Non-ASCII characters . 182

20.2 Document Structure . 183

20.3 Creating Links . 183

20.4 Paragraph Layout . 184

20.5 Hack for missing "tiny.gif" file . 185

20.6 Navigation Elements . 185

21 Software License 187

22 Example Source Code 195

22.1 Example Applications . 196

23 Deprecated List 205

24 Todo List 207

25 Module Index 213

25.1 Modules . 213

26 Class Index 215

26.1 Class Hierarchy . 215

27 Class Index 219

27.1 Class List . 219

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

vi CONTENTS

28 File Index 223

28.1 File List . 223

29 Module Documentation 229

29.1 Callback function typedefs . 229

29.2 Windows handling functions . 231

29.3 Events handling functions . 234

29.4 Selection & Clipboard functions . 246

29.5 Screen functions . 248

29.6 Color & Font functions . 250

29.7 Drawing functions . 260

29.8 Multithreading support functions . 281

29.9 Safe widget deletion support functions . 283

29.10Cairo support functions and classes . 287

29.11Unicode and UTF-8 functions . 289

29.12Mac OS X-specific functions . 298

29.13Common Dialogs classes and functions . 300

29.14File names and URI utility functions . 309

30 Class Documentation 315

30.1 Fl Class Reference . 315

30.2 Fl_Adjuster Class Reference . 339

30.3 Fl_Bitmap Class Reference . 342

30.4 Fl_BMP_Image Class Reference . 345

30.5 Fl_Box Class Reference . 346

30.6 Fl_Browser Class Reference . 348

30.7 Fl_Browser_ Class Reference . 370

30.8 Fl_Button Class Reference . 387

30.9 Fl_Cairo_State Class Reference . 392

30.10Fl_Cairo_Window Class Reference . 393

30.11Fl_Chart Class Reference . 395

30.12FL_CHART_ENTRY Struct Reference . 401

30.13Fl_Check_Browser Class Reference . 402

30.14Fl_Check_Button Class Reference . 406

30.15Fl_Choice Class Reference . 408

30.16Fl_Clock Class Reference . 412

30.17Fl_Clock_Output Class Reference . 415

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

CONTENTS vii

30.18Fl_Color_Chooser Class Reference . 419

30.19Fl_Counter Class Reference . 424

30.20Fl_Device Class Reference . 428

30.21Fl_Device_Plugin Class Reference . 430

30.22Fl_Dial Class Reference . 431

30.23Fl_Display_Device Class Reference . 434

30.24Fl_Double_Window Class Reference . 436

30.25Fl_End Class Reference . 440

30.26Fl_File_Browser Class Reference . 441

30.27Fl_File_Chooser Class Reference . 444

30.28Fl_File_Icon Class Reference . 453

30.29Fl_File_Input Class Reference . 459

30.30Fl_Fill_Dial Class Reference . 462

30.31Fl_Fill_Slider Class Reference . 463

30.32Fl_Float_Input Class Reference . 464

30.33Fl_Font_Descriptor Class Reference . 465

30.34Fl_FormsBitmap Class Reference . 466

30.35Fl_FormsPixmap Class Reference . 468

30.36Fl_Free Class Reference . 470

30.37Fl_GDI_Graphics_Driver Class Reference . 473

30.38Fl_GIF_Image Class Reference . 475

30.39Fl_Gl_Window Class Reference . 476

30.40Fl_Glut_Bitmap_Font Struct Reference . 484

30.41Fl_Glut_Window Class Reference . 485

30.42Fl_Graphics_Driver Class Reference . 488

30.43Fl_Group Class Reference . 508

30.44Fl_Help_Dialog Class Reference . 519

30.45Fl_Help_Font_Style Struct Reference . 523

30.46Fl_Help_Link Struct Reference . 524

30.47Fl_Help_Target Struct Reference . 525

30.48Fl_Help_View Class Reference . 526

30.49Fl_Hold_Browser Class Reference . 535

30.50Fl_Image Class Reference . 536

30.51Fl_Input Class Reference . 541

30.52Fl_Input_ Class Reference . 545

30.53Fl_Input_Choice Class Reference . 563

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

viii CONTENTS

30.54Fl_Int_Input Class Reference . 567

30.55Fl_JPEG_Image Class Reference . 568

30.56Fl_Label Struct Reference . 570

30.57Fl_Light_Button Class Reference . 572

30.58Fl_Menu_ Class Reference . 574

30.59Fl_Menu_Bar Class Reference . 589

30.60Fl_Menu_Button Class Reference . 592

30.61Fl_Menu_Item Struct Reference . 596

30.62Fl_Menu_Window Class Reference . 610

30.63Fl_Multi_Browser Class Reference . 613

30.64Fl_Multiline_Input Class Reference . 614

30.65Fl_Multiline_Output Class Reference . 616

30.66Fl_Native_File_Chooser Class Reference . 617

30.67Fl_Output Class Reference . 624

30.68Fl_Overlay_Window Class Reference . 626

30.69Fl_Pack Class Reference . 629

30.70Fl_Paged_Device Class Reference . 631

30.71Fl_Paged_Device::page_format Struct Reference . 638

30.72Fl_Pixmap Class Reference . 639

30.73Fl_Plugin Class Reference . 643

30.74Fl_Plugin_Manager Class Reference . 645

30.75Fl_PNG_Image Class Reference . 647

30.76Fl_PNM_Image Class Reference . 648

30.77Fl_Positioner Class Reference . 649

30.78Fl_PostScript_File_Device Class Reference . 653

30.79Fl_PostScript_Graphics_Driver Class Reference . 658

30.80Fl_PostScript_Printer Class Reference . 661

30.81Fl_Preferences Class Reference . 663

30.82Fl_Preferences::Name Class Reference . 677

30.83Fl_Printer Class Reference . 679

30.84Fl_Progress Class Reference . 685

30.85Fl_Quartz_Graphics_Driver Class Reference . 687

30.86Fl_Repeat_Button Class Reference . 689

30.87Fl_Return_Button Class Reference . 691

30.88Fl_RGB_Image Class Reference . 693

30.89Fl_Roller Class Reference . 697

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

CONTENTS ix

30.90Fl_Round_Button Class Reference . 700

30.91Fl_Round_Clock Class Reference . 701

30.92Fl_Scroll Class Reference . 702

30.93Fl_Scrollbar Class Reference . 708

30.94Fl_Secret_Input Class Reference . 712

30.95Fl_Select_Browser Class Reference . 713

30.96Fl_Shared_Image Class Reference . 714

30.97Fl_Simple_Counter Class Reference . 719

30.98Fl_Single_Window Class Reference . 720

30.99Fl_Slider Class Reference . 723

30.100Fl_Spinner Class Reference . 727

30.101Fl_Surface_Device Class Reference . 732

30.102Fl_Sys_Menu_Bar Class Reference . 735

30.103Fl_System_Printer Class Reference . 739

30.104Fl_Table Class Reference . 744

30.105Fl_Table_Row Class Reference . 763

30.106Fl_Tabs Class Reference . 767

30.107Fl_Text_Buffer Class Reference . 771

30.108Fl_Text_Display Class Reference . 788

30.109Fl_Text_Display::Style_Table_Entry Struct Reference . 821

30.110Fl_Text_Editor Class Reference . 822

30.111Fl_Text_Editor::Key_Binding Struct Reference . 829

30.112Fl_Text_Selection Class Reference . 830

30.113Fl_Tile Class Reference . 833

30.114Fl_Tiled_Image Class Reference . 836

30.115Fl_Timer Class Reference . 839

30.116Fl_Toggle_Button Class Reference . 842

30.117Fl_Tooltip Class Reference . 843

30.118Fl_Tree Class Reference . 847

30.119Fl_Tree_Item Class Reference . 873

30.120Fl_Tree_Item_Array Class Reference . 885

30.121Fl_Tree_Prefs Class Reference . 888

30.122Fl_Valuator Class Reference . 893

30.123Fl_Value_Input Class Reference . 899

30.124Fl_Value_Output Class Reference . 904

30.125Fl_Value_Slider Class Reference . 908

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

x CONTENTS

30.126Fl_Widget Class Reference . 911

30.127Fl_Widget_Tracker Class Reference . 947

30.128Fl_Window Class Reference . 949

30.129Fl_Wizard Class Reference . 964

30.130Fl_XBM_Image Class Reference . 966

30.131Fl_Xlib_Graphics_Driver Class Reference . 967

30.132Fl_XPM_Image Class Reference . 969

31 File Documentation 971

31.1 Enumerations.H File Reference . 971

31.2 fl_arc.cxx File Reference . 985

31.3 fl_arci.cxx File Reference . 986

31.4 fl_boxtype.cxx File Reference . 987

31.5 fl_color.cxx File Reference . 989

31.6 Fl_Color_Chooser.H File Reference . 991

31.7 fl_curve.cxx File Reference . 992

31.8 Fl_Device.H File Reference . 993

31.9 fl_draw.H File Reference . 995

31.10fl_line_style.cxx File Reference . 1003

31.11Fl_Paged_Device.cxx File Reference . 1004

31.12Fl_Paged_Device.H File Reference . 1005

31.13Fl_PostScript.H File Reference . 1006

31.14Fl_Printer.H File Reference . 1007

31.15fl_rect.cxx File Reference . 1008

31.16Fl_Shared_Image.H File Reference . 1009

31.17fl_show_colormap.H File Reference . 1010

31.18Fl_Tree.H File Reference . 1011

31.19Fl_Tree_Item.H File Reference . 1012

31.20Fl_Tree_Item_Array.H File Reference . 1013

31.21Fl_Tree_Prefs.H File Reference . 1014

31.22fl_types.h File Reference . 1016

31.23fl_utf8.h File Reference . 1017

31.24fl_vertex.cxx File Reference . 1020

31.25Fl_Widget.H File Reference . 1022

31.26gl.h File Reference . 1024

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 1

FLTK Programming Manual

FLTK 1.3.0 Programming Manual

Revision 9 by F. Costantini, D. Gibson,
M. Melcher, A. Schlosser, B. Spitzak and

M. Sweet.

Copyright 1998-2010 by Bill Spitzak and others.

This software and manual are provided under the terms of the GNU Library General Public License.
Permission is granted to reproduce this manual or any portion for any purpose, provided this copyright
and permission notice are preserved.

2 FLTK Programming Manual

Preface
Introduction to FLTK
FLTK Basics
Common Widgets and Attributes

• Colors

• Box Types

• Labels and Label Types

• Drawing Images

Designing a Simple Text Editor
Drawing Things in FLTK
Handling Events

• Fl::event_∗() methods

• Event Propagation

Adding and Extending Widgets
Using OpenGL
Programming with FLUID

• GUI Attributes

• Selecting and Moving Widgets

• Image Labels

Advanced FLTK
Unicode and UTF-8 Support

Appendices:

• FLTK Enumerations

• GLUT Compatibility

– class Fl_Glut_Window

• Forms Compatibility

• Operating System Issues

• Migrating Code from FLTK 1.0 to 1.1

• Migrating Code from FLTK 1.1 to 1.3

• Developer Information

• Software License

• Example Source Code

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 2

Preface

4 Preface

This manual describes the Fast Light Tool Kit ("FLTK") version 1.3.0, a C++ Graphical User Interface
("GUI") toolkit for UNIX, Microsoft Windows and MacOS.

Each of the chapters in this manual is designed as a tutorial for using FLTK, while the appendices provide
a convenient reference for all FLTK widgets, functions, and operating system interfaces.

This manual may be printed, modified, and/or used under the terms of the FLTK license provided in
Software License.

2.1 Organization

This manual is organized into the following chapters and appendices:

• Introduction to FLTK

• FLTK Basics

• Common Widgets and Attributes

• Designing a Simple Text Editor

• Drawing Things in FLTK

• Handling Events

• Adding and Extending Widgets

• Using OpenGL

• Programming with FLUID

• Advanced FLTK

• Unicode and UTF-8 Support

• FLTK Enumerations

• GLUT Compatibility

• Forms Compatibility

• Operating System Issues

• Migrating Code from FLTK 1.0 to 1.1

• Migrating Code from FLTK 1.1 to 1.3

• Developer Information

• Software License

• Example Source Code

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

2.2 Conventions 5

2.2 Conventions

This manual was generated using Doxygen (see http://www.stack.nl/∼dimitri/doxygen/)
to process the source code itself, special comments in the code, and additional documentation files. In
general, Doxygen recognizes and denotes the following entities as shown:

• classes, such as Fl_Widget,

• methods, such as Fl_Widget::callback(Fl_Callback∗ cb, void∗ p),

• functions, such as fl_draw(const char ∗str, int x, int y),

• internal links, such as Conventions,

• external links, such as http://www.stack.nl/∼dimitri/doxygen/

Other code samples and commands are shown in regular courier type.

2.3 Abbreviations

The following abbreviations are used in this manual:

X11

The X Window System version 11.

Xlib

The X Window System interface library.

WIN32

The Microsoft Windows 32-bit Application Programmer’s Interface.

MacOS

The Apple Macintosh OS 8.6 and later, including OS X.

2.4 Copyrights and Trademarks

FLTK is Copyright 1998-2010 by Bill Spitzak and others. Use and distribution of FLTK is governed by the
GNU Library General Public License with 4 exceptions, located in Software License.

UNIX is a registered trademark of the X Open Group, Inc. Microsoft and Windows are registered trade-
marks of Microsoft Corporation. OpenGL is a registered trademark of Silicon Graphics, Inc. Apple,
Macintosh, MacOS, and Mac OS X are registered trademarks of Apple Computer, Inc.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

6 Preface

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 3

Introduction to FLTK

8 Introduction to FLTK

The Fast Light Tool Kit ("FLTK", pronounced "fulltick") is a cross-platform C++ GUI toolkit for
UNIX®/Linux®(X11), Microsoft®Windows®, and MacOS®X.

FLTK provides modern GUI functionality without the bloat and supports 3D graphics via OpenGL®and
its built-in GLUT emulation. It was originally developed by Mr. Bill Spitzak and is currently maintained
by a small group of developers across the world with a central repository in the US.

3.1 History of FLTK

It has always been Bill’s belief that the GUI API of all modern systems is much too high level. Toolkits
(even FLTK) are not what should be provided and documented as part of an operating system. The system
only has to provide arbitrary shaped but featureless windows, a powerful set of graphics drawing calls, and
a simple unalterable method of delivering events to the owners of the windows. NeXT (if you ignored
NextStep) provided this, but they chose to hide it and tried to push their own baroque toolkit instead.

Many of the ideas in FLTK were developed on a NeXT (but not using NextStep) in 1987 in a C toolkit Bill
called "views". Here he came up with passing events downward in the tree and having the handle routine
return a value indicating whether it used the event, and the table-driven menus. In general he was trying to
prove that complex UI ideas could be entirely implemented in a user space toolkit, with no knowledge or
support by the system.

After going to film school for a few years, Bill worked at Sun Microsystems on the (doomed) NeWS
project. Here he found an even better and cleaner windowing system, and he reimplemented "views" atop
that. NeWS did have an unnecessarily complex method of delivering events which hurt it. But the designers
did admit that perhaps the user could write just as good of a button as they could, and officially exposed
the lower level interface.

With the death of NeWS Bill realized that he would have to live with X. The biggest problem with X is
the "window manager", which means that the toolkit can no longer control the window borders or drag the
window around.

At Digital Domain Bill discovered another toolkit, "Forms". Forms was similar to his work, but provided
many more widgets, since it was used in many real applications, rather than as theoretical work. He decided
to use Forms, except he integrated his table-driven menus into it. Several very large programs were created
using this version of Forms.

The need to switch to OpenGL and GLX, portability, and a desire to use C++ subclassing required a rewrite
of Forms. This produced the first version of FLTK. The conversion to C++ required so many changes it
made it impossible to recompile any Forms objects. Since it was incompatible anyway, Bill decided to
incorporate his older ideas as much as possible by simplifying the lower level interface and the event
passing mechanism.

Bill received permission to release it for free on the Internet, with the GNU general public license. Re-
sponse from Internet users indicated that the Linux market dwarfed the SGI and high-speed GL market, so
he rewrote it to use X for all drawing, greatly speeding it up on these machines. That is the version you
have now.

Digital Domain has since withdrawn support for FLTK. While Bill is no longer able to actively develop it,
he still contributes to FLTK in his free time and is a part of the FLTK development team.

3.2 Features

FLTK was designed to be statically linked. This was done by splitting it into many small objects and
designing it so that functions that are not used do not have pointers to them in the parts that are used, and
thus do not get linked in. This allows you to make an easy-to-install program or to modify FLTK to the

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

3.3 Licensing 9

exact requirements of your application without worrying about bloat. FLTK works fine as a shared library,
though, and is now included with several Linux distributions.

Here are some of the core features unique to FLTK:

• sizeof(Fl_Widget) == 64 to 92.

• The "core" (the "hello" program compiled & linked with a static FLTK library using gcc on a 486
and then stripped) is 114K.

• The FLUID program (which includes every widget) is 538k.

• Written directly atop core libraries (Xlib, WIN32 or Cocoa) for maximum speed, and carefully opti-
mized for code size and performance.

• Precise low-level compatibility between the X11, WIN32 and MacOS versions - only about 10% of
the code is different.

• Interactive user interface builder program. Output is human-readable and editable C++ source code.

• Support for overlay hardware, with emulation if none is available.

• Very small & fast portable 2-D drawing library to hide Xlib, WIN32, or QuickDraw.

• OpenGL/Mesa drawing area widget.

• Support for OpenGL overlay hardware on both X11 and WIN32, with emulation if none is available.

• Text widgets with Emacs key bindings, X cut & paste, and support for character composition.

• Compatibility header file for the GLUT library.

• Compatibility header file for the XForms library.

3.3 Licensing

FLTK comes with complete free source code. FLTK is available under the terms of the GNU Library
General Public License with exceptions that allow for static linking. Contrary to popular belief, it can be
used in commercial software - even Bill Gates could use it!

3.4 What Does "FLTK" Mean?

FLTK was originally designed to be compatible with the Forms Library written for SGI machines. In that
library all the functions and structures started with "fl_". This naming was extended to all new methods
and widgets in the C++ library, and this prefix was taken as the name of the library. It is almost impossible
to search for "FL" on the Internet, due to the fact that it is also the abbreviation for Florida. After much
debating and searching for a new name for the toolkit, which was already in use by several people, Bill
came up with "FLTK", including a bogus excuse that it stands for "The Fast Light Toolkit".

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

10 Introduction to FLTK

3.5 Building and Installing FLTK Under UNIX and MacOS X

In most cases you can just type "make". This will run configure with the default of no options and then
compile everything.

FLTK uses GNU autoconf to configure itself for your UNIX platform. The main things that the configure
script will look for are the X11 and OpenGL (or Mesa) header and library files. If these cannot be found
in the standard include/library locations you’ll need to define the CFLAGS, CXXFLAGS, and LDFLAGS
environment variables. For the Bourne and Korn shells you’d use:

CFLAGS=-Iincludedir; export CFLAGS
CXXFLAGS=-Iincludedir; export CXXFLAGS
LDFLAGS=-Llibdir; export LDFLAGS

For C shell and tcsh, use:

setenv CFLAGS "-Iincludedir"
setenv CXXFLAGS "-Iincludedir"
setenv LDFLAGS "-Llibdir"

By default configure will look for a C++ compiler named CC, c++, g++, or gcc in that order. To use
another compiler you need to set the CXX environment variable:

CXX=xlC; export CXX
setenv CXX "xlC"

The CC environment variable can also be used to override the default C compiler (cc or gcc), which is
used for a few FLTK source files.

You can run configure yourself to get the exact setup you need. Type "./configure <options>", where
options are:

–enable-cygwin

Enable the Cygwin libraries under WIN32

–enable-debug

Enable debugging code & symbols

–disable-gl

Disable OpenGL support

–enable-shared

Enable generation of shared libraries

–enable-threads

Enable multithreading support

–enable-xdbe

Enable the X double-buffer extension

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

3.6 Building FLTK Under Microsoft Windows 11

–enable-xft

Enable the Xft library for anti-aliased fonts under X11

–enable-x11

When targeting cygwin, build with X11 GUI instead of windows GDI

–enable-cp936

Under X11, enable use of the GB2312 locale

–bindir=/path

Set the location for executables [default = $prefix/bin]

–datadir=/path

Set the location for data files. [default = $prefix/share]

–libdir=/path

Set the location for libraries [default = $prefix/lib]

–includedir=/path

Set the location for include files. [default = $prefix/include]

–mandir=/path

Set the location for man pages. [default = $prefix/man]

–prefix=/dir

Set the directory prefix for files [default = /usr/local]

When the configure script is done you can just run the "make" command. This will build the library, FLUID
tool, and all of the test programs.

To install the library, become root and type "make install". This will copy the "fluid" executable to "bindir",
the header files to "includedir", and the library files to "libdir".

3.6 Building FLTK Under Microsoft Windows

There are three ways to build FLTK under Microsoft Windows. The first is to use the Visual C++ 5.0
project files under the "visualc" directory. Just open (or double-click on) the "fltk.dsw" file to get the whole
shebang.

The second method is to use the configure script included with the FLTK software; this has only been
tested with the Cygwin tools:

sh configure --prefix=C:/FLTK
make

The final method is to use a GNU-based development tool with the files in the "makefiles" directory.
To build using one of these tools simply copy the appropriate makeinclude and config files to the main
directory and do a make:

copy makefiles\Makefile.<env> Makefile
make

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

12 Introduction to FLTK

3.6.1 Using the Visual C++ DLL Library

The "fltkdll.dsp" project file builds a DLL-version of the FLTK library. Because of name mangling differ-
ences between PC compilers (even between different versions of Visual C++!) you can only use the DLL
that is generated with the same version compiler that you built it with.

When compiling an application or DLL that uses the FLTK DLL, you will need to define the FL_DLL
preprocessor symbol to get the correct linkage commands embedded within the FLTK header files.

3.7 Building FLTK Under OS/2

The current OS/2 build requires XFree86 for OS/2 to work. A native Presentation Manager version has not
been implemented yet (volunteers are welcome!).

The current set of Makefiles/configuration failes assumes that EMX 0.9d and libExt (from
http://posix2.sourceforge.net) is installed.

To build the XFree86 version of FLTK for OS/2, copy the appropriate makeinclude and config files to the
main directory and do a make:

copy makefiles\Makefile.os2x Makefile
make

3.8 Internet Resources

FLTK is available on the ’net in a bunch of locations:

WWW

http://www.fltk.org/
http://www.fltk.org/str.php [for reporting bugs]
http://www.fltk.org/software.php [source code]
http://www.fltk.org/newsgroups.php [newsgroup/forums]

FTP

http://ftp.easysw.com/pub/fltk [California, USA, via http]
ftp://ftp.easysw.com/pub/fltk [California, USA via ftp]
ftp://ftp2.easysw.com/pub/fltk [Maryland, USA]
ftp://ftp.funet.fi/pub/mirrors/ftp.easysw.com/pub/fltk [Espoo, Finland]
ftp://linux.mathematik.tu-darmstadt.de/pub/linux/mirrors/misc/fltk
[Germany]
ftp://gd.tuwien.ac.at/hci/fltk [Austria]

NNTP Newsgroups

news://news.easysw.com/ [NNTP interface]
http://fltk.org/newsgroups.php [web interface]

Point your NNTP news reader at news.easysw.com. At minimum, you’ll want to subscribe to the
"fltk.general" group for general FLTK questions and answers.

You can also use the web interface to the newsgroup; just go to the main http://fltk.org/ page and
click on "Forums".

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://posix2.sourceforge.net
http://www.fltk.org/
http://www.fltk.org/str.php
http://www.fltk.org/software.php
http://www.fltk.org/newsgroups.php
http://ftp.easysw.com/pub/fltk
ftp://ftp.easysw.com/pub/fltk
ftp://ftp2.easysw.com/pub/fltk
ftp://ftp.funet.fi/pub/mirrors/ftp.easysw.com/pub/fltk
ftp://linux.mathematik.tu-darmstadt.de/pub/linux/mirrors/misc/fltk
ftp://gd.tuwien.ac.at/hci/fltk
news://news.easysw.com/
http://fltk.org/newsgroups.php
http://fltk.org/

3.9 Reporting Bugs 13

3.9 Reporting Bugs

To report a bug in FLTK, or for feature requests, please use the form at
http://www.fltk.org/str.php, and click on "Submit Bug or Feature Request".

You’ll be prompted for the FLTK version, operating system & version, and compiler that you are using.
We will be unable to provide any kind of help without that basic information.

For general support and questions, please use the fltk.general newsgroup (see above, "NNTP Newsgroups")
or the web interface to the newsgroups at http://fltk.org/newsgroups.php.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://www.fltk.org/str.php
http://fltk.org/newsgroups.php

14 Introduction to FLTK

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 4

FLTK Basics

16 FLTK Basics

This chapter teaches you the basics of compiling programs that use FLTK.

4.1 Writing Your First FLTK Program

All programs must include the file <FL/Fl.H>. In addition the program must include a header file for
each FLTK class it uses. Listing 1 shows a simple "Hello, World!" program that uses FLTK to display the
window.

Listing 1 - "hello.cxx"

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Box.H>

int main(int argc, char **argv) {
Fl_Window *window = new Fl_Window(300,180);
Fl_Box *box = new Fl_Box(20,40,260,100,"Hello, World!");
box->box(FL_UP_BOX);
box->labelsize(36);
box->labelfont(FL_BOLD+FL_ITALIC);
box->labeltype(FL_SHADOW_LABEL);
window->end();
window->show(argc, argv);
return Fl::run();

}

After including the required header files, the program then creates a window. All following widgets will
automatically be children of this window.

Fl_Window *window = new Fl_Window(300,180);

Then we create a box with the "Hello, World!" string in it. FLTK automatically adds the new box to
window, the current grouping widget.

Fl_Box *box = new Fl_Box(20,40,260,100,"Hello, World!");

Next, we set the type of box and the size, font, and style of the label:

box->box(FL_UP_BOX);
box->labelsize(36);
box->labelfont(FL_BOLD+FL_ITALIC);
box->labeltype(FL_SHADOW_LABEL);

We tell FLTK that we will not add any more widgets to window.

window->end();

Finally, we show the window and enter the FLTK event loop:

window->show(argc, argv);
return Fl::run();

The resulting program will display the window in Figure 2-1. You can quit the program by closing the
window or pressing the ESCape key.

Figure 4.1: The Hello, World! Window

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

4.1 Writing Your First FLTK Program 17

4.1.1 Creating the Widgets

The widgets are created using the C++ new operator. For most widgets the arguments to the constructor
are:

Fl_Widget(x, y, width, height, label)

The x and y parameters determine where the widget or window is placed on the screen. In FLTK the top
left corner of the window or screen is the origin (i.e. x = 0, y = 0) and the units are in pixels.

The width and height parameters determine the size of the widget or window in pixels. The maximum
widget size is typically governed by the underlying window system or hardware.

label is a pointer to a character string to label the widget with or NULL. If not specified the label defaults
to NULL. The label string must be in static storage such as a string constant because FLTK does not make
a copy of it - it just uses the pointer.

4.1.2 Creating Widget hierarchies

Widgets are commonly ordered into functional groups, which in turn may be grouped again, creating a
hierarchy of widgets. FLTK makes it easy to fill groups by automatically adding all widgets that are
created between a myGroup->begin() and myGroup->end(). In this example, myGroup would
be the current group.

Newly created groups and their derived widgets implicitly call begin() in the constructor, effectively
adding all subsequently created widgets to itself until end() is called.

Setting the current group to NULLwill stop automatic hierarchies. New widgets can now be added manually
using Fl_Group::add(...) and Fl_Group::insert(...).

4.1.3 Get/Set Methods

box->box(FL_UP_BOX) sets the type of box the Fl_Box draws, changing it from the default of FL_-
NO_BOX, which means that no box is drawn. In our "Hello, World!" example we use FL_UP_BOX, which
means that a raised button border will be drawn around the widget. More details are available in the Box
Types section.

You could examine the boxtype in by doing box->box(). FLTK uses method name overloading to
make short names for get/set methods. A "set" method is always of the form "void name(type)", and a
"get" method is always of the form "type name() const".

4.1.4 Redrawing After Changing Attributes

Almost all of the set/get pairs are very fast, short inline functions and thus very efficient. However, the "set"
methods do not call redraw() - you have to call it yourself. This greatly reduces code size and execution
time. The only common exceptions are value() which calls redraw() and label() which calls
redraw_label() if necessary.

4.1.5 Labels

All widgets support labels. In the case of window widgets, the label is used for the label in the title bar.
Our example program calls the labelfont(), labelsize(), and labeltype() methods.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

18 FLTK Basics

The labelfont() method sets the typeface and style that is used for the label, which for this example
we are using FL_BOLD and FL_ITALIC. You can also specify typefaces directly.

The labelsize() method sets the height of the font in pixels.

The labeltype()method sets the type of label. FLTK supports normal, embossed, and shadowed labels
internally, and more types can be added as desired.

A complete list of all label options can be found in the section on Labels and Label Types.

4.1.6 Showing the Window

The show() method shows the widget or window. For windows you can also provide the command-line
arguments to allow users to customize the appearance, size, and position of your windows.

4.1.7 The Main Event Loop

All FLTK applications (and most GUI applications in general) are based on a simple event processing
model. User actions such as mouse movement, button clicks, and keyboard activity generate events that
are sent to an application. The application may then ignore the events or respond to the user, typically by
redrawing a button in the "down" position, adding the text to an input field, and so forth.

FLTK also supports idle, timer, and file pseudo-events that cause a function to be called when they occur.
Idle functions are called when no user input is present and no timers or files need to be handled - in short,
when the application is not doing anything. Idle callbacks are often used to update a 3D display or do other
background processing.

Timer functions are called after a specific amount of time has expired. They can be used to pop up a
progress dialog after a certain amount of time or do other things that need to happen at more-or-less regular
intervals. FLTK timers are not 100% accurate, so they should not be used to measure time intervals, for
example.

File functions are called when data is ready to read or write, or when an error condition occurs on a file.
They are most often used to monitor network connections (sockets) for data-driven displays.

FLTK applications must periodically check (Fl::check()) or wait (Fl::wait()) for events or use the Fl::run()
method to enter a standard event processing loop. Calling Fl::run() is equivalent to the following code:

while (Fl::wait());

Fl::run() does not return until all of the windows under FLTK control are closed by the user or your program.

4.2 Compiling Programs with Standard Compilers

Under UNIX (and under Microsoft Windows when using the GNU development tools) you will probably
need to tell the compiler where to find the header files. This is usually done using the -I option:

CC -I/usr/local/include ...
gcc -I/usr/local/include ...

The fltk-config script included with FLTK can be used to get the options that are required by your
compiler:

CC ‘fltk-config --cxxflags‘ ...

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

4.3 Compiling Programs with Makefiles 19

Similarly, when linking your application you will need to tell the compiler to use the FLTK library:

CC ... -L/usr/local/lib -lfltk -lXext -lX11 -lm
gcc ... -L/usr/local/lib -lfltk -lXext -lX11 -lm

Aside from the "fltk" library, there is also a "fltk_forms" library for the XForms compatibility classes,
"fltk_gl" for the OpenGL and GLUT classes, and "fltk_images" for the image file classes, Fl_Help_Dialog
widget, and system icon support.

Note:

The libraries are named "fltk.lib", "fltkgl.lib", "fltkforms.lib", and "fltkimages.lib", respectively under
Windows.

As before, the fltk-config script included with FLTK can be used to get the options that are required
by your linker:

CC ... ‘fltk-config --ldflags‘

The forms, GL, and images libraries are included with the "–use-foo" options, as follows:

CC ... ‘fltk-config --use-forms --ldflags‘
CC ... ‘fltk-config --use-gl --ldflags‘
CC ... ‘fltk-config --use-images --ldflags‘
CC ... ‘fltk-config --use-forms --use-gl --use-images --ldflags‘

Finally, you can use the fltk-config script to compile a single source file as a FLTK program:

fltk-config --compile filename.cpp
fltk-config --use-forms --compile filename.cpp
fltk-config --use-gl --compile filename.cpp
fltk-config --use-images --compile filename.cpp
fltk-config --use-forms --use-gl --use-images --compile filename.cpp

Any of these will create an executable named filename.

4.3 Compiling Programs with Makefiles

The previous section described how to use fltk-config to build a program consisting of a single source
file from the command line, and this is very convenient for small test programs. But fltk-config can
also be used to set the compiler and linker options as variables within a Makefile that can be used to
build programs out of multiple source files:

CXX = $(shell fltk-config --cxx)
DEBUG = -g
CXXFLAGS = $(shell fltk-config --use-gl --use-images --cxxflags) -I.
LDFLAGS = $(shell fltk-config --use-gl --use-images --ldflags)
LDSTATIC = $(shell fltk-config --use-gl --use-images --ldstaticflags)
LINK = $(CXX)

TARGET = cube
OBJS = CubeMain.o CubeView.o CubeViewUI.o
SRCS = CubeMain.cxx CubeView.cxx CubeViewUI.cxx

.SUFFIXES: .o .cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

20 FLTK Basics

%.o: %.cxx
$(CXX) $(CXXFLAGS) $(DEBUG) -c $<

all: $(TARGET)
$(LINK) -o $(TARGET) $(OBJS) $(LDSTATIC)

$(TARGET): $(OBJS)
CubeMain.o: CubeMain.cxx CubeViewUI.h
CubeView.o: CubeView.cxx CubeView.h CubeViewUI.h
CubeViewUI.o: CubeViewUI.cxx CubeView.h

clean: $(TARGET) $(OBJS)
rm -f *.o 2> /dev/null
rm -f $(TARGET) 2> /dev/null

4.4 Compiling Programs with Microsoft Visual C++

In Visual C++ you will need to tell the compiler where to find the FLTK header files. This can be done
by selecting "Settings" from the "Project" menu and then changing the "Preprocessor" settings under the
"C/C++" tab. You will also need to add the FLTK (FLTK.LIB or FLTKD.LIB) and the Windows Common
Controls (COMCTL32.LIB) libraries to the "Link" settings.

You can build your Microsoft Windows applications as Console or WIN32 applications. If you want to use
the standard C main() function as the entry point, FLTK includes a WinMain() function that will call
your main() function for you.

Note: The Visual C++ 5.0 optimizer is known to cause problems with many programs. We only recommend
using the "Favor Small Code" optimization setting. The Visual C++ 6.0 optimizer seems to be much better
and can be used with the "optimized for speed" setting.

4.5 Naming

All public symbols in FLTK start with the characters ’F’ and ’L’:

• Functions are either Fl::foo() or fl_foo().

• Class and type names are capitalized: Fl_Foo.

• Constants and enumerations are uppercase: FL_FOO.

• All header files start with <FL/...>.

4.6 Header Files

The proper way to include FLTK header files is:

#include <FL/Fl_xyz.H>

Note:

Case is significant on many operating systems, and the C standard uses the forward slash (/) to separate
directories. Do not use any of the following include lines:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

4.6 Header Files 21

#include <FL\Fl_xyz.H>
#include <fl/fl_xyz.h>
#include <Fl/fl_xyz.h>

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

22 FLTK Basics

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 5

Common Widgets and Attributes

24 Common Widgets and Attributes

This chapter describes many of the widgets that are provided with FLTK and covers how to query and set
the standard attributes.

5.1 Buttons

FLTK provides many types of buttons:

• Fl_Button - A standard push button.

• Fl_Check_Button - A button with a check box.

• Fl_Light_Button - A push button with a light.

• Fl_Repeat_Button - A push button that repeats when held.

• Fl_Return_Button - A push button that is activated by the Enter key.

• Fl_Round_Button - A button with a radio circle.

Figure 5.1: FLTK Button Widgets

All of these buttons just need the corresponding <FL/Fl_xyz_Button.H> header file. The constructor
takes the bounding box of the button and optionally a label string:

Fl_Button *button = new Fl_Button(x, y, width, height, "label");
Fl_Light_Button *lbutton = new Fl_Light_Button(x, y, width, height);
Fl_Round_Button *rbutton = new Fl_Round_Button(x, y, width, height, "label");

Each button has an associated type() which allows it to behave as a push button, toggle button, or radio
button:

button->type(FL_NORMAL_BUTTON);
lbutton->type(FL_TOGGLE_BUTTON);
rbutton->type(FL_RADIO_BUTTON);

For toggle and radio buttons, the value() method returns the current button state (0 = off, 1 = on). The
set() and clear()methods can be used on toggle buttons to turn a toggle button on or off, respectively.
Radio buttons can be turned on with the setonly() method; this will also turn off other radio buttons in
the same group.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

5.2 Text 25

5.2 Text

FLTK provides several text widgets for displaying and receiving text:

• Fl_Input - A one-line text input field.

• Fl_Output - A one-line text output field.

• Fl_Multiline_Input - A multi-line text input field.

• Fl_Multiline_Output - A multi-line text output field.

• Fl_Text_Display - A multi-line text display widget.

• Fl_Text_Editor - A multi-line text editing widget.

• Fl_Help_View - A HTML text display widget.

The Fl_Output and Fl_Multiline_Output widgets allow the user to copy text from the output field but not
change it.

The value() method is used to get or set the string that is displayed:

Fl_Input *input = new Fl_Input(x, y, width, height, "label");
input->value("Now is the time for all good men...");

The string is copied to the widget’s own storage when you set the value() of the widget.

The Fl_Text_Display and Fl_Text_Editor widgets use an associated Fl_Text_Buffer class for the value,
instead of a simple string.

5.3 Valuators

Unlike text widgets, valuators keep track of numbers instead of strings. FLTK provides the following
valuators:

• Fl_Counter - A widget with arrow buttons that shows the current value.

• Fl_Dial - A round knob.

• Fl_Roller - An SGI-like dolly widget.

• Fl_Scrollbar - A standard scrollbar widget.

• Fl_Slider - A scrollbar with a knob.

• Fl_Value_Slider - A slider that shows the current value.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

26 Common Widgets and Attributes

Figure 5.2: FLTK valuator widgets

The value() method gets and sets the current value of the widget. The minimum() and maximum()
methods set the range of values that are reported by the widget.

5.4 Groups

The Fl_Group widget class is used as a general purpose "container" widget. Besides grouping radio buttons,
the groups are used to encapsulate windows, tabs, and scrolled windows. The following group classes are
available with FLTK:

• Fl_Double_Window - A double-buffered window on the screen.

• Fl_Gl_Window - An OpenGL window on the screen.

• Fl_Group - The base container class; can be used to group any widgets together.

• Fl_Pack - A collection of widgets that are packed into the group area.

• Fl_Scroll - A scrolled window area.

• Fl_Tabs - Displays child widgets as tabs.

• Fl_Tile - A tiled window area.

• Fl_Window - A window on the screen.

• Fl_Wizard - Displays one group of widgets at a time.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

5.5 Setting the Size and Position of Widgets 27

5.5 Setting the Size and Position of Widgets

The size and position of widgets is usually set when you create them. You can access them with the x(),
y(), w(), and h() methods.

You can change the size and position by using the position(), resize(), and size() methods:

button->position(x, y);
group->resize(x, y, width, height);
window->size(width, height);

If you change a widget’s size or position after it is displayed you will have to call redraw() on the
widget’s parent.

5.6 Colors

FLTK stores the colors of widgets as an 32-bit unsigned number that is either an index into a color palette
of 256 colors or a 24-bit RGB color. The color palette is not the X or WIN32 colormap, but instead is an
internal table with fixed contents.

See the Colors section of Drawing Things in FLTK for implementation details.

There are symbols for naming some of the more common colors:

• FL_BLACK

• FL_RED

• FL_GREEN

• FL_YELLOW

• FL_BLUE

• FL_MAGENTA

• FL_CYAN

• FL_WHITE

• FL_WHITE

Other symbols are used as the default colors for all FLTK widgets.

• FL_FOREGROUND_COLOR

• FL_BACKGROUND_COLOR

• FL_INACTIVE_COLOR

• FL_SELECTION_COLOR

The full list of named color values can be found in FLTK Enumerations.

A color value can be created from its RGB components by using the fl_rgb_color() function, and
decomposed again with Fl::get_color():

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

28 Common Widgets and Attributes

Fl_Color c = fl_rgb_color(85, 170, 255); // RGB to Fl_Color
Fl::get_color(c, r, g, b); // Fl_Color to RGB

The widget color is set using the color() method:

button->color(FL_RED); // set color using named value

Similarly, the label color is set using the labelcolor() method:

button->labelcolor(FL_WHITE);

The Fl_Color encoding maps to a 32-bit unsigned integer representing RGBI, so it is also possible to
specify a color using a hex constant as a color map index:

button->color(0x000000ff); // colormap index #255 (FL_WHITE)

or specify a color using a hex constant for the RGB components:

button->color(0xff000000); // RGB: red
button->color(0x00ff0000); // RGB: green
button->color(0x0000ff00); // RGB: blue
button->color(0xffffff00); // RGB: white

Note:

If TrueColor is not available, any RGB colors will be set to the nearest entry in the colormap.

5.7 Box Types

The type Fl_Boxtype stored and returned in Fl_Widget::box() is an enumeration defined in Enumera-
tions.H.

Figure 3-3 shows the standard box types included with FLTK.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

5.7 Box Types 29

Figure 5.3: FLTK box types

FL_NO_BOX means nothing is drawn at all, so whatever is already on the screen remains. The FL_..._-
FRAME types only draw their edges, leaving the interior unchanged. The blue color in Figure 3-3 is the
area that is not drawn by the frame types.

5.7.1 Making Your Own Boxtypes

You can define your own boxtypes by making a small function that draws the box and adding it to the table
of boxtypes.

Note:
This interface has changed in FLTK 2.0!

The Drawing Function

The drawing function is passed the bounding box and background color for the widget:

void xyz_draw(int x, int y, int w, int h, Fl_Color c) {
...
}

A simple drawing function might fill a rectangle with the given color and then draw a black outline:

void xyz_draw(int x, int y, int w, int h, Fl_Color c) {
fl_color(c);
fl_rectf(x, y, w, h);

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30 Common Widgets and Attributes

fl_color(FL_BLACK);
fl_rect(x, y, w, h);

}

Fl_Boxtype fl_down(Fl_Boxtype b)

fl_down() returns the "pressed" or "down" version of a box. If no "down" version of a given box exists,
the behavior of this function is undefined and some random box or frame is returned. See Drawing
Functions for more details.

Fl_Boxtype fl_frame(Fl_Boxtype b)

fl_frame() returns the unfilled, frame-only version of a box. If no frame version of a given box exists,
the behavior of this function is undefined and some random box or frame is returned. See Drawing
Functions for more details.

Fl_Boxtype fl_box(Fl_Boxtype b)

fl_box() returns the filled version of a frame. If no filled version of a given frame exists, the behavior
of this function is undefined and some random box or frame is returned. See Drawing Functions for
more details.

Adding Your Box Type

The Fl::set_boxtype() method adds or replaces the specified box type:

#define XYZ_BOX FL_FREE_BOXTYPE

Fl::set_boxtype(XYZ_BOX, xyz_draw, 1, 1, 2, 2);

The last 4 arguments to Fl::set_boxtype() are the offsets for the x, y, width, and height values that
should be subtracted when drawing the label inside the box.

A complete box design contains four box types in this order: a filled, neutral box (UP_BOX), a filled,
depressed box (DOWN_BOX), and the same as outlines only (UP_FRAME and DOWN_FRAME). The function
fl_down(Fl_Boxtype) expects the neutral design on a boxtype with a numerical value evenly dividable by
two. fl_frame(Fl_Boxtype) expects the UP_BOX design at a value dividable by four.

5.8 Labels and Label Types

The label(), align(), labelfont(), labelsize(), labeltype(), image(), and
deimage() methods control the labeling of widgets.

label()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

5.8 Labels and Label Types 31

The label() method sets the string that is displayed for the label. Symbols can be included with the
label string by escaping them using the "@" symbol - "@@" displays a single at sign. Figure 3-4 shows
the available symbols.

Figure 5.4: FLTK label symbols

The @ sign may also be followed by the following optional "formatting" characters, in this order:

• ’#’ forces square scaling, rather than distortion to the widget’s shape.

• +[1-9] or -[1-9] tweaks the scaling a little bigger or smaller.

• ’$’ flips the symbol horizontally, ” flips it vertically.

• [0-9] - rotates by a multiple of 45 degrees. ’5’ and ’6’ do no rotation while the others point in the
direction of that key on a numeric keypad. ’0’, followed by four more digits rotates the symbol by
that amount in degrees.

Thus, to show a very large arrow pointing downward you would use the label string "@+92→ ".

align()

The align() method positions the label. The following constants are defined and may be OR’d together
as needed:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

32 Common Widgets and Attributes

• FL_ALIGN_CENTER - center the label in the widget.

• FL_ALIGN_TOP - align the label at the top of the widget.

• FL_ALIGN_BOTTOM - align the label at the bottom of the widget.

• FL_ALIGN_LEFT - align the label to the left of the widget.

• FL_ALIGN_RIGHT - align the label to the right of the widget.

• FL_ALIGN_INSIDE - align the label inside the widget.

• FL_ALIGN_CLIP - clip the label to the widget’s bounding box.

• FL_ALIGN_WRAP - wrap the label text as needed.

• FL_TEXT_OVER_IMAGE - show the label text over the image.

• FL_IMAGE_OVER_TEXT - show the label image over the text (default).

labeltype()

The labeltype() method sets the type of the label. The following standard label types are included:

• FL_NORMAL_LABEL - draws the text.

• FL_NO_LABEL - does nothing.

• FL_SHADOW_LABEL - draws a drop shadow under the text.

• FL_ENGRAVED_LABEL - draws edges as though the text is engraved.

• FL_EMBOSSED_LABEL - draws edges as thought the text is raised.

• FL_ICON_LABEL - draws the icon associated with the text.

image() and deimage()

The image() and deimage() methods set an image that will be displayed with the widget. The
deimage()method sets the image that is shown when the widget is inactive, while the image()method
sets the image that is shown when the widget is active.

To make an image you use a subclass of Fl_Image.

Making Your Own Label Types

Label types are actually indexes into a table of functions that draw them. The primary purpose of this is to
use this to draw the labels in ways inaccessible through the fl_font() mechanism (e.g. FL_ENGRAVED_-
LABEL) or with program-generated letters or symbology.

Note:
This interface has changed in FLTK 2.0!

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

5.8 Labels and Label Types 33

Label Type Functions

To setup your own label type you will need to write two functions: one to draw and one to measure the
label. The draw function is called with a pointer to a Fl_Label structure containing the label information,
the bounding box for the label, and the label alignment:

void xyz_draw(const Fl_Label *label, int x, int y, int w, int h, Fl_Align align) {
...
}

The label should be drawn inside this bounding box, even if FL_ALIGN_INSIDE is not enabled. The
function is not called if the label value is NULL.

The measure function is called with a pointer to a Fl_Label structure and references to the width and height:

void xyz_measure(const Fl_Label *label, int &w, int &h) {
...
}

The function should measure the size of the label and set w and h to the size it will occupy.

Adding Your Label Type

The Fl::set_labeltype() method creates a label type using your draw and measure functions:

#define XYZ_LABEL FL_FREE_LABELTYPE

Fl::set_labeltype(XYZ_LABEL, xyz_draw, xyz_measure);

The label type number n can be any integer value starting at the constant FL_FREE_LABELTYPE. Once
you have added the label type you can use the labeltype() method to select your label type.

The Fl::set_labeltype() method can also be used to overload an existing label type such as FL_NORMAL_-
LABEL.

Making your own symbols

It is also possible to define your own drawings and add them to the symbol list, so they can be rendered as
part of any label.

To create a new symbol, you implement a drawing function void drawit(Fl_Color c) which typi-
cally uses the functions described in Drawing Complex Shapes to generate a vector shape inside a two-by-
two units sized box around the origin. This function is then linked into the symbols table using fl_add_-
symbol():

int fl_add_symbol(const char *name, void (*drawit)(Fl_Color), int scalable)

name is the name of the symbol without the "@"; scalable must be set to 1 if the symbol is generated
using scalable vector drawing functions.

int fl_draw_symbol(const char *name,int x,int y,int w,int h,Fl_Color col)

This function draws a named symbol fitting the given rectangle.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

34 Common Widgets and Attributes

5.9 Callbacks

Callbacks are functions that are called when the value of a widget changes. A callback function is sent a
Fl_Widget pointer of the widget that changed and a pointer to data that you provide:

void xyz_callback(Fl_Widget *w, void *data) {
...
}

The callback() method sets the callback function for a widget. You can optionally pass a pointer to
some data needed for the callback:

int xyz_data;

button->callback(xyz_callback, &xyz_data);

Normally callbacks are performed only when the value of the widget changes. You can change this using
the Fl_Widget::when() method:

button->when(FL_WHEN_NEVER);
button->when(FL_WHEN_CHANGED);
button->when(FL_WHEN_RELEASE);
button->when(FL_WHEN_RELEASE_ALWAYS);
button->when(FL_WHEN_ENTER_KEY);
button->when(FL_WHEN_ENTER_KEY_ALWAYS);
button->when(FL_WHEN_CHANGED | FL_WHEN_NOT_CHANGED);

Note:
You cannot delete a widget inside a callback, as the widget may still be accessed by FLTK after your
callback is completed. Instead, use the Fl::delete_widget() method to mark your widget for deletion
when it is safe to do so.
Hint:
Many programmers new to FLTK or C++ try to use a non-static class method instead of a static class
method or function for their callback. Since callbacks are done outside a C++ class, the this pointer
is not initialized for class methods.
To work around this problem, define a static method in your class that accepts a pointer to the class,
and then have the static method call the class method(s) as needed. The data pointer you provide to the
callback() method of the widget can be a pointer to the instance of your class.

class Foo {
void my_callback(Fl_Widget *w);
static void my_static_callback(Fl_Widget *w, void *f) { ((Foo *)f)->my_callback(w); }
...

}

...

w->callback(my_static_callback, (void *)this);

5.10 Shortcuts

Shortcuts are key sequences that activate widgets such as buttons or menu items. The shortcut()
method sets the shortcut for a widget:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

5.10 Shortcuts 35

button->shortcut(FL_Enter);
button->shortcut(FL_SHIFT + ’b’);
button->shortcut(FL_CTRL + ’b’);
button->shortcut(FL_ALT + ’b’);
button->shortcut(FL_CTRL + FL_ALT + ’b’);
button->shortcut(0); // no shortcut

The shortcut value is the key event value - the ASCII value or one of the special keys described in
Fl::event_key() Values combined with any modifiers like Shift , Alt , and Control.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

36 Common Widgets and Attributes

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 6

Designing a Simple Text Editor

38 Designing a Simple Text Editor

This chapter takes you through the design of a simple FLTK-based text editor.

6.1 Determining the Goals of the Text Editor

Since this will be the first big project you’ll be doing with FLTK, lets define what we want our text editor
to do:

1. Provide a menubar/menus for all functions.

2. Edit a single text file, possibly with multiple views.

3. Load from a file.

4. Save to a file.

5. Cut/copy/delete/paste functions.

6. Search and replace functions.

7. Keep track of when the file has been changed.

6.2 Designing the Main Window

Now that we’ve outlined the goals for our editor, we can begin with the design of our GUI. Obviously the
first thing that we need is a window, which we’ll place inside a class called EditorWindow:

class EditorWindow : public Fl_Double_Window {
public:

EditorWindow(int w, int h, const char* t);
~EditorWindow();

Fl_Window *replace_dlg;
Fl_Input *replace_find;
Fl_Input *replace_with;
Fl_Button *replace_all;
Fl_Return_Button *replace_next;
Fl_Button *replace_cancel;

Fl_Text_Editor *editor;
char search[256];

};

6.3 Variables

Our text editor will need some global variables to keep track of things:

int changed = 0;
char filename[256] = "";
Fl_Text_Buffer *textbuf;

The textbuf variable is the text editor buffer for our window class described previously. We’ll cover the
other variables as we build the application.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.4 Menubars and Menus 39

6.4 Menubars and Menus

The first goal requires us to use a menubar and menus that define each function the editor needs to perform.
The Fl_Menu_Item structure is used to define the menus and items in a menubar:

Fl_Menu_Item menuitems[] = {
{ "&File", 0, 0, 0, FL_SUBMENU },

{ "&New File", 0, (Fl_Callback *)new_cb },
{ "&Open File...", FL_CTRL + ’o’, (Fl_Callback *)open_cb },
{ "&Insert File...", FL_CTRL + ’i’, (Fl_Callback *)insert_cb, 0, FL_MENU_DIVIDER },
{ "&Save File", FL_CTRL + ’s’, (Fl_Callback *)save_cb },
{ "Save File &As...", FL_CTRL + FL_SHIFT + ’s’, (Fl_Callback *)saveas_cb, 0, FL_MENU_DIVIDER },
{ "New &View", FL_ALT + ’v’, (Fl_Callback *)view_cb, 0 },
{ "&Close View", FL_CTRL + ’w’, (Fl_Callback *)close_cb, 0, FL_MENU_DIVIDER },
{ "E&xit", FL_CTRL + ’q’, (Fl_Callback *)quit_cb, 0 },
{ 0 },

{ "&Edit", 0, 0, 0, FL_SUBMENU },
{ "&Undo", FL_CTRL + ’z’, (Fl_Callback *)undo_cb, 0, FL_MENU_DIVIDER },
{ "Cu&t", FL_CTRL + ’x’, (Fl_Callback *)cut_cb },
{ "&Copy", FL_CTRL + ’c’, (Fl_Callback *)copy_cb },
{ "&Paste", FL_CTRL + ’v’, (Fl_Callback *)paste_cb },
{ "&Delete", 0, (Fl_Callback *)delete_cb },
{ 0 },

{ "&Search", 0, 0, 0, FL_SUBMENU },
{ "&Find...", FL_CTRL + ’f’, (Fl_Callback *)find_cb },
{ "F&ind Again", FL_CTRL + ’g’, find2_cb },
{ "&Replace...", FL_CTRL + ’r’, replace_cb },
{ "Re&place Again", FL_CTRL + ’t’, replace2_cb },
{ 0 },

{ 0 }
};

Once we have the menus defined we can create the Fl_Menu_Bar widget and assign the menus to it with:

Fl_Menu_Bar *m = new Fl_Menu_Bar(0, 0, 640, 30);
m->copy(menuitems);

We’ll define the callback functions later.

6.5 Editing the Text

To keep things simple our text editor will use the Fl_Text_Editor widget to edit the text:

w->editor = new Fl_Text_Editor(0, 30, 640, 370);
w->editor->buffer(textbuf);

So that we can keep track of changes to the file, we also want to add a "modify" callback:

textbuf->add_modify_callback(changed_cb, w);
textbuf->call_modify_callbacks();

Finally, we want to use a mono-spaced font like FL_COURIER:

w->editor->textfont(FL_COURIER);

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

40 Designing a Simple Text Editor

6.6 The Replace Dialog

We can use the FLTK convenience functions for many of the editor’s dialogs, however the replace dialog
needs its own custom window. To keep things simple we will have a "find" string, a "replace" string, and
"replace all", "replace next", and "cancel" buttons. The strings are just Fl_Input widgets, the "replace all"
and "cancel" buttons are Fl_Button widgets, and the "replace next " button is a Fl_Return_Button widget:

Figure 6.1: The search and replace dialog

Fl_Window *replace_dlg = new Fl_Window(300, 105, "Replace");
Fl_Input *replace_find = new Fl_Input(70, 10, 200, 25, "Find:");
Fl_Input *replace_with = new Fl_Input(70, 40, 200, 25, "Replace:");
Fl_Button *replace_all = new Fl_Button(10, 70, 90, 25, "Replace All");
Fl_Button *replace_next = new Fl_Button(105, 70, 120, 25, "Replace Next");
Fl_Button *replace_cancel = new Fl_Button(230, 70, 60, 25, "Cancel");

6.7 Callbacks

Now that we’ve defined the GUI components of our editor, we need to define our callback functions.

6.7.1 changed_cb()

This function will be called whenever the user changes any text in the editor widget:

void changed_cb(int, int nInserted, int nDeleted,int, const char*, void* v) {
if ((nInserted || nDeleted) && !loading) changed = 1;
EditorWindow *w = (EditorWindow *)v;
set_title(w);
if (loading) w->editor->show_insert_position();

}

The set_title() function is one that we will write to set the changed status on the current file. We’re
doing it this way because we want to show the changed status in the window’s title bar.

6.7.2 copy_cb()

This callback function will call Fl_Text_Editor::kf_copy() to copy the currently selected text to the clip-
board:

void copy_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
Fl_Text_Editor::kf_copy(0, e->editor);

}

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.7 Callbacks 41

6.7.3 cut_cb()

This callback function will call Fl_Text_Editor::kf_cut() to cut the currently selected text to the clipboard:

void cut_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
Fl_Text_Editor::kf_cut(0, e->editor);

}

6.7.4 delete_cb()

This callback function will call Fl_Text_Buffer::remove_selection() to delete the currently selected text to
the clipboard:

void delete_cb(Fl_Widget*, void* v) {
textbuf->remove_selection();

}

6.7.5 find_cb()

This callback function asks for a search string using the fl_input() convenience function and then calls the
find2_cb() function to find the string:

void find_cb(Fl_Widget* w, void* v) {
EditorWindow* e = (EditorWindow*)v;
const char *val;

val = fl_input("Search String:", e->search);
if (val != NULL) {

// User entered a string - go find it!
strcpy(e->search, val);
find2_cb(w, v);

}

6.7.6 find2_cb()

This function will find the next occurrence of the search string. If the search string is blank then we want
to pop up the search dialog:

void find2_cb(Fl_Widget* w, void* v) {
EditorWindow* e = (EditorWindow*)v;
if (e->search[0] == ’\0’) {

// Search string is blank; get a new one...
find_cb(w, v);
return;

}

int pos = e->editor->insert_position();
int found = textbuf->search_forward(pos, e->search, &pos);
if (found) {

// Found a match; select and update the position...
textbuf->select(pos, pos+strlen(e->search));
e->editor->insert_position(pos+strlen(e->search));
e->editor->show_insert_position();

}
else fl_alert("No occurrences of \’%s\’ found!", e->search);

}

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

42 Designing a Simple Text Editor

If the search string cannot be found we use the fl_alert() convenience function to display a message to that
effect.

6.7.7 new_cb()

This callback function will clear the editor widget and current filename. It also calls the check_save()
function to give the user the opportunity to save the current file first as needed:

void new_cb(Fl_Widget*, void*) {
if (!check_save()) return;

filename[0] = ’\0’;
textbuf->select(0, textbuf->length());
textbuf->remove_selection();
changed = 0;
textbuf->call_modify_callbacks();

}

6.7.8 open_cb()

This callback function will ask the user for a filename and then load the specified file into the input widget
and current filename. It also calls the check_save() function to give the user the opportunity to save
the current file first as needed:

void open_cb(Fl_Widget*, void*) {
if (!check_save()) return;

char *newfile = fl_file_chooser("Open File?", "*", filename);
if (newfile != NULL) load_file(newfile, -1);

}

We call the load_file() function to actually load the file.

6.7.9 paste_cb()

This callback function will call Fl_Text_Editor::kf_paste() to paste the clipboard at the current position:

void paste_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
Fl_Text_Editor::kf_paste(0, e->editor);

}

6.7.10 quit_cb()

The quit callback will first see if the current file has been modified, and if so give the user a chance to save
it. It then exits from the program:

void quit_cb(Fl_Widget*, void*) {
if (changed && !check_save())

return;

exit(0);
}

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.7 Callbacks 43

6.7.11 replace_cb()

The replace callback just shows the replace dialog:

void replace_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
e->replace_dlg->show();

}

6.7.12 replace2_cb()

This callback will replace the next occurrence of the replacement string. If nothing has been entered for
the replacement string, then the replace dialog is displayed instead:

void replace2_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
const char *find = e->replace_find->value();
const char *replace = e->replace_with->value();

if (find[0] == ’\0’) {
// Search string is blank; get a new one...
e->replace_dlg->show();
return;

}

e->replace_dlg->hide();

int pos = e->editor->insert_position();
int found = textbuf->search_forward(pos, find, &pos);

if (found) {
// Found a match; update the position and replace text...
textbuf->select(pos, pos+strlen(find));
textbuf->remove_selection();
textbuf->insert(pos, replace);
textbuf->select(pos, pos+strlen(replace));
e->editor->insert_position(pos+strlen(replace));
e->editor->show_insert_position();

}
else fl_alert("No occurrences of \’%s\’ found!", find);

}

6.7.13 replall_cb()

This callback will replace all occurrences of the search string in the file:

void replall_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
const char *find = e->replace_find->value();
const char *replace = e->replace_with->value();

find = e->replace_find->value();
if (find[0] == ’\0’) {

// Search string is blank; get a new one...
e->replace_dlg->show();
return;

}

e->replace_dlg->hide();

e->editor->insert_position(0);

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

44 Designing a Simple Text Editor

int times = 0;

// Loop through the whole string
for (int found = 1; found;) {

int pos = e->editor->insert_position();
found = textbuf->search_forward(pos, find, &pos);

if (found) {
// Found a match; update the position and replace text...
textbuf->select(pos, pos+strlen(find));
textbuf->remove_selection();
textbuf->insert(pos, replace);
e->editor->insert_position(pos+strlen(replace));
e->editor->show_insert_position();
times++;

}
}

if (times) fl_message("Replaced %d occurrences.", times);
else fl_alert("No occurrences of \’%s\’ found!", find);

}

6.7.14 replcan_cb()

This callback just hides the replace dialog:

void replcan_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
e->replace_dlg->hide();

}

6.7.15 save_cb()

This callback saves the current file. If the current filename is blank it calls the "save as" callback:

void save_cb(void) {
if (filename[0] == ’\0’) {

// No filename - get one!
saveas_cb();
return;

}
else save_file(filename);

}

The save_file() function saves the current file to the specified filename.

6.7.16 saveas_cb()

This callback asks the user for a filename and saves the current file:

void saveas_cb(void) {
char *newfile;

newfile = fl_file_chooser("Save File As?", "*", filename);
if (newfile != NULL) save_file(newfile);

}

The save_file() function saves the current file to the specified filename.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.8 Other Functions 45

6.8 Other Functions

Now that we’ve defined the callback functions, we need our support functions to make it all work:

6.8.1 check_save()

This function checks to see if the current file needs to be saved. If so, it asks the user if they want to save
it:

int check_save(void) {
if (!changed) return 1;

int r = fl_choice("The current file has not been saved.\n"
"Would you like to save it now?",
"Cancel", "Save", "Discard");

if (r == 1) {
save_cb(); // Save the file...
return !changed;

}

return (r == 2) ? 1 : 0;
}

6.8.2 load_file()

This function loads the specified file into the textbuf variable:

int loading = 0;
void load_file(char *newfile, int ipos) {

loading = 1;
int insert = (ipos != -1);
changed = insert;
if (!insert) strcpy(filename, "");
int r;
if (!insert) r = textbuf->loadfile(newfile);
else r = textbuf->insertfile(newfile, ipos);
if (r)

fl_alert("Error reading from file \’%s\’:\n%s.", newfile, strerror(errno));
else

if (!insert) strcpy(filename, newfile);
loading = 0;
textbuf->call_modify_callbacks();

}

When loading the file we use the Fl_Text_Buffer::loadfile() method to "replace" the text in the buffer, or
the Fl_Text_Buffer::insertfile() method to insert text in the buffer from the named file.

6.8.3 save_file()

This function saves the current buffer to the specified file:

void save_file(char *newfile) {
if (textbuf->savefile(newfile))

fl_alert("Error writing to file \’%s\’:\n%s.", newfile, strerror(errno));
else

strcpy(filename, newfile);

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

46 Designing a Simple Text Editor

changed = 0;
textbuf->call_modify_callbacks();

}

6.8.4 set_title()

This function checks the changed variable and updates the window label accordingly:

void set_title(Fl_Window* w) {
if (filename[0] == ’\0’) strcpy(title, "Untitled");
else {

char *slash;
slash = strrchr(filename, ’/’);

#ifdef WIN32
if (slash == NULL) slash = strrchr(filename, ’\\’);

#endif
if (slash != NULL) strcpy(title, slash + 1);
else strcpy(title, filename);

}

if (changed) strcat(title, " (modified)");

w->label(title);
}

6.9 The main() Function

Once we’ve created all of the support functions, the only thing left is to tie them all together with the
main() function. The main() function creates a new text buffer, creates a new view (window) for the
text, shows the window, loads the file on the command-line (if any), and then enters the FLTK event loop:

int main(int argc, char **argv) {
textbuf = new Fl_Text_Buffer;

Fl_Window* window = new_view();

window->show(1, argv);

if (argc > 1) load_file(argv[1], -1);

return Fl::run();
}

6.10 Compiling the Editor

The complete source for our text editor can be found in the test/editor.cxx source file. Both the
Makefile and Visual C++ workspace include the necessary rules to build the editor. You can also compile
it using a standard compiler with:

CC -o editor editor.cxx -lfltk -lXext -lX11 -lm

or by using the fltk-config script with:

fltk-config --compile editor.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.11 The Final Product 47

As noted in Compiling Programs with Standard Compilers, you may need to include compiler and linker
options to tell them where to find the FLTK library. Also, the CC command may also be called gcc or c++
on your system.

Congratulations, you’ve just built your own text editor!

6.11 The Final Product

The final editor window should look like the image in Figure 4-2.

Figure 6.2: The completed editor window

6.12 Advanced Features

Now that we’ve implemented the basic functionality, it is time to show off some of the advanced features
of the Fl_Text_Editor widget.

6.12.1 Syntax Highlighting

The Fl_Text_Editor widget supports highlighting of text with different fonts, colors, and sizes. The imple-
mentation is based on the excellent NEdit text editor core, from http://www.nedit.org/, which
uses a parallel "style" buffer which tracks the font, color, and size of the text that is drawn.

Styles are defined using the Fl_Text_Display::Style_Table_Entry structure defined in <FL/Fl_Text_-
Display.H>:

struct Style_Table_Entry {

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://www.nedit.org/
http://www.nedit.org/,

48 Designing a Simple Text Editor

Fl_Color color;
Fl_Font font;
int size;
unsigned attr;

};

The color member sets the color for the text, the font member sets the FLTK font index to use, and the
size member sets the pixel size of the text. The attr member is currently not used.

For our text editor we’ll define 7 styles for plain code, comments, keywords, and preprocessor directives:

Fl_Text_Display::Style_Table_Entry styletable[] = { // Style table
{ FL_BLACK, FL_COURIER, FL_NORMAL_SIZE }, // A - Plain
{ FL_DARK_GREEN, FL_COURIER_ITALIC, FL_NORMAL_SIZE }, // B - Line comments
{ FL_DARK_GREEN, FL_COURIER_ITALIC, FL_NORMAL_SIZE }, // C - Block comments
{ FL_BLUE, FL_COURIER, FL_NORMAL_SIZE }, // D - Strings
{ FL_DARK_RED, FL_COURIER, FL_NORMAL_SIZE }, // E - Directives
{ FL_DARK_RED, FL_COURIER_BOLD, FL_NORMAL_SIZE }, // F - Types
{ FL_BLUE, FL_COURIER_BOLD, FL_NORMAL_SIZE } // G - Keywords

};

You’ll notice that the comments show a letter next to each style - each style in the style buffer is referenced
using a character starting with the letter ’A’.

You call the highlight_data() method to associate the style data and buffer with the text editor
widget:

Fl_Text_Buffer *stylebuf;

w->editor->highlight_data(stylebuf, styletable,
sizeof(styletable) / sizeof(styletable[0]),
’A’, style_unfinished_cb, 0);

Finally, you need to add a callback to the main text buffer so that changes to the text buffer are mirrored in
the style buffer:

textbuf->add_modify_callback(style_update, w->editor);

The style_update() function, like the change_cb() function described earlier, is called whenever
text is added or removed from the text buffer. It mirrors the changes in the style buffer and then updates
the style data as necessary:

//
// ’style_update()’ - Update the style buffer...
//

void
style_update(int pos, // I - Position of update

int nInserted, // I - Number of inserted chars
int nDeleted, // I - Number of deleted chars
int nRestyled, // I - Number of restyled chars
const char *deletedText, // I - Text that was deleted
void *cbArg) { // I - Callback data

int start, // Start of text
end; // End of text

char last, // Last style on line

*style, // Style data

*text; // Text data

// If this is just a selection change, just unselect the style buffer...

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.12 Advanced Features 49

if (nInserted == 0 && nDeleted == 0) {
stylebuf->unselect();
return;

}

// Track changes in the text buffer...
if (nInserted > 0) {

// Insert characters into the style buffer...
style = new char[nInserted + 1];
memset(style, ’A’, nInserted);
style[nInserted] = ’\0’;

stylebuf->replace(pos, pos + nDeleted, style);
delete[] style;

} else {
// Just delete characters in the style buffer...
stylebuf->remove(pos, pos + nDeleted);

}

// Select the area that was just updated to avoid unnecessary
// callbacks...
stylebuf->select(pos, pos + nInserted - nDeleted);

// Re-parse the changed region; we do this by parsing from the
// beginning of the line of the changed region to the end of
// the line of the changed region... Then we check the last
// style character and keep updating if we have a multi-line
// comment character...
start = textbuf->line_start(pos);
end = textbuf->line_end(pos + nInserted - nDeleted);
text = textbuf->text_range(start, end);
style = stylebuf->text_range(start, end);
last = style[end - start - 1];

style_parse(text, style, end - start);

stylebuf->replace(start, end, style);
((Fl_Text_Editor *)cbArg)->redisplay_range(start, end);

if (last != style[end - start - 1]) {
// The last character on the line changed styles, so reparse the
// remainder of the buffer...
free(text);
free(style);

end = textbuf->length();
text = textbuf->text_range(start, end);
style = stylebuf->text_range(start, end);

style_parse(text, style, end - start);

stylebuf->replace(start, end, style);
((Fl_Text_Editor *)cbArg)->redisplay_range(start, end);

}

free(text);
free(style);

}

The style_parse() function scans a copy of the text in the buffer and generates the necessary style
characters for display. It assumes that parsing begins at the start of a line:

//
// ’style_parse()’ - Parse text and produce style data.
//

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

50 Designing a Simple Text Editor

void
style_parse(const char *text,

char *style,
int length) {

char current;
int col;
int last;
char buf[255],

*bufptr;
const char *temp;

for (current = *style, col = 0, last = 0; length > 0; length --, text ++) {
if (current == ’A’) {

// Check for directives, comments, strings, and keywords...
if (col == 0 && *text == ’#’) {

// Set style to directive
current = ’E’;

} else if (strncmp(text, "//", 2) == 0) {
current = ’B’;

} else if (strncmp(text, "/*", 2) == 0) {
current = ’C’;

} else if (strncmp(text, "\\\"", 2) == 0) {
// Quoted quote...

*style++ = current;

*style++ = current;
text ++;
length --;
col += 2;
continue;

} else if (*text == ’\"’) {
current = ’D’;

} else if (!last && islower(*text)) {
// Might be a keyword...
for (temp = text, bufptr = buf;

islower(*temp) && bufptr < (buf + sizeof(buf) - 1);

*bufptr++ = *temp++);

if (!islower(*temp)) {

*bufptr = ’\0’;

bufptr = buf;

if (bsearch(&bufptr, code_types,
sizeof(code_types) / sizeof(code_types[0]),
sizeof(code_types[0]), compare_keywords)) {

while (text < temp) {

*style++ = ’F’;
text ++;
length --;
col ++;

}

text --;
length ++;
last = 1;
continue;

} else if (bsearch(&bufptr, code_keywords,
sizeof(code_keywords) / sizeof(code_keywords[0]),
sizeof(code_keywords[0]), compare_keywords)) {

while (text < temp) {

*style++ = ’G’;
text ++;
length --;
col ++;

}

text --;

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.12 Advanced Features 51

length ++;
last = 1;
continue;

}
}

}
} else if (current == ’C’ && strncmp(text, "*/", 2) == 0) {

// Close a C comment...

*style++ = current;

*style++ = current;
text ++;
length --;
current = ’A’;
col += 2;
continue;

} else if (current == ’D’) {
// Continuing in string...
if (strncmp(text, "\\\"", 2) == 0) {

// Quoted end quote...

*style++ = current;

*style++ = current;
text ++;
length --;
col += 2;
continue;

} else if (*text == ’\"’) {
// End quote...

*style++ = current;
col ++;
current = ’A’;
continue;

}
}

// Copy style info...
if (current == ’A’ && (*text == ’{’ || *text == ’}’)) *style++ = ’G’;
else *style++ = current;
col ++;

last = isalnum(*text) || *text == ’.’;

if (*text == ’\n’) {
// Reset column and possibly reset the style
col = 0;
if (current == ’B’ || current == ’E’) current = ’A’;

}
}

}

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

52 Designing a Simple Text Editor

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 7

Drawing Things in FLTK

54 Drawing Things in FLTK

This chapter covers the drawing functions that are provided with FLTK.

7.1 When Can You Draw Things in FLTK?

There are only certain places you can execute drawing code in FLTK. Calling these functions at other
places will result in undefined behavior!

• The most common place is inside the virtual Fl_Widget::draw() method. To write code here, you
must subclass one of the existing Fl_Widget classes and implement your own version of draw().

• You can also create custom boxtypes and labeltypes. These involve writing small procedures that
can be called by existing Fl_Widget::draw() methods. These "types" are identified by an 8-bit index
that is stored in the widget’s box(), labeltype(), and possibly other properties.

• You can call Fl_Window::make_current() to do incremental update of a widget. Use Fl_-
Widget::window() to find the window.

7.2 Drawing Functions

To use the drawing functions you must first include the <FL/fl_draw.H> header file. FLTK provides the
following types of drawing functions:

• Boxes

• Clipping

• Colors

• Line Dashes and Thickness

• Drawing Fast Shapes

• Drawing Complex Shapes

• Drawing Text

• Fonts

• Character Encoding

• Drawing Overlays

• Drawing Images

• Direct Image Drawing

• Direct Image Reading

• Image Classes

• Offscreen Drawing

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.2 Drawing Functions 55

7.2.1 Boxes

FLTK provides three functions that can be used to draw boxes for buttons and other UI controls. Each
function uses the supplied upper-lefthand corner and width and height to determine where to draw the box.

void fl_draw_box(Fl_Boxtype b, int x, int y, int w, int h, Fl_Color c);

The fl_draw_box() function draws a standard boxtype b in the specified color c.

void fl_frame(const char ∗s, int x, int y, int w, int h)

void fl_frame2(const char ∗s, int x, int y, int w, int h)

The fl_frame() and fl_frame2() functions draw a series of line segments around the given box.
The string s must contain groups of 4 letters which specify one of 24 standard grayscale values, where
’A’ is black and ’X’ is white. The results of calling these functions with a string that is not a multiple
of 4 characters in length are undefined.

The only difference between fl_frame() and fl_frame2() is the order of the line segments:

• For fl_frame() the order of each set of 4 characters is: top, left, bottom, right.

• For fl_frame2() the order of each set of 4 characters is: bottom, right, top, left.

Note that fl_frame(Fl_Boxtype b) is described in the Box Types section.

7.2.2 Clipping

You can limit all your drawing to a rectangular region by calling fl_push_clip(), and put the drawings
back by using fl_pop_clip(). This rectangle is measured in pixels and is unaffected by the current
transformation matrix.

In addition, the system may provide clipping when updating windows which may be more complex than a
simple rectangle.

void fl_push_clip(int x, int y, int w, int h)

void fl_clip(int x, int y, int w, int h)

Intersect the current clip region with a rectangle and push this new region onto the stack.

The fl_clip() version is deprecated and will be removed from future releases.

void fl_push_no_clip()

Pushes an empty clip region on the stack so nothing will be clipped.

void fl_pop_clip()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

56 Drawing Things in FLTK

Restore the previous clip region.

Note: You must call fl_pop_clip() once for every time you call fl_push_clip(). If you return
to FLTK with the clip stack not empty unpredictable results occur.

int fl_not_clipped(int x, int y, int w, int h)

Returns non-zero if any of the rectangle intersects the current clip region. If this returns 0 you don’t
have to draw the object.

Note: Under X this returns 2 if the rectangle is partially clipped, and 1 if it is entirely inside the clip
region.

int fl_clip_box(int x, int y, int w, int h, int &X, int &Y, int &W, int &H)

Intersect the rectangle x,y,w,h with the current clip region and returns the bounding box of the
result in X,Y,W,H. Returns non-zero if the resulting rectangle is different than the original. This
can be used to limit the necessary drawing to a rectangle. W and H are set to zero if the rectangle is
completely outside the region.

void fl_clip_region(Fl_Region r)

Fl_Region fl_clip_region()

Replace the top of the clip stack with a clipping region of any shape. Fl_Region is an operating system
specific type. The second form returns the current clipping region.

7.3 Colors

FLTK manages colors as 32-bit unsigned integers, encoded as RGBI. When the RGB bytes are non-zero,
the value is treated as RGB. If these bytes are zero, the I byte will be used as an index into the colormap.

Values from 0 to 255, i.e. the I index value, represent colors from the FLTK 1.3.x standard colormap
and are allocated as needed on screens without TrueColor support. The Fl_Color enumeration type de-
fines the standard colors and color cube for the first 256 colors. All of these are named with symbols in
<FL/Enumerations.H>.

Color values greater than 255 are treated as 24-bit RGB values. These are mapped to the closest color
supported by the screen, either from one of the 256 colors in the FLTK 1.3.x colormap or a direct RGB
value on TrueColor screens.

Fl_Color fl_rgb_color(uchar r, uchar g, uchar b)

Fl_Color fl_rgb_color(uchar grayscale)

Generate Fl_Color out of specified 8-bit RGB values or one 8-bit grayscale value.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.3 Colors 57

void fl_color(Fl_Color c)

void fl_color(int c)

Sets the color for all subsequent drawing operations. Please use the first form: the second form is only
provided for back compatibility.

For colormapped displays, a color cell will be allocated out of fl_colormap the first time you use
a color. If the colormap fills up then a least-squares algorithm is used to find the closest color.

Fl_Color fl_color()

Returns the last color that was set using fl_color(). This can be used for state save/restore.

void fl_color(uchar r, uchar g, uchar b)

Set the color for all subsequent drawing operations. The closest possible match to the RGB color is
used. The RGB color is used directly on TrueColor displays. For colormap visuals the nearest index
in the gray ramp or color cube is used.

unsigned Fl::get_color(Fl_Color i)

void Fl::get_color(Fl_Color i, uchar &red, uchar &green, uchar &blue)

Generate RGB values from a colormap index value i. The first returns the RGB as a 32-bit unsigned
integer, and the second decomposes the RGB into three 8-bit values.

Todo

work out why Fl::get_color() does not give links!

Fl::get_system_colors()

Fl::foreground()

Fl::background()

Fl::background2()

The first gets color values from the user preferences or the system, and the other routines are used to
apply those values.

Fl::own_colormap()

Fl::free_color(Fl_Color i, int overlay)

Fl::set_color(Fl_Color i, unsigned c)

Fl::own_colormap() is used to install a local colormap [X11 only].

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

58 Drawing Things in FLTK

Fl::free_color() and Fl::set_color() are used to remove and replace entries from the
colormap.

Todo

work out why these do not give links!

There are two predefined graphical interfaces for choosing colors. The function fl_show_colormap() shows
a table of colors and returns an Fl_Color index value. The Fl_Color_Chooser widget provides a standard
RGB color chooser.

As the Fl_Color encoding maps to a 32-bit unsigned integer representing RGBI, it is also possible to specify
a color using a hex constant as a color map index:

// COLOR MAP INDEX
color(0x000000II)

------ |
| |
| Color map index (8 bits)
Must be zero

button->color(0x000000ff); // colormap index #255 (FL_WHITE)

or specify a color using a hex constant for the RGB components:

// RGB COLOR ASSIGNMENTS
color(0xRRGGBB00)

| | | |
| | | Must be zero
| | Blue (8 bits)
| Green (8 bits)
Red (8 bits)

button->color(0xff000000); // RGB: red
button->color(0x00ff0000); // RGB: green
button->color(0x0000ff00); // RGB: blue
button->color(0xffffff00); // RGB: white

Note:

If TrueColor is not available, any RGB colors will be set to the nearest entry in the colormap.

7.3.1 Line Dashes and Thickness

FLTK supports drawing of lines with different styles and widths. Full functionality is not available under
Windows 95, 98, and Me due to the reduced drawing functionality these operating systems provide.

void fl_line_style(int style, int width, char∗ dashes)

Set how to draw lines (the "pen"). If you change this it is your responsibility to set it back to the default
with fl_line_style(0).

Note: Because of how line styles are implemented on WIN32 systems, you must set the line style after
setting the drawing color. If you set the color after the line style you will lose the line style settings!

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.3 Colors 59

style is a bitmask which is a bitwise-OR of the following values. If you don’t specify a dash type
you will get a solid line. If you don’t specify a cap or join type you will get a system-defined default
of whatever value is fastest.

• FL_SOLID -----

• FL_DASH - - - -

• FL_DOT

• FL_DASHDOT - . - .

• FL_DASHDOTDOT - .. -

• FL_CAP_FLAT

• FL_CAP_ROUND

• FL_CAP_SQUARE (extends past end point 1/2 line width)

• FL_JOIN_MITER (pointed)

• FL_JOIN_ROUND

• FL_JOIN_BEVEL (flat)

width is the number of pixels thick to draw the lines. Zero results in the system-defined default,
which on both X and Windows is somewhat different and nicer than 1.

dashes is a pointer to an array of dash lengths, measured in pixels. The first location is how long to
draw a solid portion, the next is how long to draw the gap, then the solid, etc. It is terminated with a
zero-length entry. A NULL pointer or a zero-length array results in a solid line. Odd array sizes are not
supported and result in undefined behavior.

Note: The dashes array does not work under Windows 95, 98, or Me, since those operating systems
do not support complex line styles.

7.3.2 Drawing Fast Shapes

These functions are used to draw almost all the FLTK widgets. They draw on exact pixel boundaries and
are as fast as possible. Their behavior is duplicated exactly on all platforms FLTK is ported. It is undefined
whether these are affected by the transformation matrix, so you should only call these while the matrix is
set to the identity matrix (the default).

void fl_point(int x, int y)

Draw a single pixel at the given coordinates.

void fl_rectf(int x, int y, int w, int h)

void fl_rectf(int x, int y, int w, int h)

Color a rectangle that exactly fills the given bounding box.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

60 Drawing Things in FLTK

void fl_rectf(int x, int y, int w, int h, uchar r, uchar g, uchar b)

Color a rectangle with "exactly" the passed r,g,b color. On screens with less than 24 bits of color
this is done by drawing a solid-colored block using fl_draw_image() so that the correct color shade is
produced.

void fl_rect(int x, int y, int w, int h)

void fl_rect(int x, int y, int w, int h, Fl_Color c)

Draw a 1-pixel border inside this bounding box.

void fl_line(int x, int y, int x1, int y1)

void fl_line(int x, int y, int x1, int y1, int x2, int y2)

Draw one or two lines between the given points.

void fl_loop(int x, int y, int x1, int y1, int x2, int y2)

void fl_loop(int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)

Outline a 3 or 4-sided polygon with lines.

void fl_polygon(int x, int y, int x1, int y1, int x2, int y2)

void fl_polygon(int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)

Fill a 3 or 4-sided polygon. The polygon must be convex.

void fl_xyline(int x, int y, int x1)

void fl_xyline(int x, int y, int x1, int y2)

void fl_xyline(int x, int y, int x1, int y2, int x3)

Draw horizontal and vertical lines. A horizontal line is drawn first, then a vertical, then a horizontal.

void fl_yxline(int x, int y, int y1)

void fl_yxline(int x, int y, int y1, int x2)

void fl_yxline(int x, int y, int y1, int x2, int y3)

Draw vertical and horizontal lines. A vertical line is drawn first, then a horizontal, then a vertical.

void fl_arc(int x, int y, int w, int h, double a1, double a2)

void fl_pie(int x, int y, int w, int h, double a1, double a2)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.3 Colors 61

Draw ellipse sections using integer coordinates. These functions match the rather limited circle draw-
ing code provided by X and WIN32. The advantage over using fl_arc() with floating point coordinates
is that they are faster because they often use the hardware, and they draw much nicer small circles,
since the small sizes are often hard-coded bitmaps.

If a complete circle is drawn it will fit inside the passed bounding box. The two angles are measured
in degrees counterclockwise from 3’oclock and are the starting and ending angle of the arc, a2 must
be greater or equal to a1.

fl_arc() draws a series of lines to approximate the arc. Notice that the integer version of fl_arc()
has a different number of arguments to the other fl_arc() function described later in this chapter.

fl_pie() draws a filled-in pie slice. This slice may extend outside the line drawn by fl_arc(); to
avoid this use w-1 and h-1.

Todo

add an Fl_Draw_Area_Cb typedef to allow fl_scroll(...) to be doxygenated?

void fl_scroll(int X, int Y, int W, int H, int dx, int dy, void (∗draw_area)(void∗, int,int,int,int), void∗ data)

Scroll a rectangle and draw the newly exposed portions. The contents of the rectangular area is first
shifted by dx and dy pixels. The callback is then called for every newly exposed rectangular area,

7.3.3 Drawing Complex Shapes

The complex drawing functions let you draw arbitrary shapes with 2-D linear transformations. The func-
tionality matches that found in the Adobe®PostScript™language. The exact pixels that are filled are less
defined than for the fast drawing functions so that FLTK can take advantage of drawing hardware. On
both X and WIN32 the transformed vertices are rounded to integers before drawing the line segments: this
severely limits the accuracy of these functions for complex graphics, so use OpenGL when greater accuracy
and/or performance is required.

void fl_push_matrix()

void fl_pop_matrix()

Save and restore the current transformation. The maximum depth of the stack is 4.

void fl_scale(double x,double y)

void fl_scale(double x)

void fl_translate(double x,double y)

void fl_rotate(double d)

void fl_mult_matrix(double a,double b,double c,double d,double x,double y)

Concatenate another transformation onto the current one. The rotation angle is in degrees (not radians)
and is counter-clockwise.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

62 Drawing Things in FLTK

double fl_transform_x(double x, double y)

double fl_transform_y(double x, double y)

double fl_transform_dx(double x, double y)

double fl_transform_dy(double x, double y)

void fl_transformed_vertex(double xf, double yf)

Transform a coordinate or a distance using the current transformation matrix. After transforming
a coordinate pair, it can be added to the vertex list without any further translations using fl_-
transformed_vertex().

void fl_begin_points()

void fl_end_points()

Start and end drawing a list of points. Points are added to the list with fl_vertex().

void fl_begin_line()

void fl_end_line()

Start and end drawing lines.

void fl_begin_loop()

void fl_end_loop()

Start and end drawing a closed sequence of lines.

void fl_begin_polygon()

void fl_end_polygon()

Start and end drawing a convex filled polygon.

void fl_begin_complex_polygon()

void fl_gap()

void fl_end_complex_polygon()

Start and end drawing a complex filled polygon. This polygon may be concave, may have holes in it,
or may be several disconnected pieces. Call fl_gap() to separate loops of the path. It is unnecessary
but harmless to call fl_gap() before the first vertex, after the last one, or several times in a row.

fl_gap() should only be called between fl_begin_complex_polygon() and fl_end_-
complex_polygon(). To outline the polygon, use fl_begin_loop() and replace each fl_-
gap() with a fl_end_loop();fl_begin_loop() pair.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.3 Colors 63

Note: For portability, you should only draw polygons that appear the same whether "even/odd" or
"non-zero" winding rules are used to fill them. Holes should be drawn in the opposite direction of the
outside loop.

void fl_vertex(double x,double y)

Add a single vertex to the current path.

void fl_curve(double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3, double
Y3)

Add a series of points on a Bezier curve to the path. The curve ends (and two of the points) are at
X0,Y0 and X3,Y3.

void fl_arc(double x, double y, double r, double start, double end)

Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using
scale and rotate before calling fl_arc(). The center of the circle is given by x and y, and r is its
radius. fl_arc() takes start and end angles that are measured in degrees counter-clockwise from
3 o’clock. If end is less than start then it draws the arc in a clockwise direction.

void fl_circle(double x, double y, double r)

fl_circle(...) is equivalent to fl_arc(...,0,360) but may be faster. It must be the only thing in the
path: if you want a circle as part of a complex polygon you must use fl_arc().

Note: fl_circle() draws incorrectly if the transformation is both rotated and non-square scaled.

7.3.4 Drawing Text

All text is drawn in the current font. It is undefined whether this location or the characters are modified by
the current transformation.

void fl_draw(const char ∗, int x, int y)

void fl_draw(const char ∗, int n, int x, int y)

Draw a nul-terminated string or an array of n characters starting at the given location. Text is aligned
to the left and to the baseline of the font. To align to the bottom, subtract fl_descent() from y.
To align to the top, subtract fl_descent() and add fl_height(). This version of fl_draw()
provides direct access to the text drawing function of the underlying OS. It does not apply any special
handling to control characters.

void fl_draw(const char∗ str, int x, int y, int w, int h, Fl_Align align, Fl_Image∗ img, int draw_symbols)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

64 Drawing Things in FLTK

Fancy string drawing function which is used to draw all the labels. The string is formatted and aligned
inside the passed box. Handles ’\t’ and ’\n’, expands all other control characters to ∧X, and aligns
inside or against the edges of the box described by x, y, w and h. See Fl_Widget::align() for values
for align. The value FL_ALIGN_INSIDE is ignored, as this function always prints inside the box.

If img is provided and is not NULL, the image is drawn above or below the text as specified by the
align value.

The draw_symbols argument specifies whether or not to look for symbol names starting with the
"@" character.

The text length is limited to 1024 characters per line.

void fl_measure(const char ∗str, int& w, int& h, int draw_symbols)

Measure how wide and tall the string will be when printed by the fl_draw(...align) function. If the
incoming w is non-zero it will wrap to that width.

int fl_height()

Recommended minimum line spacing for the current font. You can also just use the value of size
passed to fl_font().

int fl_descent()

Recommended distance above the bottom of a fl_height() tall box to draw the text at so it looks
centered vertically in that box.

double fl_width(const char∗ txt)

double fl_width(const char∗ txt, int n)

double fl_width(Fl_Unichar)

Return the pixel width of a nul-terminated string, a sequence of n characters, or a single character in
the current font.

const char∗ fl_shortcut_label(int shortcut)

Unparse a shortcut value as used by Fl_Button or Fl_Menu_Item into a human-readable string like
"Alt+N". This only works if the shortcut is a character key or a numbered function key. If the shortcut
is zero an empty string is returned. The return value points at a static buffer that is overwritten with
each call.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.3 Colors 65

7.3.5 Fonts

FLTK supports a set of standard fonts based on the Times, Helvetica/Arial, Courier, and Symbol typefaces,
as well as custom fonts that your application may load. Each font is accessed by an index into a font table.

Initially only the first 16 faces are filled in. There are symbolic names for them: FL_HELVETICA, FL_-
TIMES, FL_COURIER, and modifier values FL_BOLD and FL_ITALIC which can be added to these, and
FL_SYMBOL and FL_ZAPF_DINGBATS. Faces greater than 255 cannot be used in Fl_Widget labels,
since Fl_Widget stores the index as a byte.

void fl_font(int face, int size)

Set the current font, which is then used by the routines described above. You may call this outside a
draw context if necessary to call fl_width(), but on X this will open the display.

The font is identified by a face and a size. The size of the font is measured in pixels and not
"points". Lines should be spaced size pixels apart or more.

int fl_font()

int fl_size()

Returns the face and size set by the most recent call to fl_font(a,b). This can be used to
save/restore the font.

7.3.6 Character Encoding

Todo

Rework the Character Encoding section for UTF-8

FLTK 1 supports western character sets using the eight bit encoding of the user-selected global code page.
For MS Windows and X11, the code page is assumed to be Windows-1252/Latin1, a superset to ISO 8859-
1. On Mac OS X, we assume MacRoman.

FLTK provides the functions fl_latin1_to_local(), fl_local_to_latin1(), fl_mac_roman_to_local(), and fl_-
local_to_mac_roman() to convert strings between both encodings. These functions are only required if
your source code contains "C"-strings with international characters and if this source will be compiled on
multiple platforms.

Assuming that the following source code was written on MS Windows, this example will output the
correct label on OS X and X11 as well. Without the conversion call, the label on OS X would read
Fahrvergn¸gen with a deformed umlaut u ("cedille", html "¸").

btn = new Fl_Button(10, 10, 300, 25);
btn->copy_label(fl_latin1_to_local("Fahrvergnügen"));

Note:

If your application uses characters that are not part of both encodings, or it will be used in areas that
commonly use different code pages, you might consider upgrading to FLTK 2 which supports UTF-8
encoding.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

66 Drawing Things in FLTK

Todo

drawing.dox: I fixed the above encoding problem of these ¸ and umlaut characters, but this text
is obsoleted by FLTK 1.3 with UTF-8 encoding, or must be rewritten accordingly: How to use native
(e.g. Windows "ANSI", or ISO-8859-x) encoding in embedded strings for labels, error messages and
more. Please check this (UTF-8) encoding on different OS’es and with different language and font
environments.

For more information about character encodings, see the chapter on Unicode and UTF-8 Support.

7.3.7 Drawing Overlays

These functions allow you to draw interactive selection rectangles without using the overlay hardware.
FLTK will XOR a single rectangle outline over a window.

void fl_overlay_rect(int x, int y, int w, int h);

void fl_overlay_clear();

fl_overlay_rect() draws a selection rectangle, erasing any previous rectangle by XOR’ing it
first. fl_overlay_clear() will erase the rectangle without drawing a new one.

Using these functions is tricky. You should make a widget with both a handle() and draw()
method. draw() should call fl_overlay_clear() before doing anything else. Your handle()
method should call window()->make_current() and then fl_overlay_rect() after FL_-
DRAG events, and should call fl_overlay_clear() after a FL_RELEASE event.

7.4 Drawing Images

To draw images, you can either do it directly from data in your memory, or you can create a Fl_Image
object. The advantage of drawing directly is that it is more intuitive, and it is faster if the image data
changes more often than it is redrawn. The advantage of using the object is that FLTK will cache translated
forms of the image (on X it uses a server pixmap) and thus redrawing is much faster.

7.4.1 Direct Image Drawing

The behavior when drawing images when the current transformation matrix is not the identity is not defined,
so you should only draw images when the matrix is set to the identity.

void fl_draw_image(const uchar ∗buf,int X,int Y,int W,int H,int D,int L)

void fl_draw_image_mono(const uchar ∗buf,int X,int Y,int W,int H,int D,int L)

Draw an 8-bit per color RGB or luminance image. The pointer points at the "r" data of the top-left
pixel. Color data must be in r,g,b order. The top left corner is given by X and Y and the size of
the image is given by W and H. D is the delta to add to the pointer between pixels, it may be any value
greater or equal to 3, or it can be negative to flip the image horizontally. L is the delta to add to the
pointer between lines (if 0 is passed it uses W∗D). and may be larger than W∗D to crop data, or negative
to flip the image vertically.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.4 Drawing Images 67

It is highly recommended that you put the following code before the first show() of any window in
your program to get rid of the dithering if possible:

Fl::visual(FL_RGB);

Gray scale (1-channel) images may be drawn. This is done if abs(D) is less than 3, or by calling
fl_draw_image_mono(). Only one 8-bit sample is used for each pixel, and on screens with differ-
ent numbers of bits for red, green, and blue only gray colors are used. Setting D greater than 1 will let
you display one channel of a color image.

Note: The X version does not support all possible visuals. If FLTK cannot draw the image in the
current visual it will abort. FLTK supports any visual of 8 bits or less, and all common TrueColor
visuals up to 32 bits.

typedef void (∗Fl_Draw_Image_Cb)(void ∗data,int x,int y,int w,uchar ∗buf)

void fl_draw_image(Fl_Draw_Image_Cb cb,void ∗data,int X,int Y,int W,int H,int D)

void fl_draw_image_mono(Fl_Draw_Image_Cb cb,void ∗data,int X,int Y,int W,int H,int D)

Call the passed function to provide each scan line of the image. This lets you generate the image as
it is being drawn, or do arbitrary decompression of stored data, provided it can be decompressed to
individual scan lines easily.

The callback is called with the void∗ user data pointer which can be used to point at a structure of
information about the image, and the x, y, and w of the scan line desired from the image. 0,0 is the
upper-left corner of the image, not X,Y. A pointer to a buffer to put the data into is passed. You must
copy w pixels from scanline y, starting at pixel x, to this buffer.

Due to cropping, less than the whole image may be requested. So x may be greater than zero, the first
y may be greater than zero, and w may be less than W. The buffer is long enough to store the entire
W∗D pixels, this is for convenience with some decompression schemes where you must decompress
the entire line at once: decompress it into the buffer, and then if x is not zero, copy the data over so the
x’th pixel is at the start of the buffer.

You can assume the y’s will be consecutive, except the first one may be greater than zero.

If D is 4 or more, you must fill in the unused bytes with zero.

int fl_draw_pixmap(char∗ const∗ data, int x, int y, Fl_Color bg)

int fl_draw_pixmap(const char∗ const∗ cdata, int x, int y, Fl_Color bg)

Draws XPM image data, with the top-left corner at the given position. The image is dithered on 8-
bit displays so you won’t lose color space for programs displaying both images and pixmaps. This
function returns zero if there was any error decoding the XPM data.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

68 Drawing Things in FLTK

To use an XPM, do:

#include "foo.xpm"
...
fl_draw_pixmap(foo, X, Y);

Transparent colors are replaced by the optional Fl_Color argument. To draw with true transparency
you must use the Fl_Pixmap class.

int fl_measure_pixmap(char∗ const∗ data, int &w, int &h)

int fl_measure_pixmap(const char∗ const∗ cdata, int &w, int &h)

An XPM image contains the dimensions in its data. This function finds and returns the width and
height. The return value is non-zero if the dimensions were parsed ok and zero if there was any
problem.

7.4.2 Direct Image Reading

FLTK provides a single function for reading from the current window or off-screen buffer into a RGB(A)
image buffer.

uchar∗ fl_read_image(uchar ∗p, int X, int Y, int W, int H, int alpha)

Read a RGB(A) image from the current window or off-screen buffer. The p argument points to a buffer
that can hold the image and must be at least W∗H∗3 bytes when reading RGB images and W∗H∗4 bytes
when reading RGBA images. If NULL, fl_read_image() will create an array of the proper size
which can be freed using delete[].

The alpha parameter controls whether an alpha channel is created and the value that is placed in the
alpha channel. If 0, no alpha channel is generated.

7.4.3 Image Classes

FLTK provides a base image class called Fl_Image which supports creating, copying, and drawing images
of various kinds, along with some basic color operations. Images can be used as labels for widgets using
the image() and deimage() methods or drawn directly.

The Fl_Image class does almost nothing by itself, but is instead supported by three basic image types:

• Fl_Bitmap

• Fl_Pixmap

• Fl_RGB_Image

The Fl_Bitmap class encapsulates a mono-color bitmap image. The draw() method draws the image
using the current drawing color.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.4 Drawing Images 69

The Fl_Pixmap class encapsulates a colormapped image. The draw() method draws the image using the
colors in the file, and masks off any transparent colors automatically.

The Fl_RGB_Image class encapsulates a full-color (or grayscale) image with 1 to 4 color components.
Images with an even number of components are assumed to contain an alpha channel that is used for
transparency. The transparency provided by the draw() method is either a 24-bit blend against the existing
window contents or a "screen door" transparency mask, depending on the platform and screen color depth.

char fl_can_do_alpha_blending()

fl_can_do_alpha_blending() will return 1, if your platform supports true alpha blending for
RGBA images, or 0, if FLTK will use screen door transparency.

FLTK also provides several image classes based on the three standard image types for common file formats:

• Fl_GIF_Image

• Fl_JPEG_Image

• Fl_PNG_Image

• Fl_PNM_Image

• Fl_XBM_Image

• Fl_XPM_Image

Each of these image classes load a named file of the corresponding format. The Fl_Shared_Image class
can be used to load any type of image file - the class examines the file and constructs an image of the
appropriate type.

Finally, FLTK provides a special image class called Fl_Tiled_Image to tile another image object in the
specified area. This class can be used to tile a background image in a Fl_Group widget, for example.

virtual void Fl_Tiled_Image::copy();

virtual Fl_Image∗ Fl_Tiled_Image::copy(int w, int h);

The copy() method creates a copy of the image. The second form specifies the new size of the image
- the image is resized using the nearest-neighbor algorithm.

void Fl_Tiled_Image::draw(int x, int y, int w, int h, int ox, int oy);

The draw() method draws the image object. x,y,w,h indicates a destination rectangle.
ox,oy,w,h is a source rectangle. This source rectangle is copied to the destination. The source
rectangle may extend outside the image, i.e. ox and oy may be negative and w and h may be bigger
than the image, and this area is left unchanged.

void Fl_Tiled_Image::draw(int x, int y)

Draws the image with the upper-left corner at x,y. This is the same as doing draw(x,y,img->w(),img-
>h(),0,0).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

70 Drawing Things in FLTK

7.4.4 Offscreen Drawing

Sometimes it can be very useful to generate a complex drawing in memory first and copy it to the screen
at a later point in time. This technique can significantly reduce the amount of repeated drawing. Offscreen
drawing functions are declared in <FL/x.H>. Fl_Double_Window uses offscreen rendering to avoid flick-
ering on systems that don’t support double-buffering natively.

Fl_Offscreen fl_create_offscreen(int w, int h)

Create an RGB offscreen buffer with w∗h pixels.

void fl_delete_offscreen(Fl_Offscreen)

Delete a previously created offscreen buffer. All drawings are lost.

void fl_begin_offscreen(Fl_Offscreen)

Send all subsequent drawing commands to this offscreen buffer. FLTK can draw into a buffer at any
time. There is no need to wait for an Fl_Widget::draw() to occur.

void fl_end_offscreen()

Quit sending drawing commands to this offscreen buffer.

void fl_copy_offscreen(int x, int y, int w, int h, Fl_Offscreen osrc, int srcx, int srcy)

Copy a rectangular area of the size w∗h from srcx,srcy in the offscreen buffer into the current buffer
at x,y.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 8

Handling Events

72 Handling Events

This chapter discusses the FLTK event model and how to handle events in your program or widget.

8.1 The FLTK Event Model

Every time a user moves the mouse pointer, clicks a button, or presses a key, an event is generated and sent
to your application. Events can also come from other programs like the window manager.

Events are identified by the integer argument passed to a handle() method that overrides the Fl_-
Widget::handle() virtual method. Other information about the most recent event is stored in static locations
and acquired by calling the Fl::event_∗() methods. This static information remains valid until the next
event is read from the window system, so it is ok to look at it outside of the handle() method.

Event numbers can be converted to their actual names using the fl_eventnames[] array defined in #include
<FL/names.h>; see next chapter for details.

In the next chapter, the MyClass::handle() example shows how to override the Fl_Widget::handle() method
to accept and process specific events.

8.2 Mouse Events

8.2.1 FL_PUSH

A mouse button has gone down with the mouse pointing at this widget. You can find out what button by
calling Fl::event_button(). You find out the mouse position by calling Fl::event_x() and Fl::event_y().

A widget indicates that it "wants" the mouse click by returning non-zero from its handle() method, as
in the MyClass::handle() example. It will then become the Fl::pushed() widget and will get FL_DRAG and
the matching FL_RELEASE events. If handle() returns zero then FLTK will try sending the FL_PUSH
to another widget.

8.2.2 FL_DRAG

The mouse has moved with a button held down. The current button state is in Fl::event_state(). The mouse
position is in Fl::event_x() and Fl::event_y().

In order to receive FL_DRAG events, the widget must return non-zero when handling FL_PUSH.

8.2.3 FL_RELEASE

A mouse button has been released. You can find out what button by calling Fl::event_button().

In order to receive the FL_RELEASE event, the widget must return non-zero when handling FL_PUSH.

8.2.4 FL_MOVE

The mouse has moved without any mouse buttons held down. This event is sent to the Fl::belowmouse()
widget.

In order to receive FL_MOVE events, the widget must return non-zero when handling FL_ENTER.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

8.3 Focus Events 73

8.2.5 FL_MOUSEWHEEL

The user has moved the mouse wheel. The Fl::event_dx() and Fl::event_dy() methods can be used to find
the amount to scroll horizontally and vertically.

8.3 Focus Events

8.3.1 FL_ENTER

The mouse has been moved to point at this widget. This can be used for highlighting feedback. If a widget
wants to highlight or otherwise track the mouse, it indicates this by returning non-zero from its handle()
method. It then becomes the Fl::belowmouse() widget and will receive FL_MOVE and FL_LEAVE events.

8.3.2 FL_LEAVE

The mouse has moved out of the widget.

In order to receive the FL_LEAVE event, the widget must return non-zero when handling FL_ENTER.

8.3.3 FL_FOCUS

This indicates an attempt to give a widget the keyboard focus.

If a widget wants the focus, it should change itself to display the fact that it has the focus, and return
non-zero from its handle() method. It then becomes the Fl::focus() widget and gets FL_KEYDOWN,
FL_KEYUP, and FL_UNFOCUS events.

The focus will change either because the window manager changed which window gets the focus, or
because the user tried to navigate using tab, arrows, or other keys. You can check Fl::event_key() to figure
out why it moved. For navigation it will be the key pressed and interaction with the window manager it
will be zero.

8.3.4 FL_UNFOCUS

This event is sent to the previous Fl::focus() widget when another widget gets the focus or the window
loses focus.

8.4 Keyboard Events

8.4.1 FL_KEYDOWN, FL_KEYUP

A key was pressed or released. The key can be found in Fl::event_key(). The text that the key should
insert can be found with Fl::event_text() and its length is in Fl::event_length(). If you use the key, then
handle() should return 1. If you return zero then FLTK assumes you ignored the key and will then
attempt to send it to a parent widget. If none of them want it, it will change the event into a FL_SHORTCUT
event. FL_KEYBOARD events are also generated by the character palette/map.

To receive FL_KEYBOARD events you must also respond to the FL_FOCUS and FL_UNFOCUS events.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

74 Handling Events

If you are writing a text-editing widget you may also want to call the Fl::compose() function to translate
individual keystrokes into characters.

FL_KEYUP events are sent to the widget that currently has focus. This is not necessarily the same widget
that received the corresponding FL_KEYDOWN event because focus may have changed between events.

8.4.2 FL_SHORTCUT

If the Fl::focus() widget is zero or ignores an FL_KEYBOARD event then FLTK tries sending this
event to every widget it can, until one of them returns non-zero. FL_SHORTCUT is first sent to the
Fl::belowmouse() widget, then its parents and siblings, and eventually to every widget in the window,
trying to find an object that returns non-zero. FLTK tries really hard to not to ignore any keystrokes!

You can also make "global" shortcuts by using Fl::add_handler(). A global shortcut will work no matter
what windows are displayed or which one has the focus.

8.5 Widget Events

8.5.1 FL_DEACTIVATE

This widget is no longer active, due to deactivate() being called on it or one of its parents. Please note
that although active() may still return true for this widget after receiving this event, it is only truly active if
active() is true for both it and all of its parents. (You can use active_r() to check this).

8.5.2 FL_ACTIVATE

This widget is now active, due to activate() being called on it or one of its parents.

8.5.3 FL_HIDE

This widget is no longer visible, due to hide() being called on it or one of its parents, or due to a parent
window being minimized. Please note that although visible() may still return true for this widget after
receiving this event, it is only truly visible if visible() is true for both it and all of its parents. (You can use
visible_r() to check this).

8.5.4 FL_SHOW

This widget is visible again, due to show() being called on it or one of its parents, or due to a parent window
being restored. A child Fl_Window will respond to this by actually creating the window if not done already,
so if you subclass a window, be sure to pass FL_SHOW to the base class handle() method!

8.6 Clipboard Events

8.6.1 FL_PASTE

You should get this event some time after you call Fl::paste(). The contents of Fl::event_text() is the text to
insert and the number of characters is in Fl::event_length().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

8.7 Drag and Drop Events 75

8.6.2 FL_SELECTIONCLEAR

The Fl::selection_owner() will get this event before the selection is moved to another widget. This indicates
that some other widget or program has claimed the selection. Motif programs used this to clear the selection
indication. Most modern programs ignore this.

8.7 Drag and Drop Events

FLTK supports drag and drop of text and files from any application on the desktop to an FLTK widget. Text
is transfered using the current code page. Files are received as a list of full path and file names, separated
by newline. On some platforms, path names are prepended with file://. See Fl::dnd() for drag and
drop from an FLTK widget.

The drag and drop data is available in Fl::event_text() at the concluding FL_PASTE. On some platforms,
the event text is also available for the FL_DND_∗ events, however application must not depend on that
behavior because it depends on the protocol used on each platform.

FL_DND_∗ events cannot be used in widgets derived from Fl_Group or Fl_Window.

8.7.1 FL_DND_ENTER

The mouse has been moved to point at this widget. A widget that is interested in receiving drag’n’drop data
must return 1 to receive FL_DND_DRAG, FL_DND_LEAVE and FL_DND_RELEASE events.

8.7.2 FL_DND_DRAG

The mouse has been moved inside a widget while dragging data. A widget that is interested in receiving
drag’n’drop data should indicate the possible drop position.

8.7.3 FL_DND_LEAVE

The mouse has moved out of the widget.

8.7.4 FL_DND_RELEASE

The user has released the mouse button dropping data into the widget. If the widget returns 1, it will receive
the data in the immediately following FL_PASTE event.

8.8 Fl::event_∗() methods

FLTK keeps the information about the most recent event in static storage. This information is good until
the next event is processed. Thus it is valid inside handle() and callback() methods.

These are all trivial inline functions and thus very fast and small:

• Fl::event_button()

• Fl::event_clicks()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

76 Handling Events

• Fl::event_dx()

• Fl::event_dy()

• Fl::event_inside()

• Fl::event_is_click()

• Fl::event_key()

• Fl::event_length()

• Fl::event_state()

• Fl::event_text()

• Fl::event_x()

• Fl::event_x_root()

• Fl::event_y()

• Fl::event_y_root()

• Fl::get_key()

• Fl::get_mouse()

• Fl::test_shortcut()

8.9 Event Propagation

Widgets receive events via the virtual handle() function. The argument indicates the type of event that
can be handled. The widget must indicate if it handled the event by returning 1. FLTK will then remove
the event and wait for further events from the host. If the widget’s handle function returns 0, FLTK may
redistribute the event based on a few rules.

Most events are sent directly to the handle()method of the Fl_Window that the window system says they
belong to. The window (actually the Fl_Group that Fl_Window is a subclass of) is responsible for sending
the events on to any child widgets. To make the Fl_Group code somewhat easier, FLTK sends some events
(FL_DRAG, FL_RELEASE, FL_KEYBOARD, FL_SHORTCUT, FL_UNFOCUS, and FL_LEAVE) directly
to leaf widgets. These procedures control those leaf widgets:

• Fl::add_handler()

• Fl::belowmouse()

• Fl::focus()

• Fl::grab()

• Fl::modal()

• Fl::pushed()

• Fl::release()

• Fl_Widget::take_focus()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

8.10 FLTK Compose-Character Sequences 77

FLTK propagates events along the widget hierarchy depending on the kind of event and the status of the
UI. Some events are injected directly into the widgets, others may be resent as new events to a different
group of receivers.

Mouse click events are first sent to the window that caused them. The window then forwards the event
down the hierarchy until it reaches the widget that is below the click position. If that widget uses the given
event, the widget is marked "pushed" and will receive all following mouse motion (FL_DRAG) events until
the mouse button is released.

Todo

Is this correct? IMHO, mouse motion (FL_MOVE) events are sent to the belowmouse() widget, i.e. the
widget that returned 1 on an FL_ENTER event. The pushed() widget will usually get an FL_FOCUS
event and becomes the focus() widget if it returns 1 on FL_FOCUS, and will then get keyboard events
(see below).

Mouse wheel events are sent to the window that caused the event. The window propagates the event down
the tree, first to the widget that is below the mouse pointer, and if that does not succeed, to all other
widgets in the group. This ensures that scroll widgets work as expected with the widget furthest down in
the hierarchy getting the first opportunity to use the wheel event, but also giving scroll bars, that are not
directly below the mouse a chance.

Keyboard events are sent directly to the widget that has keyboard focus. If the focused widget rejects the
event, it is resent as a shortcut event, first to the top-most window, then to the widget below the mouse
pointer, propagating up the hierarchy to all its parents. Those send the event also to all widgets that are
not below the mouse pointer. Now if that did not work out, the shortcut is sent to all registered shortcut
handlers.

If we are still unsuccessful, the event handler flips the case of the shortcut letter and starts over. Finally, if
the key is "escape", FLTK sends a close event to the top-most window.

All other events are pretty much sent right away to the window that created the event.

Widgets can "grab" events. The grabbing window gets all events exclusively, but usually by the same rules
as described above.

Windows can also request exclusivity in event handling by making the window modal.

8.10 FLTK Compose-Character Sequences

The character composition done by Fl_Input widget requires that you call the Fl::compose() function if you
are writing your own text editor widget.

Currently, all characters made by single key strokes with or without modifier keys, or by system-defined
character compose sequences (that can involve dead keys or a compose key) can be input. You should call
Fl::compose() in case any enhancements to this processing are done in the future. The interface has been
designed to handle arbitrary UTF-8 encoded text.

The following methods are provided for character composition:

• Fl::compose()

• Fl::compose_reset()

Under Mac OS X, FLTK "previews" partially composed sequences.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

78 Handling Events

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 9

Adding and Extending Widgets

80 Adding and Extending Widgets

This chapter describes how to add your own widgets or extend existing widgets in FLTK.

9.1 Subclassing

New widgets are created by subclassing an existing FLTK widget, typically Fl_Widget for controls and
Fl_Group for composite widgets.

A control widget typically interacts with the user to receive and/or display a value of some sort.

A composite widget holds a list of child widgets and handles moving, sizing, showing, or hiding them as
needed. Fl_Group is the main composite widget class in FLTK, and all of the other composite widgets
(Fl_Pack, Fl_Scroll, Fl_Tabs, Fl_Tile, and Fl_Window) are subclasses of it.

You can also subclass other existing widgets to provide a different look or user-interface. For example, the
button widgets are all subclasses of Fl_Button since they all interact with the user via a mouse button click.
The only difference is the code that draws the face of the button.

9.2 Making a Subclass of Fl_Widget

Your subclasses can directly descend from Fl_Widget or any subclass of Fl_Widget. Fl_Widget has only
four virtual methods, and overriding some or all of these may be necessary.

9.3 The Constructor

The constructor should have the following arguments:

MyClass(int x, int y, int w, int h, const char *label = 0);

This will allow the class to be used in FLUID without problems.

The constructor must call the constructor for the base class and pass the same arguments:

MyClass::MyClass(int x, int y, int w, int h, const char *label)
: Fl_Widget(x, y, w, h, label) {
// do initialization stuff...
}

Fl_Widget’s protected constructor sets x(), y(), w(), h(), and label() to the passed values and
initializes the other instance variables to:

type(0);
box(FL_NO_BOX);
color(FL_BACKGROUND_COLOR);
selection_color(FL_BACKGROUND_COLOR);
labeltype(FL_NORMAL_LABEL);
labelstyle(FL_NORMAL_STYLE);
labelsize(FL_NORMAL_SIZE);
labelcolor(FL_FOREGROUND_COLOR);
align(FL_ALIGN_CENTER);
callback(default_callback,0);
flags(ACTIVE|VISIBLE);
image(0);
deimage(0);

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

9.4 Protected Methods of Fl_Widget 81

9.4 Protected Methods of Fl_Widget

The following methods are provided for subclasses to use:

• clear_visible()

• damage()

• draw_box()

• draw_focus()

• draw_label()

• set_flag()

• set_visible()

• test_shortcut()

• type()

void Fl_Widget::damage(uchar mask)

void Fl_Widget::damage(uchar mask, int x, int y, int w, int h)

uchar Fl_Widget::damage()

The first form indicates that a partial update of the object is needed. The bits in mask are OR’d into
damage(). Your draw() routine can examine these bits to limit what it is drawing. The public method
Fl_Widget::redraw() simply does Fl_Widget::damage(FL_DAMAGE_ALL), but the implemen-
tation of your widget can call the public damage(n).

The second form indicates that a region is damaged. If only these calls are done in a window (no calls
to damage(n)) then FLTK will clip to the union of all these calls before drawing anything. This
can greatly speed up incremental displays. The mask bits are OR’d into damage() unless this is a
Fl_Window widget.

The third form returns the bitwise-OR of all damage(n) calls done since the last draw().

When redrawing your widgets you should look at the damage bits to see what parts of your widget
need redrawing. The handle() method can then set individual damage bits to limit the amount of
drawing that needs to be done:

MyClass::handle(int event) {
...
if (change_to_part1) damage(1);
if (change_to_part2) damage(2);
if (change_to_part3) damage(4);

}

MyClass::draw() {
if (damage() & FL_DAMAGE_ALL) {

... draw frame/box and other static stuff ...
}

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

82 Adding and Extending Widgets

if (damage() & (FL_DAMAGE_ALL | 1)) draw_part1();
if (damage() & (FL_DAMAGE_ALL | 2)) draw_part2();
if (damage() & (FL_DAMAGE_ALL | 4)) draw_part3();

}

Todo

Clarify Fl_Window::damage(n) handling - seems confused/wrong? ORing value doesn’t match setting
behaviour in FL_Widget.H!

void Fl_Widget::draw_box() const

void Fl_Widget::draw_box(Fl_Boxtype t, Fl_Color c) const

The first form draws this widget’s box(), using the dimensions of the widget. The second form uses
t as the box type and c as the color for the box.

void Fl_Widget::draw_focus()

void Fl_Widget::draw_focus(Fl_Boxtype t, int x, int y, int w, int h) const

Draws a focus box inside the widget’s bounding box. The second form allows you to specify a different
bounding box.

void Fl_Widget::draw_label() const

void Fl_Widget::draw_label(int x, int y, int w, int h) const

void Fl_Widget::draw_label(int x, int y, int w, int h, Fl_Align align) const

The first form is the usual function for a draw() method to call to draw the widget’s label. It does
not draw the label if it is supposed to be outside the box (on the assumption that the enclosing group
will draw those labels).

The second form uses the passed bounding box instead of the widget’s bounding box. This is useful
so "centered" labels are aligned with some feature, like a moving slider.

The third form draws the label anywhere. It acts as though FL_ALIGN_INSIDE has been forced on
so the label will appear inside the passed bounding box. This is designed for parent groups to draw
labels with.

void Fl_Widget::set_flag(int c)

Calling set_flag(SHORTCUT_LABEL) modifies the behavior of draw_label() so that ’&’ charac-
ters cause an underscore to be printed under the next letter.

void Fl_Widget::set_visible()

void Fl_Widget::clear_visible()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

9.5 Handling Events 83

Fast inline versions of Fl_Widget::hide() and Fl_Widget::show(). These do not send the FL_HIDE
and FL_SHOW events to the widget.

int Fl_Widget::test_shortcut()

static int Fl_Widget::test_shortcut(const char ∗s)

The first version tests Fl_Widget::label() against the current event (which should be a FL_SHORTCUT
event). If the label contains a ’&’ character and the character after it matches the keypress, this returns
true. This returns false if the SHORTCUT_LABEL flag is off, if the label is NULL, or does not have a
’&’ character in it, or if the keypress does not match the character.

The second version lets you do this test against an arbitrary string.

Todo

Clarify Fl_Widget::test_shortcut() explanations. Fl_Widget.h says Internal Use only, but subclassing
chapter gives details!

uchar Fl_Widget::type() const

void Fl_Widget::type(uchar t)

The property Fl_Widget::type() can return an arbitrary 8-bit identifier, and can be set with the protected
method type(uchar t). This value had to be provided for Forms compatibility, but you can use it
for any purpose you want. Try to keep the value less than 100 to not interfere with reserved values.

FLTK does not use RTTI (Run Time Typing Information), to enhance portability. But this may change
in the near future if RTTI becomes standard everywhere.

If you don’t have RTTI you can use the clumsy FLTK mechanism, by having type() use a unique
value. These unique values must be greater than the symbol FL_RESERVED_TYPE (which is 100)
and less than FL_WINDOW (unless you make a subclass of Fl_Window). Look through the header files
for FL_RESERVED_TYPE to find an unused number. If you make a subclass of Fl_Window you must
use FL_WINDOW + n (where n must be in the range 1 to 7).

9.5 Handling Events

The virtual method Fl_Widget::handle(int event) is called to handle each event passed to the widget. It can:

• Change the state of the widget.

• Call Fl_Widget::redraw() if the widget needs to be redisplayed.

• Call Fl_Widget::damage(uchar c) if the widget needs a partial-update (assuming you provide support
for this in your draw() method).

• Call Fl_Widget::do_callback() if a callback should be generated.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

84 Adding and Extending Widgets

• Call Fl_Widget::handle() on child widgets.

Events are identified by the integer argument. Other information about the most recent event is stored in
static locations and acquired by calling the Fl::event_∗() methods. This information remains valid until
another event is handled.

Here is a sample handle() method for a widget that acts as a pushbutton and also accepts the keystroke
’x’ to cause the callback:

int MyClass::handle(int event) {
switch(event) {

case FL_PUSH:
highlight = 1;
redraw();
return 1;

case FL_DRAG: {
int t = Fl::event_inside(this);
if (t != highlight) {

highlight = t;
redraw();

}
}
return 1;

case FL_RELEASE:
if (highlight) {

highlight = 0;
redraw();
do_callback();
// never do anything after a callback, as the callback
// may delete the widget!

}
return 1;

case FL_SHORTCUT:
if (Fl::event_key() == ’x’) {

do_callback();
return 1;

}
return 0;

default:
return Fl_Widget::handle(event);

}
}

You must return non-zero if your handle() method uses the event. If you return zero, the parent widget
will try sending the event to another widget.

For debugging purposes, event numbers can be printed as their actual event names using the fl_-
eventnames[] array, e.g.:

#include <FL/names.h> // defines fl_eventnames[]
[..]
int MyClass::handle(int e) {

printf("Event was %s (%d)\n", fl_eventnames[e], e); // e.g. "Event was FL_PUSH (1)"
[..]

9.6 Drawing the Widget

The draw() virtual method is called when FLTK wants you to redraw your widget. It will be called if
and only if damage() is non-zero, and damage() will be cleared to zero after it returns. The draw()
method should be declared protected so that it can’t be called from non-drawing code.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

9.7 Resizing the Widget 85

The damage() value contains the bitwise-OR of all the damage(n) calls to this widget since it was last
drawn. This can be used for minimal update, by only redrawing the parts whose bits are set. FLTK will
turn on the FL_DAMAGE_ALL bit if it thinks the entire widget must be redrawn, e.g. for an expose event.

Expose events (and the damage(mask,x,y,w,h) function described above) will cause draw() to be called
with FLTK’s clipping turned on. You can greatly speed up redrawing in some cases by testing fl_not_-
clipped(x,y,w,h) or fl_clip_box() and skipping invisible parts.

Besides the protected methods described above, FLTK provides a large number of basic drawing functions,
which are described in the chapter Drawing Things in FLTK.

9.7 Resizing the Widget

The resize(x,y,w,h) method is called when the widget is being resized or moved. The arguments
are the new position, width, and height. x(), y(), w(), and h() still remain the old size. You must call
resize() on your base class with the same arguments to get the widget size to actually change.

This should not call redraw(), at least if only the x() and y() change. This is because composite
widgets like Fl_Scroll may have a more efficient way of drawing the new position.

9.8 Making a Composite Widget

A "composite" widget contains one or more "child" widgets. To make a composite widget you should
subclass Fl_Group. It is possible to make a composite object that is not a subclass of Fl_Group, but you’ll
have to duplicate the code in Fl_Group anyways.

Instances of the child widgets may be included in the parent:

class MyClass : public Fl_Group {
Fl_Button the_button;
Fl_Slider the_slider;
...

};

The constructor has to initialize these instances. They are automatically added to the group, since the
Fl_Group constructor does Fl_Group::begin(). Don’t forget to call Fl_Group::end() or use the Fl_End
pseudo-class:

MyClass::MyClass(int x, int y, int w, int h) :
Fl_Group(x, y, w, h),
the_button(x + 5, y + 5, 100, 20),
the_slider(x, y + 50, w, 20)

{
...(you could add dynamically created child widgets here)...
end(); // don’t forget to do this!

}

The child widgets need callbacks. These will be called with a pointer to the children, but the widget itself
may be found in the parent() pointer of the child. Usually these callbacks can be static private methods,
with a matching private method:

void MyClass::static_slider_cb(Fl_Widget* v, void *) { // static method
((MyClass*)(v->parent())->slider_cb();

}
void MyClass::slider_cb() { // normal method

use(the_slider->value());
}

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

86 Adding and Extending Widgets

If you make the handle() method, you can quickly pass all the events to the children using the Fl_-
Group::handle() method. You don’t need to override handle() if your composite widget does nothing
other than pass events to the children:

int MyClass::handle(int event) {
if (Fl_Group::handle(event)) return 1;
... handle events that children don’t want ...

}

If you override draw() you need to draw all the children. If redraw() or damage() is called on a
child, damage(FL_DAMAGE_CHILD) is done to the group, so this bit of damage() can be used to
indicate that a child needs to be drawn. It is fastest if you avoid drawing anything else in this case:

int MyClass::draw() {
Fl_Widget *const*a = array();
if (damage() == FL_DAMAGE_CHILD) { // only redraw some children

for (int i = children(); i --; a ++) update_child(**a);
} else { // total redraw

... draw background graphics ...
// now draw all the children atop the background:
for (int i = children_; i --; a ++) {

draw_child(**a);
draw_outside_label(**a); // you may not need to do this

}
}

}

Fl_Group provides some protected methods to make drawing easier:

• draw_child()

• draw_children()

• draw_outside_label()

• update_child()

void Fl_Group::draw_child(Fl_Widget &widget) const

This will force the child’s damage() bits all to one and call draw() on it, then clear the damage().
You should call this on all children if a total redraw of your widget is requested, or if you draw some-
thing (like a background box) that damages the child. Nothing is done if the child is not visible()
or if it is clipped.

void Fl_Group::draw_children()

A convenience function that draws all children of the group. This is useful if you derived a widget
from Fl_Group and want to draw a special border or background. You can call draw_children()
from the derived draw() method after drawing the box, border, or background.

void Fl_Group::draw_outside_label(const Fl_Widget &widget) const

Draw the labels that are not drawn by draw_label(). If you want more control over the label positions
you might want to call child->draw_label(x,y,w,h,a).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

9.9 Cut and Paste Support 87

void Fl_Group::update_child(Fl_Widget& widget) const

Draws the child only if its damage() is non-zero. You should call this on all the children if your own
damage is equal to FL_DAMAGE_CHILD. Nothing is done if the child is not visible() or if it is
clipped.

9.9 Cut and Paste Support

FLTK provides routines to cut and paste 8-bit text (in the future this may be UTF-8) between applications:

• Fl::paste()

• Fl::selection()

• Fl::selection_owner()

It may be possible to cut/paste non-text data by using Fl::add_handler(). Note that handling events beyond
those provided by FLTK may be operating system specific. See Operating System Issues for more details.

9.10 Drag And Drop Support

FLTK provides routines to drag and drop 8-bit text between applications:

Drag’n’drop operations are initiated by copying data to the clipboard and calling the function Fl::dnd().

Drop attempts are handled via the following events, already described under Drag and Drop Events in a
previous chapter:

• FL_DND_ENTER

• FL_DND_DRAG

• FL_DND_LEAVE

• FL_DND_RELEASE

• FL_PASTE

9.11 Making a subclass of Fl_Window

You may want your widget to be a subclass of Fl_Window, Fl_Double_Window, or Fl_Gl_Window. This
can be useful if your widget wants to occupy an entire window, and can also be used to take advantage of
system-provided clipping, or to work with a library that expects a system window ID to indicate where to
draw.

Subclassing Fl_Window is almost exactly like subclassing Fl_Group, and in fact you can easily switch a
subclass back and forth. Watch out for the following differences:

1. Fl_Window is a subclass of Fl_Group so make sure your constructor calls end() unless you actually
want children added to your window.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

88 Adding and Extending Widgets

2. When handling events and drawing, the upper-left corner is at 0,0, not x(),y() as in other Fl_-
Widget’s. For instance, to draw a box around the widget, call draw_box(0,0,w(),h()), rather
than draw_box(x(),y(),w(),h()).

You may also want to subclass Fl_Window in order to get access to different visuals or to change other
attributes of the windows. See the Operating System Issues chapter for more information.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 10

Using OpenGL

90 Using OpenGL

This chapter discusses using FLTK for your OpenGL applications.

10.1 Using OpenGL in FLTK

The easiest way to make an OpenGL display is to subclass Fl_Gl_Window. Your subclass must imple-
ment a draw() method which uses OpenGL calls to draw the display. Your main program should call
redraw() when the display needs to change, and (somewhat later) FLTK will call draw().

With a bit of care you can also use OpenGL to draw into normal FLTK windows. This allows you to
use Gouraud shading for drawing your widgets. To do this you use the gl_start() and gl_finish() functions
around your OpenGL code.

You must include FLTK’s <FL/gl.h> header file. It will include the file <GL/gl.h>, define some
extra drawing functions provided by FLTK, and include the <windows.h> header file needed by WIN32
applications.

10.2 Making a Subclass of Fl_Gl_Window

To make a subclass of Fl_Gl_Window, you must provide:

• A class definition.

• A draw() method.

• A handle() method if you need to receive input from the user.

If your subclass provides static controls in the window, they must be redrawn whenever the FL_DAMAGE_-
ALL bit is set in the value returned by damage(). For double-buffered windows you will need to surround
the drawing code with the following code to make sure that both buffers are redrawn:

#ifndef MESA
glDrawBuffer(GL_FRONT_AND_BACK);
#endif // !MESA
... draw stuff here ...
#ifndef MESA
glDrawBuffer(GL_BACK);
#endif // !MESA

Note:
If you are using the Mesa graphics library, the call to glDrawBuffer() is not required and will
slow down drawing considerably. The preprocessor instructions shown above will optimize your code
based upon the graphics library used.

10.2.1 Defining the Subclass

To define the subclass you just subclass the Fl_Gl_Window class:

class MyWindow : public Fl_Gl_Window {
void draw();
int handle(int);

public:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

10.2 Making a Subclass of Fl_Gl_Window 91

MyWindow(int X, int Y, int W, int H, const char *L)
: Fl_Gl_Window(X, Y, W, H, L) {}

};

The draw() and handle() methods are described below. Like any widget, you can include additional
private and public data in your class (such as scene graph information, etc.)

10.2.2 The draw() Method

The draw() method is where you actually do your OpenGL drawing:

void MyWindow::draw() {
if (!valid()) {

... set up projection, viewport, etc ...

... window size is in w() and h().

... valid() is turned on by FLTK after draw() returns
}
... draw ...

}

10.2.3 The handle() Method

The handle() method handles mouse and keyboard events for the window:

int MyWindow::handle(int event) {
switch(event) {
case FL_PUSH:

... mouse down event ...

... position in Fl::event_x() and Fl::event_y()
return 1;

case FL_DRAG:
... mouse moved while down event ...
return 1;

case FL_RELEASE:
... mouse up event ...
return 1;

case FL_FOCUS :
case FL_UNFOCUS :

... Return 1 if you want keyboard events, 0 otherwise
return 1;

case FL_KEYBOARD:
... keypress, key is in Fl::event_key(), ascii in Fl::event_text()
... Return 1 if you understand/use the keyboard event, 0 otherwise...
return 1;

case FL_SHORTCUT:
... shortcut, key is in Fl::event_key(), ascii in Fl::event_text()
... Return 1 if you understand/use the shortcut event, 0 otherwise...
return 1;

default:
// pass other events to the base class...
return Fl_Gl_Window::handle(event);

}
}

When handle() is called, the OpenGL context is not set up! If your display changes, you should
call redraw() and let draw() do the work. Don’t call any OpenGL drawing functions from inside
handle()!

You can call some OpenGL stuff like hit detection and texture loading functions by doing:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

92 Using OpenGL

case FL_PUSH:
make_current(); // make OpenGL context current
if (!valid()) {

... set up projection exactly the same as draw ...

valid(1); // stop it from doing this next time
}
... ok to call NON-DRAWING OpenGL code here, such as hit
detection, loading textures, etc...

Your main program can now create one of your windows by doing new MyWindow(...).

You can also use your new window class in FLUID by:

1. Putting your class definition in a MyWindow.H file.

2. Creating a Fl_Box widget in FLUID.

3. In the widget panel fill in the "class" field with MyWindow. This will make FLUID produce con-
structors for your new class.

4. In the "Extra Code" field put #include "MyWindow.H", so that the FLUID output file will
compile.

You must put glwindow->show() in your main code after calling show() on the window containing
the OpenGL window.

10.3 Using OpenGL in Normal FLTK Windows

You can put OpenGL code into the draw() method, as described in Drawing the Widget in the previous
chapter, or into the code for a boxtype or other places with some care.

Most importantly, before you show any windows, including those that don’t have OpenGL drawing, you
must initialize FLTK so that it knows it is going to use OpenGL. You may use any of the symbols described
for Fl_Gl_Window::mode() to describe how you intend to use OpenGL:

Fl::gl_visual(FL_RGB);

You can then put OpenGL drawing code anywhere you can draw normally by surrounding it with gl_start()
and gl_finish() to set up, and later release, an OpenGL context with an orthographic projection so that 0,0
is the lower-left corner of the window and each pixel is one unit. The current clipping is reproduced with
OpenGL glScissor() commands. These functions also synchronize the OpenGL graphics stream with
the drawing done by other X, WIN32, or FLTK functions.

gl_start();
... put your OpenGL code here ...
gl_finish();

The same context is reused each time. If your code changes the projection transformation or anything else
you should use glPushMatrix() and glPopMatrix() functions to put the state back before calling
gl_finish().

You may want to use Fl_Window::current()->h() to get the drawable height so that you can flip
the Y coordinates.

Unfortunately, there are a bunch of limitations you must adhere to for maximum portability:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

10.4 OpenGL Drawing Functions 93

• You must choose a default visual with Fl::gl_visual().

• You cannot pass FL_DOUBLE to Fl::gl_visual().

• You cannot use Fl_Double_Window or Fl_Overlay_Window.

Do not call gl_start() or gl_finish() when drawing into an Fl_Gl_Window !

10.4 OpenGL Drawing Functions

FLTK provides some useful OpenGL drawing functions. They can be freely mixed with any OpenGL
calls, and are defined by including <FL/gl.h> which you should include instead of the OpenGL header
<GL/gl.h>.

void gl_color(Fl_Color)

Sets the current OpenGL color to a FLTK color. For color-index modes it will use fl_xpixel(c),
which is only right if this window uses the default colormap!

void gl_rect(int x, int y, int w, int h)

void gl_rectf(int x, int y, int w, int h)

Outlines or fills a rectangle with the current color. If Fl_Gl_Window::ortho() has been called, then the
rectangle will exactly fill the pixel rectangle passed.

void gl_font(Fl_Font fontid, int size)

Sets the current OpenGL font to the same font you get by calling fl_font().

int gl_height()

int gl_descent()

float gl_width(const char ∗s)

float gl_width(const char ∗s, int n)

float gl_width(uchar c)

Returns information about the current OpenGL font.

void gl_draw(const char ∗s)

void gl_draw(const char ∗s, int n)

Draws a nul-terminated string or an array of n characters in the current OpenGL font at the current
raster position.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

94 Using OpenGL

void gl_draw(const char ∗s, int x, int y)

void gl_draw(const char ∗s, int n, int x, int y)

void gl_draw(const char ∗s, float x, float y)

void gl_draw(const char ∗s, int n, float x, float y)

Draws a nul-terminated string or an array of n characters in the current OpenGL font at the given
position.

void gl_draw(const char ∗s, int x, int y, int w, int h, Fl_Align)

Draws a string formatted into a box, with newlines and tabs expanded, other control characters changed
to ∧X, and aligned with the edges or center. Exactly the same output as fl_draw().

10.5 Speeding up OpenGL

Performance of Fl_Gl_Window may be improved on some types of OpenGL implementations, in particular
MESA and other software emulators, by setting the GL_SWAP_TYPE environment variable. This variable
declares what is in the backbuffer after you do a swapbuffers.

• setenv GL_SWAP_TYPE COPY

This indicates that the back buffer is copied to the front buffer, and still contains its old data. This
is true of many hardware implementations. Setting this will speed up emulation of overlays, and
widgets that can do partial update can take advantage of this as damage() will not be cleared to -1.

• setenv GL_SWAP_TYPE NODAMAGE

This indicates that nothing changes the back buffer except drawing into it. This is true of MESA and
Win32 software emulation and perhaps some hardware emulation on systems with lots of memory.

• All other values for GL_SWAP_TYPE, and not setting the variable, cause FLTK to assume that the
back buffer must be completely redrawn after a swap.

This is easily tested by running the gl_overlay demo program and seeing if the display is correct when you
drag another window over it or if you drag the window off the screen and back on. You have to exit and
run the program again for it to see any changes to the environment variable.

10.6 Using OpenGL Optimizer with FLTK

OpenGL Optimizer is a scene graph toolkit for OpenGL available from Silicon Graphics for IRIX and
Microsoft Windows. It allows you to view large scenes without writing a lot of OpenGL code.

OptimizerWindow Class Definition

To use OpenGL Optimizer with FLTK you’ll need to create a subclass of Fl_Gl_Widget that in-
cludes several state variables:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://www.sgi.com/software/optimizer
http://www.sgi.com/software/optimizer

10.6 Using OpenGL Optimizer with FLTK 95

class OptimizerWindow : public Fl_Gl_Window {
csContext *context_; // Initialized to 0 and set by draw()...
csDrawAction *draw_action_; // Draw action...
csGroup *scene_; // Scene to draw...
csCamara *camera_; // Viewport for scene...

void draw();

public:
OptimizerWindow(int X, int Y, int W, int H, const char *L)

: Fl_Gl_Window(X, Y, W, H, L) {
context_ = (csContext *)0;
draw_action_ = (csDrawAction *)0;
scene_ = (csGroup *)0;
camera_ = (csCamera *)0;

}

void scene(csGroup *g) { scene_ = g; redraw(); }

void camera(csCamera *c) {
camera_ = c;
if (context_) {

draw_action_->setCamera(camera_);
camera_->draw(draw_action_);
redraw();

}
}

};

The camera() Method

The camera() method sets the camera (projection and viewpoint) to use when drawing the scene.
The scene is redrawn after this call.

The draw() Method

The draw() method performs the needed initialization and does the actual drawing:

void OptimizerWindow::draw() {
if (!context_) {

// This is the first time we’ve been asked to draw; create the
// Optimizer context for the scene...

#ifdef WIN32
context_ = new csContext((HDC)fl_getHDC());
context_->ref();
context_->makeCurrent((HDC)fl_getHDC());

#else
context_ = new csContext(fl_display, fl_visual);
context_->ref();
context_->makeCurrent(fl_display, fl_window);

#endif // WIN32

... perform other context setup as desired ...

// Then create the draw action to handle drawing things...

draw_action_ = new csDrawAction;
if (camera_) {

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

96 Using OpenGL

draw_action_->setCamera(camera_);
camera_->draw(draw_action_);

}
} else {

#ifdef WIN32
context_->makeCurrent((HDC)fl_getHDC());

#else
context_->makeCurrent(fl_display, fl_window);

#endif // WIN32
}

if (!valid()) {
// Update the viewport for this context...
context_->setViewport(0, 0, w(), h());

}

// Clear the window...
context_->clear(csContext::COLOR_CLEAR | csContext::DEPTH_CLEAR,

0.0f, // Red
0.0f, // Green
0.0f, // Blue
1.0f); // Alpha

// Then draw the scene (if any)...
if (scene_)

draw_action_->apply(scene_);
}

The scene() Method

The scene() method sets the scene to be drawn. The scene is a collection of 3D objects in a
csGroup. The scene is redrawn after this call.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 11

Programming with FLUID

98 Programming with FLUID

This chapter shows how to use the Fast Light User-Interface Designer ("FLUID") to create your GUIs.

Subchapters:

• What is FLUID?

• Running FLUID Under UNIX

• Running FLUID Under Microsoft Windows

• Compiling .fl files

• A Short Tutorial

• FLUID Reference

• Internationalization with FLUID

• Known limitations

11.1 What is FLUID?

The Fast Light User Interface Designer, or FLUID, is a graphical editor that is used to produce FLTK
source code. FLUID edits and saves its state in .fl files. These files are text, and you can (with care) edit
them in a text editor, perhaps to get some special effects.

FLUID can "compile" the .fl file into a .cxx and a .h file. The .cxx file defines all the objects from the
.fl file and the .h file declares all the global ones. FLUID also supports localization (Internationalization)
of label strings using message files and the GNU gettext or POSIX catgets interfaces.

A simple program can be made by putting all your code (including a main() function) into the .fl file
and thus making the .cxx file a single source file to compile. Most programs are more complex than this,
so you write other .cxx files that call the FLUID functions. These .cxx files must #include the .h
file or they can #include the .cxx file so it still appears to be a single source file.

Figure 11.1: FLUID organization

Normally the FLUID file defines one or more functions or classes which output C++ code. Each function
defines a one or more FLTK windows, and all the widgets that go inside those windows.

Widgets created by FLUID are either "named", "complex named" or "unnamed". A named widget has
a legal C++ variable identifier as its name (i.e. only alphanumeric and underscore). In this case FLUID

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.2 Running FLUID Under UNIX 99

defines a global variable or class member that will point at the widget after the function defining it is called.
A complex named object has punctuation such as ’.’ or ’->’ or any other symbols in its name. In this
case FLUID assigns a pointer to the widget to the name, but does not attempt to declare it. This can be
used to get the widgets into structures. An unnamed widget has a blank name and no pointer is stored.

Widgets may either call a named callback function that you write in another source file, or you can supply
a small piece of C++ source and FLUID will write a private callback function into the .cxx file.

11.2 Running FLUID Under UNIX

To run FLUID under UNIX, type:

fluid filename.fl &

to edit the .fl file filename.fl. If the file does not exist you will get an error pop-up, but if you
dismiss it you will be editing a blank file of that name. You can run FLUID without any name, in which
case you will be editing an unnamed blank setup (but you can use save-as to write it to a file).

You can provide any of the standard FLTK switches before the filename:

-display host:n.n
-geometry WxH+X+Y
-title windowtitle
-name classname
-iconic
-fg color
-bg color
-bg2 color
-scheme schemename

Changing the colors may be useful to see what your interface will look at if the user calls it with the
same switches. Similarly, using "-scheme plastic" will show how the interface will look using the "plastic"
scheme.

In the current version, if you don’t put FLUID into the background with ’&’ then you will be able to abort
FLUID by typing CTRL-C on the terminal. It will exit immediately, losing any changes.

11.3 Running FLUID Under Microsoft Windows

To run FLUID under WIN32, double-click on the FLUID.exe file. You can also run FLUID from the
Command Prompt window. FLUID always runs in the background under WIN32.

11.4 Compiling .fl files

FLUID can also be called as a command-line "compiler" to create the .cxx and .h file from a .fl file.
To do this type:

fluid -c filename.fl

This will read the filename.fl file and write filename.cxx and filename.h. Any leading di-
rectory on filename.fl will be stripped, so they are always written to the current directory. If there are
any errors reading or writing the files, FLUID will print the error and exit with a non-zero code. You can
use the following lines in a makefile to automate the creation of the source and header files:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

100 Programming with FLUID

my_panels.h my_panels.cxx: my_panels.fl
fluid -c my_panels.fl

Most versions of make support rules that cause .fl files to be compiled:

.SUFFIXES: .fl .cxx .h

.fl.h .fl.cxx:
fluid -c $<

11.5 A Short Tutorial

FLUID is an amazingly powerful little program. However, this power comes at a price as it is not always
obvious how to accomplish seemingly simple tasks with it. This tutorial will show you how to generate a
complete user interface class with FLUID that is used for the CubeView program provided with FLTK.

Figure 11.2: CubeView demo

The window is of class CubeViewUI, and is completely generated by FLUID, including class member
functions. The central display of the cube is a separate subclass of Fl_Gl_Window called CubeView.
CubeViewUI manages CubeView using callbacks from the various sliders and rollers to manipulate the
viewing angle and zoom of CubeView.

At the completion of this tutorial you will (hopefully) understand how to:

1. Use FLUID to create a complete user interface class, including constructor and any member functions
necessary.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.5 A Short Tutorial 101

2. Use FLUID to set callbacks member functions of a custom widget classes.

3. Subclass an Fl_Gl_Window to suit your purposes.

11.5.1 The CubeView Class

The CubeView class is a subclass of Fl_Gl_Window. It has methods for setting the zoom, the x and y pan,
and the rotation angle about the x and y axes.

You can safely skip this section as long as you realize the CubeView is a sublass of Fl_Gl_Window and
will respond to calls from CubeViewUI, generated by FLUID.

The CubeView Class Definition

Here is the CubeView class definition, as given by its header file "test/CubeView.h":

class CubeView : public Fl_Gl_Window {
public:

CubeView(int x,int y,int w,int h,const char *l=0);
// this value determines the scaling factor used to draw the cube.
double size;
/* Set the rotation about the vertical (y) axis.

This function is called by the horizontal roller in CubeViewUI
and the initialize button in CubeViewUI.

*/
void v_angle(float angle){vAng=angle;};
// Return the rotation about the vertical (y) axis.
float v_angle(){return vAng;};
/* Set the rotation about the horizontal (x) axis.

This function is called by the vertical roller in CubeViewUI
and the

initialize button in CubeViewUI.

*/
void h_angle(float angle){hAng=angle;};
// the rotation about the horizontal (x) axis.
float h_angle(){return hAng;};
/* Sets the x shift of the cube view camera.

This function is called by the slider in CubeViewUI and the
initialize button in CubeViewUI.

*/
void panx(float x){xshift=x;};
/* Sets the y shift of the cube view camera.

This function is called by the slider in CubeViewUI and the
initialize button in CubeViewUI.

*/
void pany(float y){yshift=y;};
/* The widget class draw() override.

The draw() function initialize Gl for another round of
drawing then calls specialized functions for drawing each
of the entities displayed in the cube view.

*/
void draw();

private:
/* Draw the cube boundaries

Draw the faces of the cube using the boxv[] vertices, using
GL_LINE_LOOP for the faces. The color is #defined by

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

102 Programming with FLUID

CUBECOLOR.

*/
void drawCube();

float vAng,hAng; float xshift,yshift;

float boxv0[3];float boxv1[3]; float boxv2[3];float boxv3[3];
float boxv4[3];float boxv5[3]; float boxv6[3];float boxv7[3];

};

The CubeView Class Implementation

Here is the CubeView implementation. It is very similar to the "cube" demo included with FLTK.

#include "CubeView.h"
#include <math.h>

CubeView::CubeView(int x,int y,int w,int h,const char *l)
: Fl_Gl_Window(x,y,w,h,l)

{
vAng = 0.0; hAng=0.0; size=10.0;
/* The cube definition. These are the vertices of a unit cube

centered on the origin.*/
boxv0[0] = -0.5; boxv0[1] = -0.5; boxv0[2] = -0.5; boxv1[0] = 0.5;
boxv1[1] = -0.5; boxv1[2] = -0.5; boxv2[0] = 0.5; boxv2[1] = 0.5;
boxv2[2] = -0.5; boxv3[0] = -0.5; boxv3[1] = 0.5; boxv3[2] = -0.5;
boxv4[0] = -0.5; boxv4[1] = -0.5; boxv4[2] = 0.5; boxv5[0] = 0.5;
boxv5[1] = -0.5; boxv5[2] = 0.5; boxv6[0] = 0.5; boxv6[1] = 0.5;
boxv6[2] = 0.5; boxv7[0] = -0.5; boxv7[1] = 0.5; boxv7[2] = 0.5;

};

// The color used for the edges of the bounding cube.
#define CUBECOLOR 255,255,255,255

void CubeView::drawCube() {
/* Draw a colored cube */
#define ALPHA 0.5

glShadeModel(GL_FLAT);

glBegin(GL_QUADS);
glColor4f(0.0, 0.0, 1.0, ALPHA);
glVertex3fv(boxv0);
glVertex3fv(boxv1);
glVertex3fv(boxv2);
glVertex3fv(boxv3);

glColor4f(1.0, 1.0, 0.0, ALPHA);
glVertex3fv(boxv0);
glVertex3fv(boxv4);
glVertex3fv(boxv5);
glVertex3fv(boxv1);

glColor4f(0.0, 1.0, 1.0, ALPHA);
glVertex3fv(boxv2);
glVertex3fv(boxv6);
glVertex3fv(boxv7);
glVertex3fv(boxv3);

glColor4f(1.0, 0.0, 0.0, ALPHA);
glVertex3fv(boxv4);
glVertex3fv(boxv5);
glVertex3fv(boxv6);
glVertex3fv(boxv7);

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.5 A Short Tutorial 103

glColor4f(1.0, 0.0, 1.0, ALPHA);
glVertex3fv(boxv0);
glVertex3fv(boxv3);
glVertex3fv(boxv7);
glVertex3fv(boxv4);

glColor4f(0.0, 1.0, 0.0, ALPHA);
glVertex3fv(boxv1);
glVertex3fv(boxv5);
glVertex3fv(boxv6);
glVertex3fv(boxv2);

glEnd();

glColor3f(1.0, 1.0, 1.0);
glBegin(GL_LINES);

glVertex3fv(boxv0);
glVertex3fv(boxv1);

glVertex3fv(boxv1);
glVertex3fv(boxv2);

glVertex3fv(boxv2);
glVertex3fv(boxv3);

glVertex3fv(boxv3);
glVertex3fv(boxv0);

glVertex3fv(boxv4);
glVertex3fv(boxv5);

glVertex3fv(boxv5);
glVertex3fv(boxv6);

glVertex3fv(boxv6);
glVertex3fv(boxv7);

glVertex3fv(boxv7);
glVertex3fv(boxv4);

glVertex3fv(boxv0);
glVertex3fv(boxv4);

glVertex3fv(boxv1);
glVertex3fv(boxv5);

glVertex3fv(boxv2);
glVertex3fv(boxv6);

glVertex3fv(boxv3);
glVertex3fv(boxv7);

glEnd();
};//drawCube

void CubeView::draw() {
if (!valid()) {

glLoadIdentity(); glViewport(0,0,w(),h());
glOrtho(-10,10,-10,10,-20000,10000); glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

}

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix(); glTranslatef(xshift, yshift, 0);
glRotatef(hAng,0,1,0); glRotatef(vAng,1,0,0);
glScalef(float(size),float(size),float(size)); drawCube();
glPopMatrix();

};

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

104 Programming with FLUID

11.5.2 The CubeViewUI Class

We will completely construct a window to display and control the CubeView defined in the previous section
using FLUID.

Defining the CubeViewUI Class

Once you have started FLUID, the first step in defining a class is to create a new class within FLUID using
the New->Code->Class menu item. Name the class "CubeViewUI" and leave the subclass blank. We do
not need any inheritance for this window. You should see the new class declaration in the FLUID browser
window.

Figure 11.3: FLUID file for CubeView

Adding the Class Constructor

Click on the CubeViewUI class in the FLUID window and add a new method by selecting New->Code-
>Function/Method. The name of the function will also be CubeViewUI. FLUID will understands that
this will be the constructor for the class and will generate the appropriate code. Make sure you declare the
constructor public.

Then add a window to the CubeViewUI class. Highlight the name of the constructor in the FLUID browser
window and click on New->Group->Window. In a similar manner add the following to the CubeViewUI
constructor:

• A horizontal roller named hrot

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.5 A Short Tutorial 105

• A vertical roller named vrot

• A horizontal slider named xpan

• A vertical slider named ypan

• A horizontal value slider named zoom

None of these additions need be public. And they shouldn’t be unless you plan to expose them as part of
the interface for CubeViewUI.

When you are finished you should have something like this:

Figure 11.4: FLUID window containing CubeView demo

We will talk about the show() method that is highlighted shortly.

Adding the CubeView Widget

What we have is nice, but does little to show our cube. We have already defined the CubeView class and
we would like to show it within the CubeViewUI.

The CubeView class inherits the Fl_Gl_Window class, which is created in the same way as a Fl_Box
widget. Use New->Other->Box to add a square box to the main window. This will be no ordinary box,
however.

The Box properties window will appear. The key to letting CubeViewUI display CubeView is to enter
CubeView in the Class: text entry box. This tells FLUID that it is not an Fl_Box, but a similar widget with
the same constructor.

In the Extra Code: field enter #include "CubeView.h"

This #include is important, as we have just included CubeView as a member of CubeViewUI, so any
public CubeView methods are now available to CubeViewUI.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

106 Programming with FLUID

Figure 11.5: CubeView methods

Defining the Callbacks

Each of the widgets we defined before adding CubeView can have callbacks that call CubeView methods.
You can call an external function or put in a short amount of code in the Callback field of the widget panel.
For example, the callback for the ypan slider is:

cube->pany(((Fl_Slider *)o)->value());
cube->redraw();

We call cube->redraw() after changing the value to update the CubeView window. CubeView could
easily be modified to do this, but it is nice to keep this exposed in the case where you may want to do more
than one view change only redrawing once saves a lot of time.

There is no reason no wait until after you have added CubeView to enter these callbacks. FLUID assumes
you are smart enough not to refer to members or functions that don’t exist.

Adding a Class Method

You can add class methods within FLUID that have nothing to do with the GUI. An an example add a show
function so that CubeViewUI can actually appear on the screen.

Make sure the top level CubeViewUI is selected and select New->Code->Function/Method. Just use the
name show(). We don’t need a return value here, and since we will not be adding any widgets to this
method FLUID will assign it a return type of void.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.6 FLUID Reference 107

Figure 11.6: CubeView constructor

Once the new method has been added, highlight its name and select New->Code->Code. Enter the
method’s code in the code window.

11.5.3 Adding Constructor Initialization Code

If you need to add code to initialize class, for example setting initial values of the horizontal and vertical
angles in the CubeView, you can simply highlight the Constructor and select New->Code->Code. Add
any required code.

11.5.4 Generating the Code

Now that we have completely defined the CubeViewUI, we have to generate the code. There is one last
trick to ensure this all works. Open the preferences dialog from Edit->Preferences.

At the bottom of the preferences dialog box is the key: "Include Header from Code". Select that op-
tion and set your desired file extensions and you are in business. You can include the CubeViewUI.h (or
whatever extension you prefer) as you would any other C++ class.

11.6 FLUID Reference

The following sections describe each of the windows in FLUID.

11.6.1 The Widget Browser

The main window shows a menu bar and a scrolling browser of all the defined widgets. The name of the
.fl file being edited is shown in the window title.

The widgets are stored in a hierarchy. You can open and close a level by clicking the "triangle" at the left
of a widget. The leftmost widgets are the parents, and all the widgets listed below them are their children.
Parents don’t have to have any children.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

108 Programming with FLUID

The top level of the hierarchy is composed of functions and classes. Each of these will produce a single
C++ public function or class in the output .cxx file. Calling the function or instantiating the class will
create all of the child widgets.

The second level of the hierarchy contains the windows. Each of these produces an instance of class Fl_-
Window.

Below that are either widgets (subclasses of Fl_Widget) or groups of widgets (including other groups).
Plain groups are for layout, navigation, and resize purposes. Tab groups provide the well-known file-card
tab interface.

Widgets are shown in the browser by either their name (such as "main_panel" in the example), or by their
type and label (such as "Button "the green"").

You select widgets by clicking on their names, which highlights them (you can also select widgets from
any displayed window). You can select many widgets by dragging the mouse across them, or by using
Shift+Click to toggle them on and off. To select no widgets, click in the blank area under the last widget.
Note that hidden children may be selected even when there is no visual indication of this.

You open widgets by double-clicking on them, or (to open several widgets you have picked) by typing the
F1 key. A control panel will appear so you can change the widget(s).

11.6.2 Menu Items

The menu bar at the top is duplicated as a pop-up menu on any displayed window. The shortcuts for all the
menu items work in any window. The menu items are:

File/Open... (Ctrl+o)

Discards the current editing session and reads in a different .fl file. You are asked for confirmation
if you have changed the current file.

FLUID can also read .fd files produced by the Forms and XForms "fdesign" programs. It is best to
File/Merge them instead of opening them. FLUID does not understand everything in a .fd file, and
will print a warning message on the controlling terminal for all data it does not understand. You will
probably need to edit the resulting setup to fix these errors. Be careful not to save the file without
changing the name, as FLUID will write over the .fd file with its own format, which fdesign cannot
read!

File/Insert... (Ctrl+i)

Inserts the contents of another .fl file, without changing the name of the current .fl file. All the
functions (even if they have the same names as the current ones) are added, and you will have to use
cut/paste to put the widgets where you want.

File/Save (Ctrl+s)

Writes the current data to the .fl file. If the file is unnamed then FLUID will ask for a filename.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.6 FLUID Reference 109

File/Save As... (Ctrl+Shift+S)

Asks for a new filename and saves the file.

File/Write Code (Ctrl+Shift+C)

"Compiles" the data into a .cxx and .h file. These are exactly the same as the files you get when you
run FLUID with the -c switch.

The output file names are the same as the .fl file, with the leading directory and trailing ".fl" stripped,
and ".h" or ".cxx" appended.

File/Write Strings (Ctrl+Shift+W)

Writes a message file for all of the text labels defined in the current file.

The output file name is the same as the .fl file, with the leading directory and trailing ".fl" stripped,
and ".txt", ".po", or ".msg" appended depending on the Internationalization Mode.

File/Quit (Ctrl+q)

Exits FLUID. You are asked for confirmation if you have changed the current file.

Edit/Undo (Ctrl+z)

This isn’t implemented yet. You should do save often so you can recover from any mistakes you make.

Edit/Cut (Ctrl+x)

Deletes the selected widgets and all of their children. These are saved to a "clipboard" file and can be
pasted back into any FLUID window.

Edit/Copy (Ctrl+c)

Copies the selected widgets and all of their children to the "clipboard" file.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

110 Programming with FLUID

Edit/Paste (Ctrl+c)

Pastes the widgets from the clipboard file.

If the widget is a window, it is added to whatever function is selected, or contained in the current
selection.

If the widget is a normal widget, it is added to whatever window or group is selected. If none is, it is
added to the window or group that is the parent of the current selection.

To avoid confusion, it is best to select exactly one widget before doing a paste.

Cut/paste is the only way to change the parent of a widget.

Edit/Select All (Ctrl+a)

Selects all widgets in the same group as the current selection.

If they are all selected already then this selects all widgets in that group’s parent. Repeatedly typing
Ctrl+a will select larger and larger groups of widgets until everything is selected.

Edit/Open... (F1 or double click)

Displays the current widget in the attributes panel. If the widget is a window and it is not visible then
the window is shown instead.

Edit/Sort

Sorts the selected widgets into left to right, top to bottom order. You need to do this to make navigation
keys in FLTK work correctly. You may then fine-tune the sorting with "Earlier" and "Later". This does
not affect the positions of windows or functions.

Edit/Earlier (F2)

Moves all of the selected widgets one earlier in order among the children of their parent (if possible).
This will affect navigation order, and if the widgets overlap it will affect how they draw, as the later
widget is drawn on top of the earlier one. You can also use this to reorder functions, classes, and
windows within functions.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.6 FLUID Reference 111

Edit/Later (F3)

Moves all of the selected widgets one later in order among the children of their parent (if possible).

Edit/Group (F7)

Creates a new Fl_Group and make all the currently selected widgets children of it.

Edit/Ungroup (F8)

Deletes the parent group if all the children of a group are selected.

Edit/Overlays on/off (Ctrl+Shift+O)

Toggles the display of the red overlays off, without changing the selection. This makes it easier to see
box borders and how the layout looks. The overlays will be forced back on if you change the selection.

Edit/Project Settings... (Ctrl+p)

Displays the project settings panel. The output filenames control the extensions or names of the files
the are generated by FLUID. If you check the "Include .h from .cxx" button the code file will include
the header file automatically.

The internationalization options are described later in this chapter.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

112 Programming with FLUID

Figure 11.7: FLUID Preferences Window

Edit/GUI Settings... (Shift+Ctrl+p)

Displays the GUI settings panel. This panel is used to control the user interface settings.

New/Code/Function

Creates a new C function. You will be asked for a name for the function. This name should be a legal
C++ function template, without the return type. You can pass arguments which can be referred to by
code you type into the individual widgets.

If the function contains any unnamed windows, it will be declared as returning a Fl_Window pointer.
The unnamed window will be returned from it (more than one unnamed window is useless). If the
function contains only named windows, it will be declared as returning nothing (void).

It is possible to make the .cxx output be a self-contained program that can be compiled and executed.
This is done by deleting the function name so main(argc,argv) is used. The function will call
show() on all the windows it creates and then call Fl::run(). This can also be used to test resize
behavior or other parts of the user interface.

You can change the function name by double-clicking on the function.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.6 FLUID Reference 113

New/Window

Creates a new Fl_Window widget. The window is added to the currently selected function, or to the
function containing the currently selected item. The window will appear, sized to 100x100. You can
resize it to whatever size you require.

The widget panel will also appear and is described later in this chapter.

New/...

All other items on the New menu are subclasses of Fl_Widget. Creating them will add them to the
currently selected group or window, or the group or window containing the currently selected widget.
The initial dimensions and position are chosen by copying the current widget, if possible.

When you create the widget you will get the widget’s control panel, which is described later in this
chapter.

Layout/Align/...

Align all selected widgets to the first widget in the selection.

Layout/Space Evenly/...

Space all selected widgets evenly inside the selected space. Widgets will be sorted from first to last.

Layout/Make Same Size/...

Make all selected widgets the same size as the first selected widget.

Layout/Center in Group/...

Center all selected widgets relative to their parent widget

Layout/Grid... (Ctrl+g)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

114 Programming with FLUID

Displays the grid settings panel. This panel controls the grid that all widgets snap to when you move
and resize them, and for the "snap" which is how far a widget has to be dragged from its original
position to actually change.

Shell/Execute Command... (Alt+x)

Displays the shell command panel. The shell command is commonly used to run a ’make’ script to
compile the FLTK output.

Shell/Execute Again (Alt+g)

Run the shell command again.

Help/About FLUID

Pops up a panel showing the version of FLUID.

Help/On FLUID

Shows this chapter of the manual.

Help/Manual

Shows the contents page of the manual

11.6.3 The Widget Panel

When you double-click on a widget or a set of widgets you will get the "widget attribute panel".

When you change attributes using this panel, the changes are reflected immediately in the window. It is
useful to hit the "no overlay" button (or type Ctrl+Shift+O) to hide the red overlay so you can see the
widgets more accurately, especially when setting the box type.

If you have several widgets selected, they may have different values for the fields. In this case the value for
one of the widgets is shown. But if you change this value, all of the selected widgets are changed to the
new value.

Hitting "OK" makes the changes permanent. Selecting a different widget also makes the changes perma-
nent. FLUID checks for simple syntax errors such as mismatched parenthesis in any code before saving
any text.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.7 GUI Attributes 115

"Revert" or "Cancel" put everything back to when you last brought up the panel or hit OK. However in the
current version of FLUID, changes to "visible" attributes (such as the color, label, box) are not undone by
revert or cancel. Changes to code like the callbacks are undone, however.

Figure 11.8: The FLUID widget GUI attributes

11.7 GUI Attributes

Label (text field)

String to print next to or inside the button. You can put newlines into the string to make multiple lines.
The easiest way is by typing Ctrl+j.

Symbols can be added to the label using the at sign ("@").

Label (pull down menu)

How to draw the label. Normal, shadowed, engraved, and embossed change the appearance of the text.

Image

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

116 Programming with FLUID

The active image for the widget. Click on the Browse... button to pick an image file using the file
chooser.

Inactive

The inactive image for the widget. Click on the Browse... button to pick an image file using the file
chooser.

Alignment (buttons)

Where to draw the label. The arrows put it on that side of the widget, you can combine the to put it in
the corner. The "box" button puts the label inside the widget, rather than outside.

The clip button clips the label to the widget box, the wrap button wraps any text in the label, and the
text image button puts the text over the image instead of under the image.

Position (text fields)

The position fields show the current position and size of the widget box. Enter new values to move
and/or resize a widget.

Values (text fields)

The values and limits of the current widget. Depending on the type of widget, some or all of these
fields may be inactive.

Shortcut

The shortcut key to activate the widget. Click on the shortcut button and press any key sequence to set
the shortcut.

Attributes (buttons)

The Visible button controls whether the widget is visible (on) or hidden (off) initially. Don’t change
this for windows or for the immediate children of a Tabs group.

The Active button controls whether the widget is activated (on) or deactivated (off) initially. Most
widgets appear greyed out when deactivated.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.7 GUI Attributes 117

The Resizable button controls whether the window is resizeable. In addition all the size changes of
a window or group will go "into" the resizable child. If you have a large data display surrounded by
buttons, you probably want that data area to be resizable. You can get more complex behavior by
making invisible boxes the resizable widget, or by using hierarchies of groups. Unfortunately the only
way to test it is to compile the program. Resizing the FLUID window is not the same as what will
happen in the user program.

The Hotspot button causes the parent window to be positioned with that widget centered on the mouse.
This position is determined when the FLUID function is called, so you should call it immediately
before showing the window. If you want the window to hide and then reappear at a new position, you
should have your program set the hotspot itself just before show().

The Border button turns the window manager border on or off. On most window managers you will
have to close the window and reopen it to see the effect.

X Class (text field)

The string typed into here is passed to the X window manager as the class. This can change the icon or
window decorations. On most (all?) window managers you will have to close the window and reopen
it to see the effect.

Figure 11.9: The FLUID widget Style attributes

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

118 Programming with FLUID

11.7.1 Style Attributes

Label Font (pulldown menu)

Font to draw the label in. Ignored by symbols, bitmaps, and pixmaps. Your program can change the
actual font used by these "slots" in case you want some font other than the 16 provided.

Label Size (pulldown menu)

Pixel size (height) for the font to draw the label in. Ignored by symbols, bitmaps, and pixmaps. To see
the result without dismissing the panel, type the new number and then Tab.

Label Color (button)

Color to draw the label. Ignored by pixmaps (bitmaps, however, do use this color as the foreground
color).

Box (pulldown menu)

The boxtype to draw as a background for the widget.

Many widgets will work, and draw faster, with a "frame" instead of a "box". A frame does not draw
the colored interior, leaving whatever was already there visible. Be careful, as FLUID may draw this
ok but the real program may leave unwanted stuff inside the widget.

If a window is filled with child widgets, you can speed up redrawing by changing the window’s box
type to "NO_BOX". FLUID will display a checkerboard for any areas that are not colored in by boxes.
Note that this checkerboard is not drawn by the resulting program. Instead random garbage will be
displayed.

Down Box (pulldown menu)

The boxtype to draw when a button is pressed or for some parts of other widgets like scrollbars and
valuators.

Color (button)

The color to draw the box with.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.7 GUI Attributes 119

Select Color (button)

Some widgets will use this color for certain parts. FLUID does not always show the result of this: this
is the color buttons draw in when pushed down, and the color of input fields when they have the focus.

Text Font, Size, and Color

Some widgets display text, such as input fields, pull-down menus, and browsers.

Figure 11.10: The FLUID widget C++ attributes

11.7.2 C++ Attributes

Class

This is how you use your own subclasses of Fl_Widget. Whatever identifier you type in here will be
the class that is instantiated.

In addition, no #include header file is put in the .h file. You must provide a #include line as the
first line of the "Extra Code" which declares your subclass.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

120 Programming with FLUID

The class must be similar to the class you are spoofing. It does not have to be a subclass. It is sometimes
useful to change this to another FLTK class. Currently the only way to get a double-buffered window
is to change this field for the window to "Fl_Double_Window" and to add

#include <FL/Fl_Double_Window.h>

to the extra code.

Type (upper-right pulldown menu)

Some classes have subtypes that modify their appearance or behavior. You pick the subtype off of this
menu.

Name (text field)

Name of a variable to declare, and to store a pointer to this widget into. This variable will be of type
"<class>∗". If the name is blank then no variable is created.

You can name several widgets with "name[0]", "name[1]", "name[2]", etc. This will cause FLUID to
declare an array of pointers. The array is big enough that the highest number found can be stored. All
widgets that in the array must be the same type.

Public (button)

Controls whether the widget is publicly accessible. When embedding widgets in a C++ class, this
controls whether the widget is public or private in the class. Otherwise is controls whether the
widget is declared static or global (extern).

Extra Code (text fields)

These four fields let you type in literal lines of code to dump into the .h or .cxx files.

If the text starts with a # or the word extern then FLUID thinks this is an "include" line, and it is
written to the .h file. If the same include line occurs several times then only one copy is written.

All other lines are "code" lines. The current widget is pointed to by the local variable o. The window
being constructed is pointed to by the local variable w. You can also access any arguments passed to
the function here, and any named widgets that are before this one.

FLUID will check for matching parenthesis, braces, and quotes, but does not do much other error
checking. Be careful here, as it may be hard to figure out what widget is producing an error in the
compiler. If you need more than four lines you probably should call a function in your own .cxx
code.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.7 GUI Attributes 121

Callback (text field)

This can either be the name of a function, or a small snippet of code. If you enter anything other than
letters, numbers, and the underscore then FLUID treats it as code.

A name refers to a function in your own code. It must be declared as void
name(<class>∗,void∗).

A code snippet is inserted into a static function in the .cxx output file. The function prototype is
void name(class ∗o, void ∗v) so that you can refer to the widget as o and the user_-
data() as v. FLUID will check for matching parenthesis, braces, and quotes, but does not do much
other error checking. Be careful here, as it may be hard to figure out what widget is producing an error
in the compiler.

If the callback is blank then no callback is set.

User Data (text field)

This is a value for the user_data() of the widget. If blank the default value of zero is used. This
can be any piece of C code that can be cast to a void pointer.

Type (text field)

The void∗ in the callback function prototypes is replaced with this. You may want to use long for
old XForms code. Be warned that anything other than void∗ is not guaranteed to work! However on
most architectures other pointer types are ok, and long is usually ok, too.

When (pulldown menu)

When to do the callback. This can be Never, Changed, Release, or Enter Key. The value of Enter
Key is only useful for text input fields.

There are other rare but useful values for the when() field that are not in the menu. You should use
the extra code fields to put these values in.

No Change (button)

The No Change button means the callback is done on the matching event even if the data is not
changed.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

122 Programming with FLUID

11.8 Selecting and Moving Widgets

Double-clicking a window name in the browser will display it, if not displayed yet. From this display you
can select widgets, sets of widgets, and move or resize them. To close a window either double-click it or
type ESC.

To select a widget, click it. To select several widgets drag a rectangle around them. Holding down shift
will toggle the selection of the widgets instead.

You cannot pick hidden widgets. You also cannot choose some widgets if they are completely overlapped
by later widgets. Use the browser to select these widgets.

The selected widgets are shown with a red "overlay" line around them. You can move the widgets by
dragging this box. Or you can resize them by dragging the outer edges and corners. Hold down the Alt key
while dragging the mouse to defeat the snap-to-grid effect for fine positioning.

If there is a tab box displayed you can change which child is visible by clicking on the file tabs. The child
you pick is selected.

The arrow, tab, and shift+tab keys "navigate" the selection. Left, right, tab, or shift+tab move to the next
or previous widgets in the hierarchy. Hit the right arrow enough and you will select every widget in the
window. Up/down widgets move to the previous/next widgets that overlap horizontally. If the navigation
does not seem to work you probably need to "Sort" the widgets. This is important if you have input fields,
as FLTK uses the same rules when using arrow keys to move between input fields.

To "open" a widget, double click it. To open several widgets select them and then type F1 or pick
"Edit/Open" off the pop-up menu.

Type Ctrl+o to temporarily toggle the overlay off without changing the selection, so you can see the widget
borders.

You can resize the window by using the window manager border controls. FLTK will attempt to round the
window size to the nearest multiple of the grid size and makes it big enough to contain all the widgets (it
does this using illegal X methods, so it is possible it will barf with some window managers!). Notice that
the actual window in your program may not be resizable, and if it is, the effect on child widgets may be
different.

The panel for the window (which you get by double-clicking it) is almost identical to the panel for any
other Fl_Widget. There are three extra items:

11.9 Image Labels

The contents of the image files in the Image and Inactive text fields are written to the .cxx file. If many
widgets share the same image then only one copy is written. Since the image data is embedded in the
generated source code, you need only distribute the C++ code and not the image files themselves.

However, the filenames are stored in the .fl file so you will need the image files as well to read the .fl
file. Filenames are relative to the location of the .fl file and not necessarily the current directory. We
recommend you either put the images in the same directory as the .fl file, or use absolute path names.

Notes for All Image Types

FLUID runs using the default visual of your X server. This may be 8 bits, which will give you dithered
images. You may get better results in your actual program by adding the code "Fl::visual(FL_RGB)"
to your code right before the first window is displayed.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.9 Image Labels 123

All widgets with the same image on them share the same code and source X pixmap. Thus once you
have put an image on a widget, it is nearly free to put the same image on many other widgets.

If you edit an image at the same time you are using it in FLUID, the only way to convince FLUID to
read the image file again is to remove the image from all widgets that are using it or re-load the .fl
file.

Don’t rely on how FLTK crops images that are outside the widget, as this may change in future ver-
sions! The cropping of inside labels will probably be unchanged.

To more accurately place images, make a new "box" widget and put the image in that as the label.

XBM (X Bitmap) Files

FLUID reads X bitmap files which use C source code to define a bitmap. Sometimes they are stored
with the ".h" or ".bm" extension rather than the standard ".xbm" extension.

FLUID writes code to construct an Fl_Bitmap image and use it to label the widget. The ’1’ bits in the
bitmap are drawn using the label color of the widget. You can change this color in the FLUID widget
attributes panel. The ’0’ bits are transparent.

The program "bitmap" on the X distribution does an adequate job of editing bitmaps.

XPM (X Pixmap) Files

FLUID reads X pixmap files as used by the libxpm library. These files use C source code to define a
pixmap. The filenames usually have the ".xpm" extension.

FLUID writes code to construct an Fl_Pixmap image and use it to label the widget. The label color
of the widget is ignored, even for 2-color images that could be a bitmap. XPM files can mark a single
color as being transparent, and FLTK uses this information to generate a transparency mask for the
image.

We have not found any good editors for small iconic pictures. For pixmaps we have used XPaint and
the KDE icon editor.

BMP Files

FLUID reads Windows BMP image files which are often used in WIN32 applications for icons. FLUID
converts BMP files into (modified) XPM format and uses a Fl_BMP_Image image to label the widget.
Transparency is handled the same as for XPM files. All image data is uncompressed when written to
the source file, so the code may be much bigger than the .bmp file.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://home.worldonline.dk/~torsten/xpaint/index.html

124 Programming with FLUID

GIF Files

FLUID reads GIF image files which are often used in HTML documents to make icons. FLUID
converts GIF files into (modified) XPM format and uses a Fl_GIF_Image image to label the widget.
Transparency is handled the same as for XPM files. All image data is uncompressed when written to
the source file, so the code may be much bigger than the .gif file. Only the first image of an animated
GIF file is used.

JPEG Files

If FLTK is compiled with JPEG support, FLUID can read JPEG image files which are often used for
digital photos. FLUID uses a Fl_JPEG_Image image to label the widget, and writes uncompressed
RGB or grayscale data to the source file.

PNG (Portable Network Graphics) Files

If FLTK is compiled with PNG support, FLUID can read PNG image files which are often used in
HTML documents. FLUID uses a Fl_PNG_Image image to label the widget, and writes uncompressed
RGB or grayscale data to the source file. PNG images can provide a full alpha channel for partial
transparency, and FLTK supports this as best as possible on each platform.

11.10 Internationalization with FLUID

FLUID supports internationalization (I18N for short) of label strings used by widgets. The preferences
window (Ctrl+p) provides access to the I18N options.

11.10.1 I18N Methods

FLUID supports three methods of I18N: use none, use GNU gettext, and use POSIX catgets. The "use
none" method is the default and just passes the label strings as-is to the widget constructors.

The "GNU gettext" method uses GNU gettext (or a similar text-based I18N library) to retrieve a localized
string before calling the widget constructor.

The "POSIX catgets" method uses the POSIX catgets function to retrieve a numbered message from a
message catalog before calling the widget constructor.

11.10.2 Using GNU gettext for I18N

FLUID’s code support for GNU gettext is limited to calling a function or macro to retrieve the localized
label; you still need to call setlocale() and textdomain() or bindtextdomain() to select the
appropriate language and message file.

To use GNU gettext for I18N, open the preferences window and choose "GNU gettext" from the Use:
chooser. Two new input fields will then appear to control the include file and function/macro name to use
when retrieving the localized label strings.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

11.10 Internationalization with FLUID 125

Figure 11.11: Internationalization using GNU gettext

The #include field controls the header file to include for I18N; by default this is <libintl.h>, the standard
I18N file for GNU gettext.

The Function: field controls the function (or macro) that will retrieve the localized message; by default
the gettext function will be called.

11.10.3 Using POSIX catgets for I18N

FLUID’s code support for POSIX catgets allows you to use a global message file for all interfaces or a file
specific to each .fl file; you still need to call setlocale() to select the appropriate language.

To use POSIX catgets for I18N, open the preferences window and choose "POSIX catgets" from the Use:
chooser. Three new input fields will then appear to control the include file, catalog file, and set number for
retrieving the localized label strings.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

126 Programming with FLUID

Figure 11.12: Internationalization using POSIX catgets

The #include field controls the header file to include for I18N; by default this is <nl_types.h>, the standard
I18N file for POSIX catgets.

The File: field controls the name of the catalog file variable to use when retrieving localized messages;
by default the file field is empty which forces a local (static) catalog file to be used for all of the windows
defined in your .fl file.

The Set: field controls the set number in the catalog file. The default set is 1 and rarely needs to be changed.

11.11 Known limitations

Declaration Blocks can be used to temporarily block out already designed code using #if 0 and #endif
type construction. This will effectively avoid compilation of blocks of code. However, static code and data
generated by this segment (menu items, images, include statements, etc.) will still be generated and likely
cause compile-time warnings.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 12

Advanced FLTK

128 Advanced FLTK

This chapter explains advanced programming and design topics that will help you to get the most out of
FLTK.

12.1 Multithreading

FLTK supports multithreaded applications using a locking mechanism based on "pthreads". We do not pro-
vide a threading interface as part of the library. However a simple example how threads can be implemented
for all supported platforms can be found in test/threads.h and test/threads.cxx.

To use the locking mechanism, FLTK must be compiled with -enable-threads set during the
configure process. IDE-based versions of FLTK are automatically compiled with locking enabled
if possible.

In main(), call Fl::lock() before Fl::run() or Fl::wait() to start the runtime multithreading support for your
program. All callbacks and derived functions like handle() and draw() will now be properly locked:

int main() {
Fl::lock();
/* run thread */
while (Fl::wait() > 0) {

if (Fl::thread_message()) {
/* process your data */

}
}

}

You can now start as many threads as you like. From within a thread (other than the main thread) FLTK
calls must be wrapped with calls to Fl::lock() and Fl::unlock():

Fl::lock(); // avoid conflicting calls
... // your code here
Fl::unlock(); // allow other threads to access FLTK again

You can send messages from child threads to the main thread using Fl::awake(void∗ message):

void *msg; // "msg" is a pointer to your message
Fl::awake(msg); // send "msg" to main thread

A message can be anything you like. The main thread can retrieve the message by calling Fl::thread_-
message(). See example above.

You can also tell the main thread to call a function for you as soon as possible by using Fl::awake(Fl_-
Awake_Handler cb, void∗ userdata):

void do_something(void *userdata) {
// running with the main thread

}

// running in another thread
void *data; // "data" is a pointer to your user data
Fl::awake(do_something, data); // call something in main thread

FLTK supports multiple platforms, some of which allow only the main thread to handle system events and
open or close windows. The safe thing to do is to adhere to the following rules for threads on all operating
systems:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

12.1 Multithreading 129

• Don’t show() or hide() anything that contains widgets derived from Fl_Window, including di-
alogs, file choosers, subwindows or those using Fl_Gl_Window.

• Don’t call Fl::wait(), Fl::flush() or any related methods that will handle system messages

• Don’t start or cancel timers

• Don’t change window decorations or titles

• The make_current() method may or may not work well for regular windows, but should al-
ways work for a Fl_Gl_Window to allow for high speed rendering on graphics cards with multiple
pipelines

See also: Fl::awake(void∗ message), Fl::lock(), Fl::thread_message(), Fl::unlock().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

130 Advanced FLTK

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 13

Unicode and UTF-8 Support

132 Unicode and UTF-8 Support

This chapter explains how FLTK handles international text via Unicode and UTF-8.

Unicode support was only recently added to FLTK and is still incomplete. This chapter is Work in Progress,
reflecting the current state of Unicode support.

13.1 About Unicode, ISO 10646 and UTF-8

The summary of Unicode, ISO 10646 and UTF-8 given below is deliberately brief, and provides just
enough information for the rest of this chapter. For further information, please see:

• http://www.unicode.org

• http://www.iso.org

• http://en.wikipedia.org/wiki/Unicode

• http://www.cl.cam.ac.uk/∼mgk25/unicode.html

• http://www.apps.ietf.org/rfc/rfc3629.html

The Unicode Standard

The Unicode Standard was originally developed by a consortium of mainly US computer manufacturers
and developers of multi-lingual software. It has now become a defacto standard for character encoding,
and is supported by most of the major computing companies in the world.

Before Unicode, many different systems, on different platforms, had been developed for encoding charac-
ters for different languages, but no single encoding could satisfy all languages. Unicode provides access to
over 100,000 characters used in all the major languages written today, and is independent of platform and
language.

Unicode also provides higher-level concepts needed for text processing and typographic publishing sys-
tems, such as algorithms for sorting and comparing text, composite character and text rendering, right-to-
left and bi-directional text handling.

There are currently no plans to add this extra functionality to FLTK.

ISO 10646

The International Organisation for Standardization (ISO) had also been trying to develop a single unified
character set. Although both ISO and the Unicode Consortium continue to publish their own standards,
they have agreed to coordinate their work so that specific versions of the Unicode and ISO 10646 standards
are compatible with each other.

The international standard ISO 10646 defines the Universal Character Set (UCS) which contains the char-
acters required for almost all known languages. The standard also defines three different implementation
levels specifying how these characters can be combined.

There are currently no plans for handling the different implementation levels or the combining characters
in FLTK.

In UCS, characters have a unique numerical code and an official name, and are usually shown using ’U+’
and the code in hexadecimal, e.g. U+0041 is the "Latin capital letter A". The UCS characters U+0000 to
U+007F correspond to US-ASCII, and U+0000 to U+00FF correspond to ISO 8859-1 (Latin1).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://www.unicode.org
http://www.iso.org
http://en.wikipedia.org/wiki/Unicode
http://www.cl.cam.ac.uk/~mgk25/unicode.html
http://www.apps.ietf.org/rfc/rfc3629.html

13.2 Unicode in FLTK 133

ISO 10646 was originally designed to handle a 31-bit character set from U+00000000 to U+7FFFFFFF,
but the current idea is that 21-bits will be sufficient for all future needs, giving characters up to U+10FFFF.
The complete character set is sub-divided into planes. Plane 0, also known as the Basic Multilingual
Plane (BMP), ranges from U+0000 to U+FFFD and consists of the most commonly used characters from
previous encoding standards. Other planes contain characters for specialist applications.

Todo

Do we need this info about planes?

The UCS also defines various methods of encoding characters as a sequence of bytes. UCS-2 encodes
Unicode characters into two bytes, which is wasteful if you are only dealing with ASCII or Latin1 text, and
insufficient if you need characters above U+00FFFF. UCS-4 uses four bytes, which lets it handle higher
characters, but this is even more wasteful for ASCII or Latin1.

UTF-8

The Unicode standard defines various UCS Transformation Formats. UTF-16 and UTF-32 are based on
units of two and four bytes. UCS characters requiring more than 16-bits are encoded using "surrogate
pairs" in UTF-16.

UTF-8 encodes all Unicode characters into variable length sequences of bytes. Unicode characters in the
7-bit ASCII range map to the same value and are represented as a single byte, making the transformation
to Unicode quick and easy.

All UCS characters above U+007F are encoded as a sequence of several bytes. The top bits of the first byte
are set to show the length of the byte sequence, and subseqent bytes are always in the range 0x80 to 0x8F.
This combination provides some level of synchronisation and error detection.

Unicode range Byte sequences
U+00000000 - U+0000007F 0xxxxxxx
U+00000080 - U+000007FF 110xxxxx 10xxxxxx
U+00000800 - U+0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
U+00010000 - U+001FFFFF 11110xxx 10xxxxxx 10xxxxxx

10xxxxxx
U+00200000 - U+03FFFFFF 111110xx 10xxxxxx 10xxxxxx

10xxxxxx 10xxxxxx
U+04000000 - U+7FFFFFFF 1111110x 10xxxxxx 10xxxxxx

10xxxxxx 10xxxxxx 10xxxxxx

Moving from ASCII encoding to Unicode will allow all new FLTK applications to be easily internation-
alized and used all over the world. By choosing UTF-8 encoding, FLTK remains largely source-code
compatible to previous iteration of the library.

13.2 Unicode in FLTK

Todo

Work through the code and this documentation to harmonize the [OksiD] and [fltk2] functions.

FLTK will be entirely converted to Unicode using UTF-8 encoding. If a different encoding is required by
the underlying operating system, FLTK will convert the string as needed.

It is important to note that the initial implementation of Unicode and UTF-8 in FLTK involves three impor-
tant areas:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

134 Unicode and UTF-8 Support

• provision of Unicode character tables and some simple related functions;

• conversion of char∗ variables and function parameters from single byte per character representation
to UTF-8 variable length sequences;

• modifications to the display font interface to accept general Unicode character or UCS code numbers
instead of just ASCII or Latin1 characters.

The current implementation of Unicode / UTF-8 in FLTK will impose the following limitations:

• An implementation note in the [OksiD] code says that all functions are LIMITED to 24 bit Unicode
values, but also says that only 16 bits are really used under linux and win32. [Can we verify this?]

• The [fltk2] fl_utf8encode() and fl_utf8decode() functions are designed to handle Unicode characters
in the range U+000000 to U+10FFFF inclusive, which covers all UTF-16 characters, as specified in
RFC 3629. Note that the user must first convert UTF-16 surrogate pairs to UCS.

• FLTK will only handle single characters, so composed characters consisting of a base character and
floating accent characters will be treated as multiple characters;

• FLTK will only compare or sort strings on a byte by byte basis and not on a general Unicode character
basis;

• FLTK will not handle right-to-left or bi-directional text;

Todo

Verify 16/24 bit Unicode limit for different character sets? OksiD’s code appears limited to 16-bit
whereas the FLTK2 code appears to handle a wider set. What about illegal characters? See comments
in fl_utf8fromwc() and fl_utf8toUtf16().

13.3 Illegal Unicode and UTF8 sequences

Three pre-processor variables are defined in the source code that determine how fl_utf8decode() handles
illegal UTF8 sequences:

• if ERRORS_TO_CP1252 is set to 1 (the default), fl_utf8decode() will assume that a byte sequence
starting with a byte in the range 0x80 to 0x9f represents a Microsoft CP1252 character, and will
instead return the value of an equivalent UCS character. Otherwise, it will be processed as an illegal
byte value as described below.

• if STRICT_RFC3629 is set to 1 (not the default!) then UTF-8 sequences that correspond to illegal
UCS values are treated as errors. Illegal UCS values include those above U+10FFFF, or correspond-
ing to UTF-16 surrogate pairs. Illegal byte values are handled as described below.

• if ERRORS_TO_ISO8859_1 is set to 1 (the default), the illegal byte value is returned unchanged,
otherwise 0xFFFD, the Unicode REPLACEMENT CHARACTER, is returned instead.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

13.4 FLTK Unicode and UTF8 functions 135

fl_utf8encode() is less strict, and only generates the UTF-8 sequence for 0xFFFD, the Unicode REPLACE-
MENT CHARACTER, if it is asked to encode a UCS value above U+10FFFF.

Many of the [fltk2] functions below use fl_utf8decode() and fl_utf8encode() in their own implementation,
and are therefore somewhat protected from bad UTF-8 sequences.

The [OksiD] fl_utf8len() function assumes that the byte it is passed is the first byte in a UTF-8 sequence,
and returns the length of the sequence. Trailing bytes in a UTF-8 sequence will return -1.

• WARNING: fl_utf8len() can not distinguish between single bytes representing Microsoft CP1252
characters 0x80-0x9f and those forming part of a valid UTF-8 sequence. You are strongly advised
not to use fl_utf8len() in your own code unless you know that the byte sequence contains only valid
UTF-8 sequences.

• WARNING: Some of the [OksiD] functions below use still use fl_utf8len() in their implementations.
These may need further validation.

Please see the individual function description for further details about error handling and return values.

13.4 FLTK Unicode and UTF8 functions

This section currently provides a brief overview of the functions. For more details, consult the main text
for each function via its link.

int fl_utf8locale() FLTK2

fl_utf8locale() returns true if the "locale" seems to indicate that UTF-8 encoding is used.

It is highly recommended that your change your system so this does return true!

int fl_utf8test(const char ∗src, unsigned len) FLTK2

fl_utf8test() examines the first len bytes of src. It returns 0 if there are any illegal UTF-8
sequences; 1 if src contains plain ASCII or if len is zero; or 2, 3 or 4 to indicate the range of
Unicode characters found.

int fl_utf_nb_char(const unsigned char ∗buf, int len) OksiD

Returns the number of UTF-8 character in the first len bytes of buf.

int fl_unichar_to_utf8_size(Fl_Unichar)

int fl_utf8bytes(unsigned ucs)

Returns the number of bytes needed to encode ucs in UTF-8.

int fl_utf8len(char c) OksiD

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

136 Unicode and UTF-8 Support

If c is a valid first byte of a UTF-8 encoded character sequence, fl_utf8len() will return the
number of bytes in that sequence. It returns -1 if c is not a valid first byte.

unsigned int fl_nonspacing(unsigned int ucs) OksiD

Returns true if ucs is a non-spacing character. [What are non-spacing characters?]

const char∗ fl_utf8back(const char ∗p, const char ∗start, const char ∗end) FLTK2

const char∗ fl_utf8fwd(const char ∗p, const char ∗start, const char ∗end) FLTK2

If p already points to the start of a UTF-8 character sequence, these functions will return p. Otherwise
fl_utf8back() searches backwards from p and fl_utf8fwd() searches forwards from p, within
the start and end limits, looking for the start of a UTF-8 character.

unsigned int fl_utf8decode(const char ∗p, const char ∗end, int ∗len) FLTK2

int fl_utf8encode(unsigned ucs, char ∗buf) FLTK2

fl_utf8decode() attempts to decode the UTF-8 character that starts at p and may not extend past
end. It returns the Unicode value, and the length of the UTF-8 character sequence is returned via
the len argument. fl_utf8encode() writes the UTF-8 encoding of ucs into buf and returns the
number of bytes in the sequence. See the main documentation for the treatment of illegal Unicode and
UTF-8 sequences.

unsigned int fl_utf8froma(char ∗dst, unsigned dstlen, const char ∗src, unsigned srclen) FLTK2

unsigned int fl_utf8toa(const char ∗src, unsigned srclen, char ∗dst, unsigned dstlen) FLTK2

fl_utf8froma() converts a character string containing single bytes per character (i.e. ASCII or
ISO-8859-1) into UTF-8. If the src string contains only ASCII characters, the return value will be
the same as srclen.

fl_utf8toa() converts a string containing UTF-8 characters into single byte characters. UTF-8
characters do not correspond to ASCII or ISO-8859-1 characters below 0xFF are replaced with ’?’.

Both functions return the number of bytes that would be written, not counting the null terminator.
destlen provides a means of limiting the number of bytes written, so setting destlen to zero is a
means of measuring how much storage would be needed before doing the real conversion.

char∗ fl_utf2mbcs(const char ∗src) OksiD

converts a UTF-8 string to a local multi-byte character string. [More info required here!]

unsigned int fl_utf8fromwc(char ∗dst, unsigned dstlen, const wchar_t ∗src, unsigned srclen) FLTK2

unsigned int fl_utf8towc(const char ∗src, unsigned srclen, wchar_t ∗dst, unsigned dstlen) FLTK2

unsigned int fl_utf8toUtf16(const char ∗src, unsigned srclen, unsigned short ∗dst, unsigned dstlen) FLTK2

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

13.4 FLTK Unicode and UTF8 functions 137

These routines convert between UTF-8 and wchar_t or "wide character" strings. The difficulty lies
in the fact sizeof(wchar_t) is 2 on Windows and 4 on Linux and most other systems. There-
fore some "wide characters" on Windows may be represented as "surrogate pairs" of more than one
wchar_t.

fl_utf8fromwc() converts from a "wide character" string to UTF-8. Note that srclen is the
number of wchar_t elements in the source string and on Windows and this might be larger than the
number of characters. dstlen specifies the maximum number of bytes to copy, including the null
terminator.

fl_utf8towc() converts a UTF-8 string into a "wide character" string. Note that on Windows, some
"wide characters" might result in "surrogate pairs" and therefore the return value might be more than
the number of characters. dstlen specifies the maximum number of wchar_t elements to copy,
including a zero terminating element. [Is this all worded correctly?]

fl_utf8toUtf16() converts a UTF-8 string into a "wide character" string using UTF-16 encoding
to handle the "surrogate pairs" on Windows. dstlen specifies the maximum number of wchar_t
elements to copy, including a zero terminating element. [Is this all worded correctly?]

These routines all return the number of elements that would be required for a full conversion of the
src string, including the zero terminator. Therefore setting dstlen to zero is a way of measuring
how much storage would be needed before doing the real conversion.

unsigned int fl_utf8from_mb(char ∗dst, unsigned dstlen, const char ∗src, unsigned srclen) FLTK2

unsigned int fl_utf8to_mb(const char ∗src, unsigned srclen, char ∗dst, unsigned dstlen) FLTK2

These functions convert between UTF-8 and the locale-specific multi-byte encodings used on some
systems for filenames, etc. If fl_utf8locale() returns true, these functions don’t do anything useful. [Is
this all worded correctly?]

int fl_tolower(unsigned int ucs) OksiD

int fl_toupper(unsigned int ucs) OksiD

int fl_utf_tolower(const unsigned char ∗str, int len, char ∗buf) OksiD

int fl_utf_toupper(const unsigned char ∗str, int len, char ∗buf) OksiD

fl_tolower() and fl_toupper() convert a single Unicode character from upper to lower case,
and vice versa. fl_utf_tolower() and fl_utf_toupper() convert a string of bytes, some of
which may be multi-byte UTF-8 encodings of Unicode characters, from upper to lower case, and vice
versa.

Warning: to be safe, buf length must be at least 3∗len [for 16-bit Unicode]

int fl_utf_strcasecmp(const char ∗s1, const char ∗s2) OksiD

int fl_utf_strncasecmp(const char ∗s1, const char ∗s2, int n) OksiD

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

138 Unicode and UTF-8 Support

fl_utf_strcasecmp() is a UTF-8 aware string comparison function that converts the strings to
lower case Unicode as part of the comparison. flt_utf_strncasecmp() only compares the first
n characters [bytes?]

13.5 FLTK Unicode versions of system calls

• int fl_access(const char∗ f, int mode) OksiD

• int fl_chmod(const char∗ f, int mode) OksiD

• int fl_execvp(const char∗ file, char∗ const∗ argv) OksiD

• FILE∗ fl_fopen(cont char∗ f, const char∗ mode) OksiD

• char∗ fl_getcwd(char∗ buf, int maxlen) OksiD

• char∗ fl_getenv(const char∗ name) OksiD

• char fl_make_path(const char∗ path) - returns char ? OksiD

• void fl_make_path_for_file(const char∗ path) OksiD

• int fl_mkdir(const char∗ f, int mode) OksiD

• int fl_open(const char∗ f, int o, ...) OksiD

• int fl_rename(const char∗ f, const char∗ t) OksiD

• int fl_rmdir(const char∗ f) OksiD

• int fl_stat(const char∗ path, struct stat∗ buffer) OksiD

• int fl_system(const char∗ f) OksiD

• int fl_unlink(const char∗ f) OksiD

TODO:

• more doc on unicode, add links

• write something about filename encoding on OS X...

• explain the fl_utf8_... commands

• explain issues with Fl_Preferences

• why FLTK has no Fl_String class

DONE:

• initial transfer of the Ian/O’ksi’D patch

• adapted Makefiles and IDEs for available platforms

• hacked some Unicode keyboard entry for OS X

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

13.5 FLTK Unicode versions of system calls 139

ISSUES:

• IDEs:

– Makefile support: tested on Fedora Core 5 and OS X, but heaven knows on which platforms
this may fail

– Xcode: tested, seems to be working (but see comments below on OS X)

– VisualC (VC6): tested, test/utf8 works, but may have had some issues during merge. Some
additional work needed (imm32.lib)

– VisualStudio2005: tested, test/utf8 works, some addtl. work needed (imm32.lib)

– VisualCNet: sorry, I have no longer access to that IDE

– Borland and other compiler: sorry, I can’t update those

• Platforms:

– you will encounter problems on all platforms!

– X11: many characters are missing, but that may be related to bad fonts on my machine. I also
could not do any keyboard tests yet. Rendering seems to generally work ok.

– Win32: US and German keyboard worked ok, but no compositing was tested. Rendering looks
pretty good.

– OS X: redering looks good. Keyboard is completely messed up, even in US setting (with Alt
key)

– all: while merging I have seen plenty of places that are not entirley utf8-safe, particularly Fl_-
Input, Fl_Text_Editor, and Fl_Help_View. Keycodes from the keyboard conflict with Unicode
characters. Right-to-left rendered text can not be marked or edited, and probably much more.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

140 Unicode and UTF-8 Support

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 14

FLTK Enumerations

142 FLTK Enumerations

Note:

This file is not actively maintained any more, but is left here as a reference, until the doxygen docu-
mentation is completed.

See also:

FL/Enumerations.H.

This appendix lists the enumerations provided in the <FL/Enumerations.H> header file, organized by
section. Constants whose value are zero are marked with "(0)", this is often useful to know when program-
ming.

14.1 Version Numbers

The FLTK version number is stored in a number of compile-time constants:

• FL_MAJOR_VERSION - The major release number, currently 1.

• FL_MINOR_VERSION - The minor release number, currently 3.

• FL_PATCH_VERSION - The patch release number, currently 0.

• FL_VERSION - A combined floating-point version number for the major, minor, and patch release
numbers, currently 1.0300.

14.2 Events

Events are identified by an Fl_Event enumeration value. The following events are currently defined:

• FL_NO_EVENT - No event (or an event fltk does not understand) occurred (0).

• FL_PUSH - A mouse button was pushed.

• FL_RELEASE - A mouse button was released.

• FL_ENTER - The mouse pointer entered a widget.

• FL_LEAVE - The mouse pointer left a widget.

• FL_DRAG - The mouse pointer was moved with a button pressed.

• FL_FOCUS - A widget should receive keyboard focus.

• FL_UNFOCUS - A widget loses keyboard focus.

• FL_KEYBOARD - A key was pressed.

• FL_CLOSE - A window was closed.

• FL_MOVE - The mouse pointer was moved with no buttons pressed.

• FL_SHORTCUT - The user pressed a shortcut key.

• FL_DEACTIVATE - The widget has been deactivated.

• FL_ACTIVATE - The widget has been activated.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

14.3 Callback "When" Conditions 143

• FL_HIDE - The widget has been hidden.

• FL_SHOW - The widget has been shown.

• FL_PASTE - The widget should paste the contents of the clipboard.

• FL_SELECTIONCLEAR - The widget should clear any selections made for the clipboard.

• FL_MOUSEWHEEL - The horizontal or vertical mousewheel was turned.

• FL_DND_ENTER - The mouse pointer entered a widget dragging data.

• FL_DND_DRAG - The mouse pointer was moved dragging data.

• FL_DND_LEAVE - The mouse pointer left a widget still dragging data.

• FL_DND_RELEASE - Dragged data is about to be dropped.

14.3 Callback "When" Conditions

The following constants determine when a callback is performed:

• FL_WHEN_NEVER - Never call the callback (0).

• FL_WHEN_CHANGED - Do the callback only when the widget value changes.

• FL_WHEN_NOT_CHANGED - Do the callback whenever the user interacts with the widget.

• FL_WHEN_RELEASE - Do the callback when the button or key is released and the value changes.

• FL_WHEN_ENTER_KEY - Do the callback when the user presses the ENTER key and the value
changes.

• FL_WHEN_RELEASE_ALWAYS - Do the callback when the button or key is released, even if the
value doesn’t change.

• FL_WHEN_ENTER_KEY_ALWAYS - Do the callback when the user presses the ENTER key, even
if the value doesn’t change.

14.4 Fl::event_button() Values

The following constants define the button numbers for FL_PUSH and FL_RELEASE events:

• FL_LEFT_MOUSE - the left mouse button

• FL_MIDDLE_MOUSE - the middle mouse button

• FL_RIGHT_MOUSE - the right mouse button

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

144 FLTK Enumerations

14.5 Fl::event_key() Values

The following constants define the non-ASCII keys on the keyboard for FL_KEYBOARD and FL_-
SHORTCUT events:

• FL_Button - A mouse button; use Fl_Button + n for mouse button n.

• FL_BackSpace - The backspace key.

• FL_Tab - The tab key.

• FL_Enter - The enter key.

• FL_Pause - The pause key.

• FL_Scroll_Lock - The scroll lock key.

• FL_Escape - The escape key.

• FL_Home - The home key.

• FL_Left - The left arrow key.

• FL_Up - The up arrow key.

• FL_Right - The right arrow key.

• FL_Down - The down arrow key.

• FL_Page_Up - The page-up key.

• FL_Page_Down - The page-down key.

• FL_End - The end key.

• FL_Print - The print (or print-screen) key.

• FL_Insert - The insert key.

• FL_Menu - The menu key.

• FL_Num_Lock - The num lock key.

• FL_KP - One of the keypad numbers; use FL_KP + n for number n.

• FL_KP_Enter - The enter key on the keypad.

• FL_F - One of the function keys; use FL_F + n for function key n.

• FL_Shift_L - The lefthand shift key.

• FL_Shift_R - The righthand shift key.

• FL_Control_L - The lefthand control key.

• FL_Control_R - The righthand control key.

• FL_Caps_Lock - The caps lock key.

• FL_Meta_L - The left meta/Windows key.

• FL_Meta_R - The right meta/Windows key.

• FL_Alt_L - The left alt key.

• FL_Alt_R - The right alt key.

• FL_Delete - The delete key.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

14.6 Fl::event_state() Values 145

14.6 Fl::event_state() Values

The following constants define bits in the Fl::event_state() value:

• FL_SHIFT - One of the shift keys is down.

• FL_CAPS_LOCK - The caps lock is on.

• FL_CTRL - One of the ctrl keys is down.

• FL_ALT - One of the alt keys is down.

• FL_NUM_LOCK - The num lock is on.

• FL_META - One of the meta/Windows keys is down.

• FL_COMMAND - An alias for FL_CTRL on WIN32 and X11, or FL_META on MacOS X.

• FL_SCROLL_LOCK - The scroll lock is on.

• FL_BUTTON1 - Mouse button 1 is pushed.

• FL_BUTTON2 - Mouse button 2 is pushed.

• FL_BUTTON3 - Mouse button 3 is pushed.

• FL_BUTTONS - Any mouse button is pushed.

• FL_BUTTON(n) - Mouse button n (where n > 0) is pushed.

14.7 Alignment Values

The following constants define bits that can be used with Fl_Widget::alighn() to control the positioning of
the label:

• FL_ALIGN_CENTER - The label is centered (0).

• FL_ALIGN_TOP - The label is top-aligned.

• FL_ALIGN_BOTTOM - The label is bottom-aligned.

• FL_ALIGN_LEFT - The label is left-aligned.

• FL_ALIGN_RIGHT - The label is right-aligned.

• FL_ALIGN_CLIP - The label is clipped to the widget.

• FL_ALIGN_WRAP - The label text is wrapped as needed.

• FL_ALIGN_TOP_LEFT

• FL_ALIGN_TOP_RIGHT

• FL_ALIGN_BOTTOM_LEFT

• FL_ALIGN_BOTTOM_RIGHT

• FL_ALIGN_LEFT_TOP

• FL_ALIGN_RIGHT_TOP

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

146 FLTK Enumerations

• FL_ALIGN_LEFT_BOTTOM

• FL_ALIGN_RIGHT_BOTTOM

• FL_ALIGN_INSIDE - ’or’ this with other values to put label inside the widget.

14.8 Fonts

The following constants define the standard FLTK fonts:

• FL_HELVETICA - Helvetica (or Arial) normal (0).

• FL_HELVETICA_BOLD - Helvetica (or Arial) bold.

• FL_HELVETICA_ITALIC - Helvetica (or Arial) oblique.

• FL_HELVETICA_BOLD_ITALIC - Helvetica (or Arial) bold-oblique.

• FL_COURIER - Courier normal.

• FL_COURIER_BOLD - Courier bold.

• FL_COURIER_ITALIC - Courier italic.

• FL_COURIER_BOLD_ITALIC - Courier bold-italic.

• FL_TIMES - Times roman.

• FL_TIMES_BOLD - Times bold.

• FL_TIMES_ITALIC - Times italic.

• FL_TIMES_BOLD_ITALIC - Times bold-italic.

• FL_SYMBOL - Standard symbol font.

• FL_SCREEN - Default monospaced screen font.

• FL_SCREEN_BOLD - Default monospaced bold screen font.

• FL_ZAPF_DINGBATS - Zapf-dingbats font.

14.9 Colors

The Fl_Color enumeration type holds a FLTK color value. Colors are either 8-bit indexes into a virtual
colormap or 24-bit RGB color values. Color indices occupy the lower 8 bits of the value, while RGB
colors occupy the upper 24 bits, for a byte organization of RGBI.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

14.9 Colors 147

14.9.1 Color Constants

Constants are defined for the user-defined foreground and background colors, as well as specific colors and
the start of the grayscale ramp and color cube in the virtual colormap. Inline functions are provided to
retrieve specific grayscale, color cube, or RGB color values.

The following color constants can be used to access the user-defined colors:

• FL_BACKGROUND_COLOR - the default background color

• FL_BACKGROUND2_COLOR - the default background color for text, list, and valuator widgets

• FL_FOREGROUND_COLOR - the default foreground color (0) used for labels and text

• FL_INACTIVE_COLOR - the inactive foreground color

• FL_SELECTION_COLOR - the default selection/highlight color

The following color constants can be used to access the colors from the FLTK standard color cube:

• FL_BLACK

• FL_BLUE

• FL_CYAN

• FL_DARK_BLUE

• FL_DARK_CYAN

• FL_DARK_GREEN

• FL_DARK_MAGENTA

• FL_DARK_RED

• FL_DARK_YELLOW

• FL_GREEN

• FL_MAGENTA

• FL_RED

• FL_WHITE

• FL_YELLOW

The following are named values within the standard grayscale:

• FL_GRAY0

• FL_DARK3

• FL_DARK2

• FL_DARK1

• FL_LIGHT1

• FL_LIGHT2

• FL_LIGHT3

The inline methods for getting a grayscale, color cube, or RGB color value are described in the Colors
section of the Drawing Things in FLTK chapter.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

148 FLTK Enumerations

14.10 Cursors

The following constants define the mouse cursors that are available in FLTK. The double-headed arrows
are bitmaps provided by FLTK on X, the others are provided by system-defined cursors.

• FL_CURSOR_DEFAULT - the default cursor, usually an arrow (0)

• FL_CURSOR_ARROW - an arrow pointer

• FL_CURSOR_CROSS - crosshair

• FL_CURSOR_WAIT - watch or hourglass

• FL_CURSOR_INSERT - I-beam

• FL_CURSOR_HAND - hand (uparrow on MSWindows)

• FL_CURSOR_HELP - question mark

• FL_CURSOR_MOVE - 4-pointed arrow

• FL_CURSOR_NS - up/down arrow

• FL_CURSOR_WE - left/right arrow

• FL_CURSOR_NWSE - diagonal arrow

• FL_CURSOR_NESW - diagonal arrow

• FL_CURSOR_NONE - invisible

14.11 FD "When" Conditions

• FL_READ - Call the callback when there is data to be read.

• FL_WRITE - Call the callback when data can be written without blocking.

• FL_EXCEPT - Call the callback if an exception occurs on the file.

14.12 Damage Masks

The following damage mask bits are used by the standard FLTK widgets:

• FL_DAMAGE_CHILD - A child needs to be redrawn.

• FL_DAMAGE_EXPOSE - The window was exposed.

• FL_DAMAGE_SCROLL - The Fl_Scroll widget was scrolled.

• FL_DAMAGE_OVERLAY - The overlay planes need to be redrawn.

• FL_DAMAGE_USER1 - First user-defined damage bit.

• FL_DAMAGE_USER2 - Second user-defined damage bit.

• FL_DAMAGE_ALL - Everything needs to be redrawn.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 15

GLUT Compatibility

150 GLUT Compatibility

This appendix describes the GLUT compatibility header file supplied with FLTK.

FLTK’s GLUT compatibility is based on the original GLUT 3.7 and the follow-on FreeGLUT 2.4.0 li-
braries.

15.1 Using the GLUT Compatibility Header File

You should be able to compile existing GLUT source code by including <FL/glut.H> instead of
<GL/glut.h>. This can be done by editing the source, by changing the -I switches to the compiler, or
by providing a symbolic link from GL/glut.h to FL/glut.H.

All files calling GLUT procedures must be compiled with C++. You may have to alter them slightly to get
them to compile without warnings, and you may have to rename them to get make to use the C++ compiler.

You must link with the FLTK library. Most of FL/glut.H is inline functions. You should take a look at it
(and maybe at test/glpuzzle.cxx in the FLTK source) if you are having trouble porting your GLUT
program.

This has been tested with most of the demo programs that come with the GLUT and FreeGLUT distribu-
tions.

15.2 Known Problems

The following functions and/or arguments to functions are missing, and you will have to replace them or
comment them out for your code to compile:

• glutGet(GLUT_ELAPSED_TIME)

• glutGet(GLUT_SCREEN_HEIGHT_MM)

• glutGet(GLUT_SCREEN_WIDTH_MM)

• glutGet(GLUT_WINDOW_NUM_CHILDREN)

• glutInitDisplayMode(GLUT_LUMINANCE)

• glutLayerGet(GLUT_HAS_OVERLAY)

• glutLayerGet(GLUT_LAYER_IN_USE)

• glutPushWindow()

• glutSetColor(), glutGetColor(), glutCopyColormap()

• glutVideoResize() missing.

• glutWarpPointer()

• glutWindowStatusFunc()

• Spaceball, buttonbox, dials, and tablet functions

Most of the symbols/enumerations have different values than GLUT uses. This will break code that relies
on the actual values. The only symbols guaranteed to have the same values are true/false pairs like GLUT_-
DOWN and GLUT_UP, mouse buttons GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON, GLUT_-
RIGHT_BUTTON, and GLUT_KEY_F1 thru GLUT_KEY_F12.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

15.3 Mixing GLUT and FLTK Code 151

The strings passed as menu labels are not copied.

glutPostRedisplay() does not work if called from inside a display function. You must use
glutIdleFunc() if you want your display to update continuously.

glutSwapBuffers() does not work from inside a display function. This is on purpose, because FLTK
swaps the buffers for you.

glutUseLayer() does not work well, and should only be used to initialize transformations inside a
resize callback. You should redraw overlays by using glutOverlayDisplayFunc().

Overlays are cleared before the overlay display function is called. glutLayerGet(GLUT_OVERLAY_-
DAMAGED) always returns true for compatibility with some GLUT overlay programs. You must rewrite
your code so that gl_color() is used to choose colors in an overlay, or you will get random overlay
colors.

glutSetCursor(GLUT_CURSOR_FULL_CROSSHAIR) just results in a small crosshair.

The fonts used by glutBitmapCharacter() and glutBitmapWidth() may be different.

glutInit(argc,argv) will consume different switches than GLUT does. It accepts the switches
recognized by Fl::args(), and will accept any abbreviation of these switches (such as "-di" for "-display").

15.3 Mixing GLUT and FLTK Code

You can make your GLUT window a child of a Fl_Window with the following scheme. The biggest trick is
that GLUT insists on a call to show() the window at the point it is created, which means the Fl_Window
parent window must already be shown.

• Don’t call glutInit().

• Create your Fl_Window, and any FLTK widgets. Leave a blank area in the window for your GLUT
window.

• show() the Fl_Window. Perhaps call show(argc,argv).

• Call window->begin() so that the GLUT window will be automatically added to it.

• Use glutInitWindowSize() and glutInitWindowPosition() to set the location in the
parent window to put the GLUT window.

• Put your GLUT code next. It probably does not need many changes. Call window->end()
immediately after the glutCreateWindow()!

• You can call either glutMainLoop(), Fl::run(), or loop calling Fl::wait() to run the program.

15.4 class Fl_Glut_Window

15.4.1 Class Hierarchy

Fl_Gl_Window
|
+----Fl_Glut_Window

15.4.2 Include Files

#include <FL/glut.H>

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

152 GLUT Compatibility

15.4.3 Description

Each GLUT window is an instance of this class. You may find it useful to manipulate instances directly
rather than use GLUT window id’s. These may be created without opening the display, and thus can fit
better into FLTK’s method of creating windows.

The current GLUT window is available in the global variable glut_window.

new Fl_Glut_Window(...) is the same as glutCreateWindow() except it does not show()
the window or make the window current.

window->make_current() is the same as glutSetWindow(number). If the window has not
had show() called on it yet, some functions that assumme an OpenGL context will not work. If you do
show() the window, call make_current() again to set the context.

∼Fl_Glut_Window() is the same as glutDestroyWindow().

15.4.4 Members

The Fl_Glut_Window class contains several public members that can be altered directly:

member description
display A pointer to the function to call to draw the

normal planes.
entry A pointer to the function to call when the mouse

moves into or out of the window.
keyboard A pointer to the function to call when a regular

key is pressed.
menu[3] The menu to post when one of the mouse buttons

is pressed.
mouse A pointer to the function to call when a button is

pressed or released.
motion A pointer to the function to call when the mouse

is moved with a button down.
overlaydisplay A pointer to the function to call to draw the

overlay planes.
passivemotion A pointer to the function to call when the mouse

is moved with no buttons down.
reshape A pointer to the function to call when the window

is resized.
special A pointer to the function to call when a special

key is pressed.
visibility A pointer to the function to call when the window

is iconified or restored (made visible.)

15.4.5 Methods

Fl_Glut_Window::Fl_Glut_Window(int x, int y, int w, int h, const char ∗title = 0)

Fl_Glut_Window::Fl_Glut_Window(int w, int h, const char ∗title = 0)

The first constructor takes 4 int arguments to create the window with a preset position and size. The
second constructor with 2 arguments will create the window with a preset size, but the window manager
will choose the position according to it’s own whims.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

15.4 class Fl_Glut_Window 153

virtual Fl_Glut_Window::∼Fl_Glut_Window()

Destroys the GLUT window.

void Fl_Glut_Window::make_current()

Switches all drawing functions to the GLUT window.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

154 GLUT Compatibility

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 16

Forms Compatibility

156 Forms Compatibility

This appendix describes the Forms compatibility included with FLTK.

Warning: The Forms compatility is deprecated and no longer maintained in FLTK1, and is likely to be
removed completely after the next official release.

16.1 Importing Forms Layout Files

FLUID can read the .fd files put out by all versions of Forms and XForms fdesign. However, it will
mangle them a bit, but it prints a warning message about anything it does not understand. FLUID cannot
write fdesign files, so you should save to a new name so you don’t write over the old one.

You will need to edit your main code considerably to get it to link with the output from FLUID. If
you are not interested in this you may have more immediate luck with the forms compatibility header,
<FL/forms.H>.

16.2 Using the Compatibility Header File

You should be able to compile existing Forms or XForms source code by changing the include directory
switch to your compiler so that the forms.h file supplied with FLTK is included. The forms.h file sim-
ply pulls in <FL/forms.H> so you don’t need to change your source code. Take a look at <FL/forms.H>
to see how it works, but the basic trick is lots of inline functions. Most of the XForms demo programs work
without changes.

You will also have to compile your Forms or XForms program using a C++ compiler. The FLTK library
does not provide C bindings or header files.

Although FLTK was designed to be compatible with the GL Forms library (version 0.3 or so), XForms has
bloated severely and it’s interface is X-specific. Therefore, XForms compatibility is no longer a goal of
FLTK. Compatibility was limited to things that were free, or that would add code that would not be linked
in if the feature is unused, or that was not X-specific.

To use any new features of FLTK, you should rewrite your code to not use the inline functions and instead
use "pure" FLTK. This will make it a lot cleaner and make it easier to figure out how to call the FLTK
functions. Unfortunately this conversion is harder than expected and even Digital Domain’s inhouse code
still uses forms.H a lot.

16.3 Problems You Will Encounter

Many parts of XForms use X-specific structures like XEvent in their interface. I did not emulate these!
Unfortunately these features (such as the "canvas" widget) are needed by most large programs. You will
need to rewrite these to use FLTK subclasses.

Fl_Free widgets emulate the old Forms "free" widget. It may be useful for porting programs that change
the handle() function on widgets, but you will still need to rewrite things.

Fl_Timer widgets are provided to emulate the XForms timer. These work, but are quite inefficient and
inaccurate compared to using Fl::add_timeout().

All instance variables are hidden. If you directly refer to the x, y, w, h, label, or other fields of your
Forms widgets you will have to add empty parenthesis after each reference. The easiest way to do this is
to globally replace " → x" with " → x()", etc. Replace "boxtype" with "box()".

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

16.3 Problems You Will Encounter 157

const char ∗ arguments to most FLTK methods are simply stored, while Forms would strdup()
the passed string. This is most noticable with the label of widgets. Your program must always pass static
data such as a string constant or malloc’d buffer to label(). If you are using labels to display program
output you may want to try the Fl_Output widget.

The default fonts and sizes are matched to the older GL version of Forms, so all labels will draw somewhat
larger than an XForms program does.

fdesign outputs a setting of a "fdui" instance variable to the main window. I did not emulate this because I
wanted all instance variables to be hidden. You can store the same information in the user_data() field
of a window. To do this, search through the fdesign output for all occurances of " → fdui" and edit to
use " → user_data()" instead. This will require casts and is not trivial.

The prototype for the functions passed to fl_add_timeout() and fl_set_idle_callback()
callback are different.

All the following XForms calls are missing:

• FL_REVISION, fl_library_version()

• FL_RETURN_DBLCLICK (use Fl::event_clicks())

• fl_add_signal_callback()

• fl_set_form_atactivate() fl_set_form_atdeactivate()

• fl_set_form_property()

• fl_set_app_mainform(), fl_get_app_mainform()

• fl_set_form_minsize(), fl_set_form_maxsize()

• fl_set_form_event_cmask(), fl_get_form_event_cmask()

• fl_set_form_dblbuffer(), fl_set_object_dblbuffer() (use an Fl_Double_-
Window instead)

• fl_adjust_form_size()

• fl_register_raw_callback()

• fl_set_object_bw(), fl_set_border_width()

• fl_set_object_resize(), fl_set_object_gravity()

• fl_set_object_shortcutkey()

• fl_set_object_automatic()

• fl_get_object_bbox() (maybe FLTK should do this)

• fl_set_object_prehandler(), fl_set_object_posthandler()

• fl_enumerate_fonts()

• Most drawing functions

• fl_set_coordunit() (FLTK uses pixels all the time)

• fl_ringbell()

• fl_gettime()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

158 Forms Compatibility

• fl_win∗() (all these functions)

• fl_initialize(argc,argv,x,y,z) ignores last 3 arguments

• fl_read_bitmapfile(), fl_read_pixmapfile()

• fl_addto_browser_chars()

• FL_MENU_BUTTON just draws normally

• fl_set_bitmapbutton_file(), fl_set_pixmapbutton_file()

• FL_CANVAS objects

• FL_DIGITAL_CLOCK (comes out analog)

• fl_create_bitmap_cursor(), fl_set_cursor_color()

• fl_set_dial_angles()

• fl_show_oneliner()

• fl_set_choice_shortcut(a,b,c)

• command log

• Only some of file selector is emulated

• FL_DATE_INPUT

• fl_pup∗() (all these functions)

• textbox object (should be easy but I had no sample programs)

• xyplot object

16.4 Additional Notes

These notes were written for porting programs written with the older IRISGL version of Forms. Most of
these problems are the same ones encountered when going from old Forms to XForms:

Does Not Run In Background

The IRISGL library always forked when you created the first window, unless "foreground()" was called.
FLTK acts like "foreground()" is called all the time. If you really want the fork behavior do "if (fork())
exit(0)" right at the start of your program.

You Cannot Use IRISGL Windows or fl_queue

If a Forms (not XForms) program if you wanted your own window for displaying things you would create
a IRISGL window and draw in it, periodically calling Forms to check if the user hit buttons on the panels.
If the user did things to the IRISGL window, you would find this out by having the value FL_EVENT
returned from the call to Forms.

None of this works with FLTK. Nor will it compile, the necessary calls are not in the interface.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

16.4 Additional Notes 159

You have to make a subclass of Fl_Gl_Window and write a draw() method and handle() method.
This may require anywhere from a trivial to a major rewrite.

If you draw into the overlay planes you will have to also write a draw_overlay() method and call
redraw_overlay() on the OpenGL window.

One easy way to hack your program so it works is to make the draw() and handle() methods on your
window set some static variables, storing what event happened. Then in the main loop of your program, call
Fl::wait() and then check these variables, acting on them as though they are events read from fl_queue.

You Must Use OpenGL to Draw Everything

The file <FL/gl.h> defines replacements for a lot of IRISGL calls, translating them to OpenGL. There are
much better translators available that you might want to investigate.

You Cannot Make Forms Subclasses

Programs that call fl_make_object or directly setting the handle routine will not compile. You have
to rewrite them to use a subclass of Fl_Widget. It is important to note that the handle() method is not
exactly the same as the handle() function of Forms. Where a Forms handle() returned non-zero, your
handle() must call do_callback(). And your handle() must return non-zero if it "understood"
the event.

An attempt has been made to emulate the "free" widget. This appears to work quite well. It may be quicker
to modify your subclass into a "free" widget, since the "handle" functions match.

If your subclass draws into the overlay you are in trouble and will have to rewrite things a lot.

You Cannot Use <device.h>

If you have written your own "free" widgets you will probably get a lot of errors about "getvaluator". You
should substitute:

Forms FLTK
MOUSE_X Fl::event_x_root()
MOUSE_Y Fl::event_y_root()
LEFTSHIFTKEY,RIGHTSHIFTKEY Fl::event_shift()
CAPSLOCKKEY Fl::event_capslock()
LEFTCTRLKEY,RIGHTCTRLKEY Fl::event_ctrl()
LEFTALTKEY,RIGHTALTKEY Fl::event_alt()
MOUSE1,RIGHTMOUSE Fl::event_state()
MOUSE2,MIDDLEMOUSE Fl::event_state()
MOUSE3,LEFTMOUSE Fl::event_state()

Anything else in getvaluator and you are on your own...

Font Numbers Are Different

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

160 Forms Compatibility

The "style" numbers have been changed because I wanted to insert bold-italic versions of the normal fonts.
If you use Times, Courier, or Bookman to display any text you will get a different font out of FLTK. If you
are really desperate to fix this use the following code:

fl_font_name(3,"*courier-medium-r-no*");
fl_font_name(4,"*courier-bold-r-no*");
fl_font_name(5,"*courier-medium-o-no*");
fl_font_name(6,"*times-medium-r-no*");
fl_font_name(7,"*times-bold-r-no*");
fl_font_name(8,"*times-medium-i-no*");
fl_font_name(9,"*bookman-light-r-no*");
fl_font_name(10,"*bookman-demi-r-no*");
fl_font_name(11,"*bookman-light-i-no*");

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 17

Operating System Issues

162 Operating System Issues

This appendix describes the operating system specific interfaces in FLTK.

17.1 Accessing the OS Interfaces

All programs that need to access the operating system specific interfaces must include the following header
file:

#include <FL/x.H>

Despite the name, this header file will define the appropriate interface for your environment. The pages
that follow describe the functionality that is provided for each operating system.

WARNING:
The interfaces provided by this header file may change radically in new FLTK releases. Use them only
when an existing generic FLTK interface is not sufficient.

17.2 The UNIX (X11) Interface

The UNIX interface provides access to the X Window System state information and data structures.

17.2.1 Handling Other X Events

void Fl::add_handler(int (∗f)(int))

Installs a function to parse unrecognized events. If FLTK cannot figure out what to do with an event,
it calls each of these functions (most recent first) until one of them returns non-zero. If none of them
returns non-zero then the event is ignored.

FLTK calls this for any X events it does not recognize, or X events with a window ID that FLTK does
not recognize. You can look at the X event in the fl_xevent variable.

The argument is the FLTK event type that was not handled, or zero for unrecognized X events. These
handlers are also called for global shortcuts and some other events that the widget they were passed to
did not handle, for example FL_SHORTCUT.

extern XEvent ∗fl_xevent

This variable contains the most recent X event.

extern ulong fl_event_time

This variable contains the time stamp from the most recent X event that reported it; not all events do.
Many X calls like cut and paste need this value.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

17.2 The UNIX (X11) Interface 163

Window fl_xid(const Fl_Window ∗)

Returns the XID for a window, or zero if not shown().

Fl_Window ∗fl_find(ulong xid)

Returns the Fl_Window that corresponds to the given XID, or NULL if not found. This function uses a
cache so it is slightly faster than iterating through the windows yourself.

int fl_handle(const XEvent &)

This call allows you to supply the X events to FLTK, which may allow FLTK to cooperate with another
toolkit or library. The return value is non-zero if FLTK understood the event. If the window does not
belong to FLTK and the add_handler() functions all return 0, this function will return false.

Besides feeding events your code should call Fl::flush() periodically so that FLTK redraws its windows.

This function will call the callback functions. It will not return until they complete. In particular, if
a callback pops up a modal window by calling fl_ask(), for instance, it will not return until the modal
function returns.

17.2.2 Drawing using Xlib

The following global variables are set before Fl_Widget::draw() is called, or by Fl_Window::make_-
current():

extern Display *fl_display;
extern Window fl_window;
extern GC fl_gc;
extern int fl_screen;
extern XVisualInfo *fl_visual;
extern Colormap fl_colormap;

You must use them to produce Xlib calls. Don’t attempt to change them. A typical X drawing call is written
like this:

XDrawSomething(fl_display, fl_window, fl_gc, ...);

Other information such as the position or size of the X window can be found by looking at Fl_-
Window::current(), which returns a pointer to the Fl_Window being drawn.

unsigned long fl_xpixel(Fl_Color i)

unsigned long fl_xpixel(uchar r, uchar g, uchar b)

Returns the X pixel number used to draw the given FLTK color index or RGB color. This is the X
pixel that fl_color() would use.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

164 Operating System Issues

int fl_parse_color(const char∗ p, uchar& r, uchar& g, uchar& b)

Convert a name into the red, green, and blue values of a color by parsing the X11 color names. On
other systems, fl_parse_color() can only convert names in hexadecimal encoding, for example
#ff8083.

extern XFontStruct ∗fl_xfont

Points to the font selected by the most recent fl_font(). This is not necessarily the current font of fl_-
gc, which is not set until fl_draw() is called. If FLTK was compiled with Xft support, fl_xfont
will usually be 0 and fl_xftfont will contain a pointer to the XftFont structure instead.

extern void ∗fl_xftfont

If FLTK was compiled with Xft support enabled, fl_xftfont points to the xft font selected by the
most recent fl_font(). Otherwise it will be 0. fl_xftfont should be cast to XftFont∗.

17.2.3 Changing the Display, Screen, or X Visual

FLTK uses only a single display, screen, X visual, and X colormap. This greatly simplifies its internal
structure and makes it much smaller and faster. You can change which it uses by setting global variables
before the first Fl_Window::show() is called. You may also want to call Fl::visual(), which is a portable
interface to get a full color and/or double buffered visual.

int Fl::display(const char ∗)

Set which X display to use. This actually does putenv("DISPLAY=...") so that child programs
will display on the same screen if called with exec(). This must be done before the display is opened.
This call is provided under MacOS and WIN32 but it has no effect.

extern Display ∗fl_display

The open X display. This is needed as an argument to most Xlib calls. Don’t attempt to change it!
This is NULL before the display is opened.

void fl_open_display()

Opens the display. Does nothing if it is already open. This will make sure fl_display is non-zero.
You should call this if you wish to do X calls and there is a chance that your code will be called before
the first show() of a window.

This may call Fl::abort() if there is an error opening the display.

void fl_close_display()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

17.2 The UNIX (X11) Interface 165

This closes the X connection. You do not need to call this to exit, and in fact it is faster to not do so! It
may be useful to call this if you want your program to continue without the X connection. You cannot
open the display again, and probably cannot call any FLTK functions.

extern int fl_screen

Which screen number to use. This is set by fl_open_display() to the default screen. You can
change it by setting this to a different value immediately afterwards. It can also be set by changing the
last number in the Fl::display() string to "host:0.#".

extern XVisualInfo ∗fl_visual

extern Colormap fl_colormap

The visual and colormap that FLTK will use for all windows. These are set by fl_open_-
display() to the default visual and colormap. You can change them before calling show() on
the first window. Typical code for changing the default visual is:

Fl::args(argc, argv); // do this first so $DISPLAY is set
fl_open_display();
fl_visual = find_a_good_visual(fl_display, fl_screen);
if (!fl_visual) Fl::abort("No good visual");
fl_colormap = make_a_colormap(fl_display, fl_visual->visual, fl_visual->depth);
// it is now ok to show() windows:
window->show(argc, argv);

17.2.4 Using a Subclass of Fl_Window for Special X Stuff

FLTK can manage an X window on a different screen, visual and/or colormap, you just can’t use FLTK’s
drawing routines to draw into it. But you can write your own draw() method that uses Xlib (and/or
OpenGL) calls only.

FLTK can also manage XID’s provided by other libraries or programs, and call those libraries when the
window needs to be redrawn.

To do this, you need to make a subclass of Fl_Window and override some of these virtual functions:

virtual void Fl_Window::show()

If the window is already shown() this must cause it to be raised, this can usually be done by calling
Fl_Window::show(). If not shown() your implementation must call either Fl_X::set_xid() or Fl_-
X::make_xid().

An example:

void MyWindow::show() {
if (shown()) {Fl_Window::show(); return;} // you must do this!
fl_open_display(); // necessary if this is first window
// we only calculate the necessary visual colormap once:
static XVisualInfo *visual;
static Colormap colormap;
if (!visual) {

visual = figure_out_visual();
colormap = XCreateColormap(fl_display, RootWindow(fl_display,fl_screen),

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

166 Operating System Issues

vis->visual, AllocNone);
}
Fl_X::make_xid(this, visual, colormap);

}

Fl_X ∗Fl_Xset_xid(Fl_Window∗, Window xid)

Allocate a hidden structure called an Fl_X, put the XID into it, and set a pointer to it from the Fl_-
Window. This causes Fl_Window::shown()to return true.

void Fl_X::make_xid(Fl_Window∗, XVisualInfo∗ = fl_visual, Colormap = fl_colormap)

This static method does the most onerous parts of creating an X window, including setting the label,
resize limitations, etc. It then does Fl_X::set_xid() with this new window and maps the window.

virtual void Fl_Window::flush()

This virtual function is called by Fl::flush() to update the window. For FLTK’s own windows it does
this by setting the global variables fl_window and fl_gc and then calling the draw() method.
For your own windows you might just want to put all the drawing code in here.

The X region that is a combination of all damage() calls done so far is in Fl_-
X::i(this)->region. If NULL then you should redraw the entire window. The undocumented
function fl_clip_region(XRegion) will initialize the FLTK clip stack with a region or NULL
for no clipping. You must set region to NULL afterwards as fl_clip_region() will own and
delete it when done.

If damage() & FL_DAMAGE_EXPOSE then only X expose events have happened. This may be
useful if you have an undamaged image (such as a backing buffer) around.

Here is a sample where an undamaged image is kept somewhere:

void MyWindow::flush() {
fl_clip_region(Fl_X::i(this)->region);
Fl_X::i(this)->region = 0;
if (damage() != 2) {... draw things into backing store ...}
... copy backing store to window ...

}

virtual void Fl_Window::hide()

Destroy the window server copy of the window. Usually you will destroy contexts, pixmaps, or other
resources used by the window, and then call Fl_Window::hide() to get rid of the main window identified
by xid(). If you override this, you must also override the destructor as shown:

void MyWindow::hide() {
if (mypixmap) {

XFreePixmap(fl_display,mypixmap);
mypixmap = 0;

}
Fl_Window::hide(); // you must call this

}

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

17.2 The UNIX (X11) Interface 167

virtual void Fl_Window::∼Fl_Window()

Because of the way C++ works, if you override hide() you must override the destructor as well
(otherwise only the base class hide() is called):

MyWindow::~MyWindow() {
hide();

}

17.2.5 Setting the Icon of a Window

FLTK currently supports setting a window’s icon before it is shown using the Fl_Window::icon() method.

void Fl_Window::icon(const void ∗)

Sets the icon for the window to the passed pointer. You will need to cast the icon Pixmap to a char∗
when calling this method. To set a monochrome icon using a bitmap compiled with your application
use:

#include "icon.xbm"

fl_open_display(); // needed if display has not been previously opened

Pixmap p = XCreateBitmapFromData(fl_display, DefaultRootWindow(fl_display),
icon_bits, icon_width, icon_height);

window->icon((const void*)p);

To use a multi-colored icon, the XPM format and library should be used as follows:

#include <X11/xpm.h>
#include "icon.xpm"

fl_open_display(); // needed if display has not been previously opened

Pixmap p, mask;

XpmCreatePixmapFromData(fl_display, DefaultRootWindow(fl_display),
icon_xpm, &p, &mask, NULL);

window->icon((const void *)p);

When using the Xpm library, be sure to include it in the list of libraries that are used to link the
application (usually "-lXpm").

NOTE:
You must call Fl_Window::show(int argc, char∗∗ argv) for the icon to be used. The
Fl_Window::show() method does not bind the icon to the window.

17.2.6 X Resources

When the Fl_Window::show(int argc, char∗∗ argv) method is called, FLTK looks for the following X
resources:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

168 Operating System Issues

• background - The default background color for widgets (color).

• dndTextOps - The default setting for drag and drop text operations (boolean).

• foreground - The default foreground (label) color for widgets (color).

• scheme - The default scheme to use (string).

• selectBackground - The default selection color for menus, etc. (color).

• Text.background - The default background color for text fields (color).

• tooltips - The default setting for tooltips (boolean).

• visibleFocus - The default setting for visible keyboard focus on non-text widgets (boolean).

Resources associated with the first window’s Fl_Window::xclass() string are queried first, or if no class has
been specified then the class "fltk" is used (e.g. fltk.background). If no match is found, a global
search is done (e.g. ∗background).

17.3 The Windows (WIN32) Interface

The Windows interface provides access to the WIN32 GDI state information and data structures.

17.3.1 Handling Other WIN32 Messages

By default a single WNDCLASSEX called "FLTK" is created. All Fl_Window ’s are of this class unless
you use Fl_Window::xclass(). The window class is created the first time Fl_Window::show() is called.

You can probably combine FLTK with other libraries that make their own WIN32 window classes. The
easiest way is to call Fl::wait(), as it will call DispatchMessage() for all messages to the other win-
dows. If necessary you can let the other library take over as long as it calls DispatchMessage(),
but you will have to arrange for the function Fl::flush() to be called regularly so that widgets are updated,
timeouts are handled, and the idle functions are called.

extern MSG fl_msg

This variable contains the most recent message read by GetMessage(), which is called by Fl::wait().
This may not be the most recent message sent to an FLTK window, because silly WIN32 calls the
handle procedures directly for some events (sigh).

void Fl::add_handler(int (∗f)(int))

Installs a function to parse unrecognized messages sent to FLTK windows. If FLTK cannot figure out
what to do with a message, it calls each of these functions (most recent first) until one of them returns
non-zero. The argument passed to the functions is the FLTK event that was not handled or zero for
unknown messages. If all the handlers return zero then FLTK calls DefWindowProc().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

17.3 The Windows (WIN32) Interface 169

HWND fl_xid(const Fl_Window ∗)

Returns the window handle for a Fl_Window, or zero if not shown().

Fl_Window ∗fl_find(HWND xid)

Returns the Fl_Window that corresponds to the given window handle, or NULL if not found. This
function uses a cache so it is slightly faster than iterating through the windows yourself.

17.3.2 Drawing Things Using the WIN32 GDI

When the virtual function Fl_Widget::draw() is called, FLTK stores all the extra arguments you need to
make a proper GDI call in some global variables:

extern HINSTANCE fl_display;
extern HWND fl_window;
extern HDC fl_gc;
COLORREF fl_RGB();
HPEN fl_pen();
HBRUSH fl_brush();

These global variables are set before Fl_Widget::draw() is called, or by Fl_Window::make_current(). You
can refer to them when needed to produce GDI calls, but don’t attempt to change them. The functions
return GDI objects for the current color set by fl_color() and are created as needed and cached. A typical
GDI drawing call is written like this:

DrawSomething(fl_gc, ..., fl_brush());

It may also be useful to refer to Fl_Window::current() to get the window’s size or position.

17.3.3 Setting the Icon of a Window

FLTK currently supports setting a window’s icon ∗before∗ it is shown using the Fl_Window::icon() method.

void Fl_Window::icon(const void ∗)

Sets the icon for the window to the passed pointer. You will need to cast the HICON handle to a char∗
when calling this method. To set the icon using an icon resource compiled with your application use:

window->icon((const void *)LoadIcon(fl_display, MAKEINTRESOURCE(IDI_ICON)));

You can also use the LoadImage() and related functions to load specific resolutions or create the
icon from bitmap data.

NOTE:
You must call Fl_Window::show(int argc, char∗∗ argv) for the icon to be used. The
Fl_Window::show() method does not bind the icon to the window.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

170 Operating System Issues

17.3.4 How to Not Get a MSDOS Console Window

WIN32 has a really stupid mode switch stored in the executables that controls whether or not to make a
console window.

To always get a console window you simply create a console application (the "/SUBSYSTEM:CONSOLE"
option for the linker). For a GUI-only application create a WIN32 application (the "/SUBSYS-
TEM:WINDOWS" option for the linker).

FLTK includes a WinMain() function that calls the ANSI standard main() entry point for you. This
function creates a console window when you use the debug version of the library.

WIN32 applications without a console cannot write to stdout or stderr, even if they are run from a
console window. Any output is silently thrown away. Additionally, WIN32 applications are run in the
background by the console, although you can use "start /wait program" to run them in the foreground.

17.3.5 Known WIN32 Bugs and Problems

The following is a list of known bugs and problems in the WIN32 version of FLTK:

• If a program is deactivated, Fl::wait() does not return until it is activated again, even though
many events are delivered to the program. This can cause idle background processes to stop unex-
pectedly. This also happens while the user is dragging or resizing windows or otherwise holding the
mouse down. We were forced to remove most of the efficiency FLTK uses for redrawing in order to
get windows to update while being moved. This is a design error in WIN32 and probably impossible
to get around.

• Fl_Gl_Window::can_do_overlay() returns true until the first time it attempts to draw an
overlay, and then correctly returns whether or not there is overlay hardware.

• SetCapture (used by Fl::grab()) doesn’t work, and the main window title bar turns gray
while menus are popped up.

• Compilation with gcc 3.4.4 and -Os exposes an optimisation bug in gcc. The symptom is that
when drawing filled circles only the perimeter is drawn. This can for instance be seen in the symbols
demo. Other optimisation options such as -O2 and -O3 seem to work OK. More details can be found
in STR#1656

17.4 The Mac OS Interface

FLTK supports Mac OS X using the Apple Cocoa library. Older versions of Mac OS are not supported.

Control, Option, and Command Modifier Keys

FLTK maps the Mac ’control’ key to FL_CTRL, the ’option’ key to FL_ALT and the ’Apple’ key to
FL_META. Furthermore, FL_COMMAND designates the ’Apple’ key on Mac OS X and the ’control’
key on other platforms. Keyboard events return the key name in Fl::event_key() and the keystroke
translation in Fl::event_text(). For example, typing Option-Y on a Mac US keyboard will set FL_ALT
in Fl::event_state(), set Fl::event_key() to ’y’ and return the Yen symbol in Fl::event_text().

Apple "Quit" Event

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

17.4 The Mac OS Interface 171

When the user presses Cmd-Q or requests a termination of the application, OS X will send a "Quit"
Apple Event. FLTK handles this event by sending an FL_CLOSE event to all open windows. If all
windows close, the application will terminate.

Apple "Open" Event

Whenever the user drops a file onto an application icon, OS X generates an Apple Event of the type
"Open". You can have FLTK notify you of an Open event by setting the fl_open_callback

void fl_open_display()

Opens the display. Does nothing if it is already open. You should call this if you wish to do Quartz
calls and there is a chance that your code will be called before the first show() of a window.

Window fl_xid(const Fl_Window ∗)

Returns the window reference for an Fl_Window, or NULL if the window has not been shown. This
reference is a pointer to an instance of the subclass FLWindow of Cocoa’s NSWindow class.

Fl_Window ∗fl_find(Window xid)

Returns the Fl_Window that corresponds to the given window reference, or NULL if not found. FLTK
windows that are children of top-level windows share the Window of the top-level window.

void fl_open_callback(void (∗cb)(const char ∗))

cb will be called with a single Unix-style file name and path. If multiple files were dropped, fl_-
open_callback() will be called multiple times.

void fl_mac_set_about(Fl_Callback ∗cb, void ∗user_data, int shortcut)

Attaches the callback cb to the "About myprog" item of the system application menu. cb will be
called with NULL first argument and user_data second argument.

Fl_Sys_Menu_Bar class

The Fl_Sys_Menu_Bar class allows to build menu bars that, on Mac OS X, are placed in the system
menu bar (at top-left of display), and, on other platforms, at a user-chosen location of a user-chosen
window.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

172 Operating System Issues

17.4.1 Drawing Things Using Quartz

All code inside Fl_Widget::draw() is expected to call Quartz drawing functions. The Quartz coordinate
system is flipped to match FLTK’s coordinate system. The origin for all drawing is in the top left corner of
the enclosing Fl_Window. The global variable fl_gc is the appropriate Quartz 2D drawing environment.
Include FL/x.H to declare the fl_gc variable.

Fl_Double_Window

OS X double-buffers all windows automatically. On OS X, Fl_Window and Fl_Double_Window are han-
dled internally in the same way.

17.4.2 Mac File System Specifics

Resource Forks

FLTK does not access the resource fork of an application. However, a minimal resource fork must be
created for OS X applications

Caution:
When using UNIX commands to copy or move executables, OS X will NOT copy any resource forks!
For copying and moving use CpMac and MvMac respectively. For creating a tar archive, all
executables need to be stripped from their Resource Fork before packing, e.g. "DeRez fluid > fluid.r".
After unpacking the Resource Fork needs to be reattached, e.g. "Rez fluid.r -o fluid".

It is advisable to use the Finder for moving and copying and Mac archiving tools like Sit for distribution as
they will handle the Resource Fork correctly.

Mac File Paths

FLTK uses UTF-8-encoded UNIX-style filenames and paths.

See also:

Mac OS X-specific functions

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 18

Migrating Code from FLTK 1.0 to 1.1

174 Migrating Code from FLTK 1.0 to 1.1

This appendix describes the differences between the FLTK 1.0.x and FLTK 1.1.x functions and classes.

18.1 Color Values

Color values are now stored in a 32-bit unsigned integer instead of the unsigned character in 1.0.x. This
allows for the specification of 24-bit RGB values or 8-bit FLTK color indices.

FL_BLACK and FL_WHITE now remain black and white, even if the base color of the gray ramp is changed
using Fl::background(). FL_DARK3 and FL_LIGHT3 can be used instead to draw a very dark or a very
bright background hue.

Widgets use the new color symbols FL_FORGROUND_COLOR, FL_BACKGROUND_COLOR, FL_-
BACKGROUND2_COLOR, FL_INACTIVE_COLOR, and FL_SELECTION_COLOR. More details can be
found in the chapter FLTK Enumerations.

18.2 Cut and Paste Support

The FLTK clipboard is now broken into two parts - a local selection value and a cut-and-paste value. This
allows FLTK to support things like highlighting and replacing text that was previously cut or copied, which
makes FLTK applications behave like traditional GUI applications.

18.3 File Chooser

The file chooser in FLTK 1.1.x is significantly different than the one supplied with FLTK 1.0.x. Any code
that directly references the old FCB class or members will need to be ported to the new Fl_File_Chooser
class.

18.4 Function Names

Some function names have changed from FLTK 1.0.x to 1.1.x in order to avoid name space collisions. You
can still use the old function names by defining the FLTK_1_0_COMPAT symbol on the command-line
when you compile (-DFLTK_1_0_COMPAT) or in your source, e.g.:

#define FLTK_1_0_COMPAT
#include <FL/Fl.H>
#include <FL/Enumerations.H>
#include <FL/filename.H>

The following table shows the old and new function names:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

18.5 Image Support 175

Old 1.0.x Name New 1.1.x Name
contrast() fl_contrast()
down() fl_down()
filename_absolute() fl_filename_absolute()
filename_expand() fl_filename_expand()
filename_ext() fl_filename_ext()
filename_isdir() fl_filename_isdir()
filename_list() fl_filename_list()
filename_match() fl_filename_match()
filename_name() fl_filename_name()
filename_relative() fl_filename_relative()
filename_setext() fl_filename_setext()
frame() fl_frame()
inactive() fl_inactive()
numericsort() fl_numericsort()

18.5 Image Support

Image support in FLTK has been significantly revamped in 1.1.x. The Fl_Image class is now a proper
base class, with the core image drawing functionality in the Fl_Bitmap, Fl_Pixmap, and Fl_RGB_Image
classes.

BMP, GIF, JPEG, PNG, XBM, and XPM image files can now be loaded using the appropriate image classes,
and the Fl_Shared_Image class can be used to cache images in memory.

Image labels are no longer provided as an add-on label type. If you use the old label() methods on an
image, the widget’s image() method is called to set the image as the label.

Image labels in menu items must still use the old labeltype mechanism to preserve source compatibility.

18.6 Keyboard Navigation

FLTK 1.1.x now supports keyboard navigation and control with all widgets. To restore the old FLTK 1.0.x
behavior so that only text widgets get keyboard focus, call the Fl::visible_focus() method to disable it:

Fl::visible_focus(0);

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

176 Migrating Code from FLTK 1.0 to 1.1

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 19

Migrating Code from FLTK 1.1 to 1.3

178 Migrating Code from FLTK 1.1 to 1.3

This appendix describes the differences between the FLTK 1.1.x and FLTK 1.3.x functions and classes.

19.1 Migrating From FLTK 1.0

If you want to migrate your code from FLTK 1.0 to FLTK 1.3, then you should first consult Appendix
Migrating Code from FLTK 1.0 to 1.1.

19.2 Fl_Scroll Widget

Fl_Scroll::scroll_to(int x, int y) replaces Fl_Scroll::position(int x, int y).

This change was needed because Fl_Scroll::position(int,int) redefined Fl_Widget::position(int,int), but with
a completely different function (moving the scrollbars instead of moving the widget).

Please be aware that you need to change your application’s code for all Fl_Scroll-derived widgets, if you
used Fl_Scroll::position(int x, int y) to position the scrollbars (not the widget itself).

The compiler will not detect any errors, because your calls to position(int x, int y) will be calling Fl_-
Widget::position(int x, int y).

19.3 Unicode (UTF-8)

FLTK 1.3 uses Unicode (UTF-8) encoding internally. If you are only using characters in the ASCII range
(32-127), there is a high probability that you don’t need to modify your code. However, if you use in-
ternational characters (128-255), encoded as e.g. Windows codepage 1252, ISO-8859-1, ISO-8859-15 or
any other encoding, then you will need to update your character string constants and widget input data
accordingly.

Please refer to the Unicode and UTF-8 Support chapter for more details.

Note:

It is important that, although your software uses only ASCII characters for input to FLTK widgets,
the user may enter non-ASCII characters, and FLTK will return these characters with utf-8 encoding
to your application, e.g. via Fl_Input::value(). You will need to re-encode them to your (non-utf-8)
encoding, otherwise you might see or print garbage in your data.

19.4 Widget Coordinate Representation

FLTK 1.3 changed all Widget coordinate variables and methods, e.g. Fl_Widget::x(), Fl_Widget::y(), Fl_-
Widget::w(), Fl_Widget::h(), from short (16-bit) to int (32-bit) representation. This should not affect any
existing code, but makes it possible to use bigger scroll areas (e.g. Fl_Scroll widget).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 20

Developer Information

180 Developer Information

This chapter describes FLTK development and documentation.

Note:

documentation with doxygen will be described here.

Example
Note:

In the following code example(s) "∗" will be replaced by "#" as a temporary solution.

/## \file
Fl_Clock, Fl_Clock_Output widgets . #/

/##
\class Fl_Clock_Output
\brief This widget can be used to display a program-supplied time.

The time shown on the clock is not updated. To display the current time,
use Fl_Clock instead.

\image html clock.png
\image latex clock.png "" width=10cm
\image html round_clock.png
\image latex clock.png "" width=10cm
\image html round_clock.png "" width=10cm #/

/##
Returns the displayed time.
Returns the time in seconds since the UNIX epoch (January 1, 1970).
\see value(ulong)

#/
ulong value() const {return value_;}

/##
Set the displayed time.
Set the time in seconds since the UNIX epoch (January 1, 1970).
\param[in] v seconds since epoch
\see value()

#/
void Fl_Clock_Output::value(ulong v) {
[...]
}

/##
Create an Fl_Clock widget using the given position, size, and label string.
The default boxtype is \c FL_NO_BOX.
\param[in] X, Y, W, H position and size of the widget
\param[in] L widget label, default is no label

#/
Fl_Clock::Fl_Clock(int X, int Y, int W, int H, const char #L)

: Fl_Clock_Output(X, Y, W, H, L) {}

/##
Create an Fl_Clock widget using the given boxtype, position, size, and
label string.
\param[in] t boxtype
\param[in] X, Y, W, H position and size of the widget
\param[in] L widget label, default is no label

#/

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

181

Fl_Clock::Fl_Clock(uchar t, int X, int Y, int W, int H, const char #L)
: Fl_Clock_Output(X, Y, W, H, L) {
type(t);
box(t==FL_ROUND_CLOCK ? FL_NO_BOX : FL_UP_BOX);

}

Note:

From Duncan: (will be removed later, just for now as a reminder)

5. I’ve just added comments for the fl_color_chooser() functions, and in order to keep them and the general
Function Reference information for them together, I created a new doxygen group, and used \ingroup in
the three comment blocks. This creates a new Modules page (which may not be what we want) with links
to it from the File Members and Fl_Color_Chooser.H pages. It needs a bit more experimentation on my
part unless someone already knows how this should be handled. (Maybe we can add it to a functions.dox
file that defines a functions group and do that for all of the function documentation?)

Update: the trick is not to create duplicate entries in a new group, but to move the function information
into the doxygen comments for the class, and use the navigation links provided. Simply using \relatesalso
as the first doxygen command in the function’s comment puts it in the appropriate place. There is no need
to have \defgroup and \ingroup as well, and indeed they don’t work. So, to summarize:

Gizmo.H
/## \class Gizmo

A gizmo that does everything
#/

class Gizmo {
etc

};
extern int popup_gizmo(...);

Gizmo.cxx:
/## \relatesalso Gizmo

Pops up a gizmo dialog with a Gizmo in it
#/

int popup_gizmo(...);

Example comment:

You can use HTML comment statements to embed comments in doxygen comment blocks. These com-
ments will not be visible in the generated document.

The following text is a developer comment.

This will be visible again.

The following text is a developer comment.
<!-- *** This *** is *** invisible *** -->
This will be visible again.

Different Headlines:

<H1>Headline in big text (H1)</H1>
<H2>Headline in big text (H2)</H2>
<H3>Headline in big text (H3)</H3>
<H4>Headline in big text (H4)</H4>

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

182 Developer Information

Headline in big text (H1)

Headline in big text (H2)

Headline in big text (H3)

Headline in big text (H4)

20.1 Non-ASCII characters

if you came here from below: back to Creating Links

Doxygen understands many HTML quoting characters like
", ü, ç, Ç, but not all HTML quoting characters.

This will appear in the document:

Doxygen understands many HTML quoting characters like ", ü, ç, Ç, but not all HTML quoting characters.

For further informations about quoting see http://www.stack.nl/∼dimitri/doxygen/htmlcmds.html

Example with UTF-8 encoded text

<P>Assuming that the following source code was written on MS Windows,
this example will output the correct label on OS X and X11 as well.
Without the conversion call, the label on OS X would read
<tt>Fahrvergn¸gen</tt> with a deformed umlaut u ("cedille",
html "¸").
\#code

btn = new Fl_Button(10, 10, 300, 25);
btn->copy_label(fl_latin1_to_local("Fahrvergnügen"));

\#endcode

\note If your application uses characters that are not part of both
encodings, or it will be used in areas that commonly use different
code pages, you might consider upgrading to FLTK 2 which supports
UTF-8 encoding.

\todo This is an example todo entry, please ignore !

This will appear in the document:

Assuming that the following source code was written on MS Windows, this example will output the
correct label on OS X and X11 as well. Without the conversion call, the label on OS X would read
Fahrvergn¸gen with a deformed umlaut u ("cedille", html "¸"). #code btn = new Fl_Button(10,
10, 300, 25); btn->copy_label(fl_latin1_to_local("Fahrvergnügen")); #endcode

Note:

If your application uses characters that are not part of both encodings, or it will be used in areas that
commonly use different code pages, you might consider upgrading to FLTK 2 which supports UTF-8
encoding.

Todo

This is an example todo entry, please ignore !

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://www.stack.nl/~dimitri/doxygen/htmlcmds.html

20.2 Document Structure 183

20.2 Document Structure

• \page creates a named page

• \section creates a named section within that page

• \subsection creates a named subsection within the current section

• \subsubsection creates a named subsubsection within the current subsection

All these statements take a "name" as their first argument, and a title as their second argument. The title
can contain spaces.

The page, section, and subsection titles are formatted in blue color and a size like "<H1>", "<H2>",
and "<H3>", and "<H4>", respectively.

By FLTK documentation convention, a file like this one with a doxygen documentation chapter has
the name "<chapter>.dox". The \page statement at the top of the page is "\page <chapter> This
is the title". Sections within a documentation page must be called "<chapter>_<section>", where
"<chapter>" is the name part of the file, and "<section>" is a unique section name within the page that
can be referenced in links. The same for subsections and subsubsections.

These doxygen page and section commands work only in special documentation chapters, not within nor-
mal source or header documentation blocks. However, links from normal (e.g. class) documentation to
documentation sections do work.

This page has

\page development I - Developer Information

at its top.

This section is

\section development_structure Document structure

The following section is

\section development_links Creating Links

20.3 Creating Links

Links to other documents and external links can be embedded with

• doxygen \ref links to other doxygen \page, \section, \subsection and \anchor locations

• HTML links without markup - doxygen creates "http://..." links automatically

• standard, non-Doxygen, HTML links

- see chapter \ref unicode creates a link to the named chapter
unicode that has been created with a \page statement.

- For further informations about quoting see
http://www.stack.nl/~dimitri/doxygen/htmlcmds.html

- see Nedit creates
a standard HTML link

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

184 Developer Information

appears as:

• see chapter Unicode and UTF-8 Support creates a link to the named chapter unicode that has been
created with a \page statement.

• For further informations about quoting see http://www.stack.nl/∼dimitri/doxygen/htmlcmds.html

• see Nedit creates a standard HTML link

20.4 Paragraph Layout

There is no real need to use HTML <P> and </P> tags within the text to tell doxygen to start or stop a
paragraph. In most cases, when doxygen encounters a blank line or some, but not all, \commands in the
text it knows that it as reached the start or end of a paragraph. Doxygen also offers the \par command
for special paragraph handling. It can be used to provide a paragraph title and also to indent a paragraph.
Unfortunately \par won’t do what you expect if you want to have doxygen links and sometimes html tags
don’t work either.

\par Normal Paragraph with title

This paragraph will have a title, but because there is a blank line
between the \par and the text, it will have the normal layout.

\par Indented Paragraph with title
This paragraph will also have a title, but because there is no blank
line between the \par and the text, it will be indented.

\par
It is also possible to have an indented paragraph without title.
This is how you indent subsequent paragraphs.

\par No link to Fl_Widget::draw()
Note that the paragraph title is treated as plain text.
Doxygen type links will not work.
HTML characters and tags may or may not work.

Fl_Widget::draw() links and "html" tags work

\par
Use a single line ending with
 for complicated paragraph titles.

The above code produces the following paragraphs:

Normal Paragraph with title

This paragraph will have a title, but because there is a blank line between the \par and the text, it will have
the normal layout.

Indented Paragraph with title

This paragraph will also have a title, but because there is no blank line between the \par and the text,
it will be indented.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://www.stack.nl/~dimitri/doxygen/htmlcmds.html
http://www.nedit.org/

20.5 Hack for missing "tiny.gif" file 185

It is also possible to have an indented paragraph without title. This is how you indent subsequent
paragraphs.

No link to Fl_Widget::draw()

Note that the paragraph title is treated as plain text. Doxygen type links will not work. HTML charac-
ters and tags may or may not work.

Fl_Widget::draw() links and "html" tags work

Use a single line ending with
 for complicated paragraph titles.

20.5 Hack for missing "tiny.gif" file

Todo

HACK∗ : include image file for footer. Doxygen does not include the file "tiny.gif" from "html_footer"
in its output html dir. Find out, how this can be done, or avoid using an image in the HTML footer.

20.6 Navigation Elements

Each introduction (tutorial) page ends with navigation elements. These elements must only be included in
the html documentation, therefore they must be separated with \htmlonly and \endhtmlonly.

The following code gives the navigation bar at the bottom of this page:

\htmlonly
<hr>
<table summary="navigation bar" width="100%" border="0">
<tr>

<td width="45%" align="LEFT">

[Prev]
Migrating Code from FLTK 1.1 to 1.3

</td>
<td width="10%" align="CENTER">

[Index]
</td>
<td width="45%" align="RIGHT">

Software License
[Next]

</td>
</tr>
</table>
\endhtmlonly

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

186 Developer Information

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 21

Software License

188 Software License

December 11, 2001

The FLTK library and included programs are provided under the terms of the GNU Library General Public
License (LGPL) with the following exceptions:

1. Modifications to the FLTK configure script, config header file, and makefiles by themselves to sup-
port a specific platform do not constitute a modified or derivative work.

The authors do request that such modifications be contributed to the FLTK project -
send all contributions through the "Software Trouble Report" on the following page:
http://www.fltk.org/str.php

2. Widgets that are subclassed from FLTK widgets do not constitute a derivative work.

3. Static linking of applications and widgets to the FLTK library does not constitute a derivative work
and does not require the author to provide source code for the application or widget, use the shared
FLTK libraries, or link their applications or widgets against a user-supplied version of FLTK.

If you link the application or widget to a modified version of FLTK, then the changes to FLTK must
be provided under the terms of the LGPL in sections 1, 2, and 4.

4. You do not have to provide a copy of the FLTK license with programs that are linked to the FLTK
library, nor do you have to identify the FLTK license in your program or documentation as required
by section 6 of the LGPL.

However, programs must still identify their use of FLTK. The following example statement can be
included in user documentation to satisfy this requirement:

[program/widget] is based in part on the work of the FLTK project (http://www.fltk.org).

GNU LIBRARY GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the
ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By con-
trast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free
software–to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software Foun-
dation software, and to any other libraries whose authors decide to use it. You can use it for your libraries,
too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://www.fltk.org/str.php
http://www.fltk.org

189

service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients
all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you
link a program with the library, you must provide complete object files to the recipients so that they can
relink them with the library, after making changes to the library and recompiling it. And you must show
them these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain that everyone understands that there is
no warranty for this free library. If the library is modified by someone else and passed on, we want its
recipients to know that what they have is not the original version, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
companies distributing free software will individually obtain patent licenses, thus in effect transforming the
program into proprietary software. To prevent this, we have made it clear that any patent must be licensed
for everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License,
which was designed for utility programs. This license, the GNU Library General Public License, applies
to certain designated libraries. This license is quite different from the ordinary one; be sure to read it in
full, and don’t assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually
make between modifying or adding to a program and simply using it. Linking a program with a library,
without changing the library, is in some sense simply using the library, and is analogous to running a utility
program or application program. However, in a textual and legal sense, the linked executable is a combined
work, a derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effec-
tively promote software sharing, because most developers did not use the libraries. We concluded that
weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit
from the free status of the libraries themselves. This Library General Public License is intended to permit
developers of non-free programs to use free libraries, while preserving your freedom as a user of such
programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this
as regards changes in header files, but we have achieved it as regards changes in the actual functions of the
Library.) The hope is that this will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to
the difference between a "work based on the libary" and a "work that uses the library". The former contains
code derived from the library, while the latter only works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License rather than by
this special one.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

190 Software License

holder or other authorized party saying it may be distributed under the terms of this Library General Public
License (also called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently linked
with application programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under these
terms. A "work based on the Library" means either the Library or any derivative work under copyright law:
that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or
translated straightforwardly into another language. (Hereinafter, translation is included without limitation
in the term "modification".)

"Source code" for a work means the preferred form of the work for making modifications to it. For a library,
complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running a program using the Library is not restricted, and output from such a program
is covered only if its contents constitute a work based on the Library (independent of the use of the Library
in a tool for writing it). Whether that is true depends on what the Library does and what the program that
uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based
on the Library, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the files and the
date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of
this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application
program that uses the facility, other than as an argument passed when the facility is invoked, then you must
make a good faith effort to ensure that, in the event an application does not supply such function or table,
the facility still operates, and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-defined
independent of the application. Therefore, Subsection 2d requires that any application-supplied function or
table used by this function must be optional: if the application does not supply it, the square root function
must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Library, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Library, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

191

based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work
based on the Library) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to
a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they
refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version
than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General
Public License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a
library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with
the complete corresponding machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the
Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in
isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable that is a derivative
of the Library (because it contains portions of the Library), rather than a "work that uses the library". The
executable is therefore covered by this License. Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the Library, the object
code for the work may be a derivative work of the Library even though the source code is not. Whether
this is true is especially significant if the work can be linked without the Library, or if the work is itself a
library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small
macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted,
regardless of whether it is legally a derivative work. (Executables containing this object code plus portions
of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under
the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they
are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses the Library"
with the Library to produce a work containing portions of the Library, and distribute that work under terms
of your choice, provided that the terms permit modification of the work for the customer’s own use and
reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the
Library and its use are covered by this License. You must supply a copy of this License. If the work during
execution displays copyright notices, you must include the copyright notice for the Library among them,
as well as a reference directing the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library
including whatever changes were used in the work (which must be distributed under Sections 1 and 2

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

192 Software License

above); and, if the work is an executable linked with the Library, with the complete machine-readable
"work that uses the Library", as object code and/or source code, so that the user can modify the Library
and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile
the application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent
access to copy the above specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already sent this user
a copy.

For an executable, the required form of the "work that uses the Library" must include any data and utility
programs needed for reproducing the executable from it. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary form) with
the major components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do
not normally accompany the operating system. Such a contradiction means you cannot use both them and
the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library
together with other library facilities not covered by this License, and distribute such a combined library,
provided that the separate distribution of the work based on the Library and of the other library facilities is
otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with
any other library facilities. This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library,
and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is
void, and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Library or its derivative works. These actions are prohibited by
law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work
based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions
for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically
receives a license from the original licensor to copy, distribute, link with or modify the Library subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a
patent license would not permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

193

refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Library General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this Li-
cense which applies to it and "any later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Library does
not specify a license version number, you may choose any version ever published by the Free Software
Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions
are incompatible with these, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHER-
WISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFT-
WARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

194 Software License

END OF TERMS AND CONDITIONS

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 22

Example Source Code

196 Example Source Code

The FLTK distribution contains over 60 sample applications written in, or ported to, FLTK.

If the FLTK archive you received does not contain a ’test’ directory, you can download the complete FLTK
distribution from http://fltk.org/software.php .

Most of the example programs were created while testing a group of widgets. They are not meant to be
great achievements in clean C++ programming, but merely a test platform to verify the functionality of the
FLTK library.

Note that extra example programs are also available in an additional ’examples’ directory, but these are
NOT built automatically when you build FLTK, unlike those in the ’test’ directory shown below.

22.1 Example Applications

adjuster arc ask bitmap blocks boxtype
browser button buttons checkers clock colbrowser
color_-
chooser

cube CubeView cursor curve demo

double-
buffer

editor fast_slow file_-
chooser

fluid fonts

forms fractals fullscreen gl_overlay glpuzzle hello
help iconize image inactive input input_-

choice
keyboard label line_style list_visuals mandelbrot menubar
message minimum navigation output overlay pack
pixmap_-
browser

pixmap preferences radio resizebox resize

scroll shape subwindow sudoku symbols tabs
threads tile tiled_image valuators device

22.1.1 adjuster

adjuster shows a nifty little widget for quickly setting values in a great range.

22.1.2 arc

The arc demo explains how to derive your own widget to generate some custom drawings. The
sample drawings use the matrix based arc drawing for some fun effects.

22.1.3 ask

ask shows some of FLTK’s standard dialog boxes. Click the correct answers or you may end up in a
loop, or you may end up in a loop, or you... .

22.1.4 bitmap

This simple test shows the use of a single color bitmap as a label for a box widget. Bitmaps are stored
in the X11 ’.bmp’ file format and can be part of the source code.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://fltk.org/software.php

22.1 Example Applications 197

22.1.5 blocks

A wonderful and addictive game that shows the usage of FLTK timers, graphics, and how to implement
sound on all platforms. blocks is also a good example for the Mac OS X specific bundle format.

22.1.6 boxtype

boxtype gives an overview of readily available boxes and frames in FLTK. More types can be added
by the application programmer. When using themes, FLTK shuffles boxtypes around to give your
program a new look.

22.1.7 browser

browser shows the capabilities of the Fl_Browser widget. Important features tested are loading of
files, line formatting, and correct positioning of the browser data window.

22.1.8 button

The button test is a simple demo of push-buttons and callbacks.

22.1.9 buttons

buttons shows a sample of FLTK button types.

22.1.10 checkers

Written by Steve Poulsen in early 1979, checkers shows how to convert a VT100 text-terminal
based program into a neat application with a graphical UI. Check out the code that drags the pieces,
and how the pieces are drawn by layering. Then tell me how to beat the computer at Checkers.

22.1.11 clock

The clock demo shows two analog clocks. The innards of the Fl_Clock widget are pretty interesting,
explaining the use of timeouts and matrix based drawing.

22.1.12 colbrowser

colbrowser runs only on X11 systems. It reads /usr/lib/X11/rgb.txt to show the color representation
of every text entry in the file. This is beautiful, but only moderately useful unless your UI is written in
Motif .

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

198 Example Source Code

22.1.13 color_chooser

The color_chooser gives a short demo of FLTK’s palette based color chooser and of the RGB
based color wheel.

22.1.14 cube

The cube demo shows the speed of OpenGL. It also tests the ability to render two OpenGL buffers
into a single window, and shows OpenGL text.

22.1.15 CubeView

CubeView shows how to create a UI containing OpenGL with Fluid.

22.1.16 cursor

The cursor demo shows all mouse cursor shapes that come standard with FLTK. The fgcolor and
bgcolor sliders work only on few systems (some version of Irix for example).

22.1.17 curve

curve draws a nice Bezier curve into a custom widget. The points option for splines is not supported
on all platforms.

22.1.18 demo

This tool allows quick access to all programs in the test directory. demo is based on the visuals of
the IrixGL demo program. The menu tree can be changed by editing test/demo.menu.

22.1.19 device

Shows how a wide variety of graphics requests can be printed using the Fl_Printer class.

22.1.20 doublebuffer

The doublebuffer demo shows the difference between a single buffered window, which may
flicker during a slow redraw, and a double buffered window, which never flickers, but uses twice the
amount of RAM. Some modern OS’s double buffer all windows automatically to allow transparency
and shadows on the desktop. FLTK is smart enough to not tripple buffer a window in that case.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

22.1 Example Applications 199

22.1.21 editor

FLTK has two very different text input widgets. Fl_Input and derived classes are rather light weight,
however Fl_Text_Editor is a complete port of nedit (with permission). The editor test is almost a
full application, showing custom syntax highlighting and dialog creation.

22.1.22 fast_slow

fast_slow shows how an application can use the Fl_Widget::when() setting to receive different
kinds of callbacks.

22.1.23 file_chooser

The standard FLTK file_chooser is the result of many iterations, trying to find a middle ground
between a complex browser and a fast light implementation.

22.1.24 fonts

fonts shows all available text fonts on the host system. If your machine still has some pixmap based
fonts, the supported sizes will be shown in bold face. Only the first 256 fonts will be listed.

22.1.25 forms

forms is an XForms program with very few changes. Search for "fltk" to find all changes necessary
to port to fltk. This demo shows the different boxtypes. Note that some boxtypes are not appropriate
for some objects.

22.1.26 fractals

fractals shows how to mix OpenGL, Glut and FLTK code. FLTK supports a rather large subset of
Glut, so that many Glut applications compile just fine.

22.1.27 fullscreen

This demo shows how to do many of the window manipulations that are popular for games. You
can toggle the border on/off, switch between single- and double-buffered rendering, and take over the
entire screen. More information in the source code.

22.1.28 gl_overlay

gl_overlay shows OpenGL overlay plane rendering. If no hardware overlay plane is available,
FLTK will simulate it for you.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

200 Example Source Code

22.1.29 glpuzzle

The glpuzzle test shows how most Glut source code compiles easily under FLTK.

22.1.30 hello

hello: Hello, World. Need I say more? Well, maybe. This tiny demo shows how little is needed to
get a functioning application running with FLTK. Quite impressive, I’d say.

22.1.31 help

help displays the built-in FLTK help browser. The Fl_Help_Dialog understands a subset of html and
renders various image formats. This widget makes it easy to provide help pages to the user without
depending on the operating system’s html browser.

22.1.32 iconize

iconize demonstrates the effect of the window functions hide(), iconize(), and show().

22.1.33 image

The image demo shows how an image can be created on the fly. This generated image contains an al-
pha (transparency) channel which lets previous renderings ’shine through’, either via true transparency
or by using screen door transparency (pixelation).

22.1.34 inactive

inactive tests the correct rendering of inactive widgets. To see the inactive version of images, you
can check out the pixmap or image test.

22.1.35 input

This tool shows and tests different types of text input fields based on Fl_Input_. The input program
also tests various settings of Fl_Input::when().

22.1.36 input_choice

input_choice tests the latest addition to FLTK1, a text input field with an attached pulldown menu.
Windows users will recognize similarities to the ’ComboBox’. input_choice starts up in ’plastic’
scheme, but the traditional scheme is also supported.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

22.1 Example Applications 201

22.1.37 keyboard

FLTK unifies keyboard events for all platforms. The keyboard test can be used to check the return
values of Fl::event_key() and Fl::event_text(). It is also great to see the modifier buttons and the scroll
wheel at work. Quit this application by closing the window. The ESC key will not work.

22.1.38 label

Every FLTK widget can have a label attached to it. The label demo shows alignment, clipping, and
wrapping of text labels. Labels can contain symbols at the start and end of the text, like @FLTK or
@circle uh-huh @square.

22.1.39 line_style

Advanced line drawing can be tested with line_style. Not all platforms support all line styles.

22.1.40 list_visuals

This little app finds all available pixel formats for the current X11 screen. But since you are now an
FLTK user, you don’t have to worry about any of this.

22.1.41 mandelbrot

mandelbrot shows two advanced topics in one test. It creates grayscale images on the fly, updating
them via the idle callback system. This is one of the few occasions where the idle callback is very
useful by giving all available processor time to the application without blocking the UI or other apps.

22.1.42 menubar

The menubar tests many aspects of FLTK’s popup menu system. Among the features are radio
buttons, menus taller than the screen, arbitrary sub menu depth, and global shortcuts.

22.1.43 message

message pops up a few of FLTK’s standard message boxes.

22.1.44 minimum

The minimum test program verifies that the update regions are set correctly. In a real life application,
the trail would be avoided by choosing a smaller label or by setting label clipping differently.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

202 Example Source Code

22.1.45 navigation

navigation demonstrates how the text cursor moves from text field to text field when using the
arrow keys, tab, and shift-tab.

22.1.46 output

output shows the difference between the single line and multi line mode of the Fl_Output widget.
Fonts can be selected from the FLTK standard list of fonts.

22.1.47 overlay

The overlay test app shows how easy an FLTK window can be layered to display cursor and ma-
nipulator style elements. This example derives a new class from Fl_Overlay_Window and provides a
new function to draw custom overlays.

22.1.48 pack

The pack test program demonstrates the resizing and repositioning of children of the Fl_Pack group.
Putting an Fl_Pack into an Fl_Scroll is a useful way to create a browser for large sets of data.

22.1.49 pixmap_browser

pixmap_browser tests the shared-image interface. When using the same image multiple times,
Fl_Shared_Image will keep it only once in memory.

22.1.50 pixmap

This simple test shows the use of a LUT based pixmap as a label for a box widget. Pixmaps are stored
in the X11 ’.xpm’ file format and can be part of the source code. Pixmaps support one transparent
color.

22.1.51 preferences

I do have my preferences in the morning, but sometimes I just can’t remember a thing. This is
where the Fl_Preferences come in handy. They remember any kind of data between program launches.

22.1.52 radio

The radio tool was created entirely with fluid. It shows some of the available button types and tests
radio button behavior.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

22.1 Example Applications 203

22.1.53 resizebox

resizebox shows some possible ways of FLTK’s automatic resize behavior.

22.1.54 resize

The resize demo tests size and position functions with the given window manager.

22.1.55 scroll

scroll shows how to scroll an area of widgets, one of them being a slow custom drawing. Fl_Scroll
uses clipping and smart window area copying to improve redraw speed. The buttons at the bottom of
the window control decoration rendering and updates.

22.1.56 shape

shape is a very minimal demo that shows how to create your own OpenGL rendering widget. Now
that you know that, go ahead and write that flight simulator you always dreamt of.

22.1.57 subwindow

The subwindow demo tests messaging and drawing between the main window and ’true’ sub win-
dows. A sub window is different to a group by resetting the FLTK coordinate system to 0, 0 in the top
left corner. On Win32 and X11, subwindows have their own operating system specific handle.

22.1.58 sudoku

Another highly addictive game - don’t play it, I warned you. The implementation shows how to create
application icons, how to deal with OS specifics, and how to generate sound.

22.1.59 symbols

symbols are a speciality of FLTK. These little vector drawings can be integrated into labels. They
scale and rotate, and with a little patience, you can define your own. The rotation number refers to 45
degree rotations if you were looking at a numeric keypad (2 is down, 6 is right, etc.).

22.1.60 tabs

The tabs tool was created with fluid. It tests correct hiding and redisplaying of tabs, navigation across
tabs, resize behavior, and no unneeded redrawing of invisible widgets.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

204 Example Source Code

The tabs application shows the Fl_Tabs widget on the left and the Fl_Wizard widget on the right side
for direct comparison of these two panel management widgets.

22.1.61 threads

FLTK can be used in a multithreading environment. There are some limitations, mostly due to the
underlying operating system. threads shows how to use Fl::lock(), Fl::unlock(), and Fl::awake() in
secondary threads to keep FLTK happy. Although locking works on all platforms, this demo is not
available on every machine.

22.1.62 tile

The tile tool shows a nice way of using Fl_Tile. To test correct resizing of subwindows, the widget
for region 1 is created from an Fl_Window class.

22.1.63 tiled_image

The tiled_image demo uses an image as the background for a window by repeating it over the full
size of the widget. The window is resizable and shows how the image gets repeated.

22.1.64 valuators

valuators shows all of FLTK’s nifty widgets to change numeric values.

22.1.65 fluid

fluid is not only a big test program, but also a very useful visual UI designer. Many parts of fluid
were created using fluid. See the Fluid Tutorial for more details.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 23

Deprecated List

206 Deprecated List

Member Fl::release() Use Fl::grab(0) instead.

Member Fl::set_idle(Fl_Old_Idle_Handler cb) This method is obsolete - use the add_idle() method
instead.

Member Fl_Group::focus(Fl_Widget ∗W) This is for backwards compatibility only. You should use
W->take_focus() instead.

Member Fl_Menu_Item::check() .

Member Fl_Menu_Item::checked() const .

Member Fl_Menu_Item::uncheck() .

Member Fl_Spinner::maxinum() const

Member Fl_Spinner::mininum() const

Member Fl_Widget::color2(unsigned a) Use selection_color(unsigned) instead.

Member Fl_Widget::color2() const Use selection_color() instead.

Member Fl_Window::free_position() please use force_position(0) instead

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 24

Todo List

208 Todo List

Member Fl_Browser_::scrollbar_width(int width) This method should eventually be removed in 1.4+

Member Fl_Browser_::scrollbar_width() const This method should eventually be removed in 1.4+

Member Fl_Browser_::sort(int flags=0) Add a flag to ignore case

Class Fl_Button Refactor the doxygen comments for Fl_Button type() documentation.

Class Fl_Button Refactor the doxygen comments for Fl_Button when() documentation.

Class Fl_Chart Refactor Fl_Chart::type() information.

Class Fl_Check_Button Refactor Fl_Check_Button doxygen comments (add color() info etc?)

Class Fl_Check_Button Generate Fl_Check_Button.gif with visible checkmark.

Class Fl_Choice Refactor the doxygen comments for Fl_Choice changed() documentation.

Class Fl_Counter Refactor the doxygen comments for Fl_Counter type() documentation.

Member Fl_File_Input::errorcolor() const Better docs for Fl_File_Input::errorcolor() - is it even used?

Member Fl_Gl_Window::as_gl_window() More documentation ...

Member Fl_Group::as_group() More documentation ...

Member Fl_Group::sizes() Should the internal representation of the sizes() array be documented?

Member Fl_Input_::handle_mouse(int, int, int, int, int keepmark=0) Add comment and parameters

Member Fl_Input_::handletext(int e, int, int, int, int) Add comment and parameters

Member Fl_Input_::maximum_size(int m) It is not clear if this function is actually required

Member Fl_Input_::maximum_size() const It is not clear if this function is actually required

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

209

Class Fl_Label For FLTK 1.3, the Fl_Label type will become a widget by itself. That way we will be
avoiding a lot of code duplication by handling labels in a similar fashion to widgets containing text.
We also provide an easy interface for very complex labels, containing html or vector graphics.

Member Fl_Menu_::add(const char ∗, int shortcut, Fl_Callback ∗, void ∗=0, int=0)
Raw integer shortcut needs examples. Dependent on responses to
http://fltk.org/newsgroups.php?gfltk.development+v:10086 and results
of STR#2344

Member Fl_Preferences::get(const char ∗entry, void ∗value, const void ∗defaultValue, int defaultSize, int maxSize)
maxSize should receive the number of bytes that were read.

Member Fl_Scroll::bbox(int &, int &, int &, int &) The visibility of the scrollbars ought to be
checked/calculated outside of the draw() method (STR #1895).

Member Fl_Text_Display::display_insert() Unicode?

Member Fl_Text_Display::extend_range_for_styles(int ∗start, int ∗end) Unicode?

Member Fl_Text_Display::handle_vline(int mode, int lineStart, int lineLen, int leftChar, int rightChar, int topClip, int bottomClip, int leftClip, int rightClip) const
we need to handle hidden hyphens and tabs here!

Member Fl_Text_Display::handle_vline(int mode, int lineStart, int lineLen, int leftChar, int rightChar, int topClip, int bottomClip, int leftClip, int rightClip) const
we handle all styles and selections

Member Fl_Text_Display::handle_vline(int mode, int lineStart, int lineLen, int leftChar, int rightChar, int topClip, int bottomClip, int leftClip, int rightClip) const
we must provide code to get pixel positions of the middle of a character as well

Member Fl_Text_Display::overstrike(const char ∗text) Unicode? Find out exactly what we do here
and simplify.

Member Fl_Text_Display::position_to_line(int pos, int ∗lineNum) const What does this do?

Member Fl_Text_Display::position_to_linecol(int pos, int ∗lineNum, int ∗column) const a column
number makes little sense in the UTF-8/variable font width environment. We will have to further
define what exactly we want to return. Please check the functions that call this particular function.

Member Fl_Text_Display::scroll(int topLineNum, int horizOffset) Column numbers make little
sense here.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://fltk.org/newsgroups.php?gfltk.development+v:10086

210 Todo List

Member Fl_Text_Display::shortcut(int s) FIXME : get set methods pointing on shortcut_ have no ef-
fects as shortcut_ is unused in this class and derived!

Member Fl_Text_Display::shortcut() const FIXME : get set methods pointing on shortcut_ have no
effects as shortcut_ is unused in this class and derived!

Member Fl_Text_Display::wrap_mode(int wrap, int wrap_margin) we need new wrap modes to
wrap at the window edge and based on pixel width or average character width.

Member Fl_Text_Display::wrapped_column(int row, int column) const What does this do and how is
it useful? Column numbers mean little in this context. Which functions depend on this one?

Member Fl_Text_Display::wrapped_column(int row, int column) const Unicode?

Member Fl_Text_Display::wrapped_row(int row) const What does this do and how is it useful? Col-
umn numbers mean little in this context. Which functions depend on this one?

Member Fl_Widget::align() const This function should not take uchar as an argument. Apart from the
fact that uchar is too short with only 8 bits, it does not provide type safety (in which case we don’t
need to declare Fl_Align an enum to begin with). NOTE∗ The current (FLTK 1.3) implementation
(Dec 2008) is such that Fl_Align is (typedef’d to be) "unsigned" (int), but Fl_Widget’s "align_"
member variable is a bit field of 8 bits only !

Member Fl_Widget::argument(long v) The user data value must be implemented using a union to avoid
64 bit machine incompatibilities.

Member Fl_Widget::as_gl_window() More documentation ...

Member Fl_Widget::as_group() More documentation ...

Member Fl_Widget::as_window() More documentation ...

Member Fl_Widget::type() const Explain "simulate RTTI" (currently only used to decide if a widget
is a window, i.e. type()>=FL_WINDOW ?). Is type() really used in a way that ensures "Forms
compatibility" ?

Member Fl_Window::as_window() More documentation ...

Member Fl_Window::show(int argc, char ∗∗argv) explain which system parameters are set up.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

211

Member Fl_When doxygen comments for values are incomplete and maybe wrong or unclear

Member Fl_Labeltype The doxygen comments are incomplete, and some labeltypes are starting with an
underscore. Also, there are three external functions undocumented (yet):

• fl_define_FL_SHADOW_LABEL()

• fl_define_FL_ENGRAVED_LABEL()

• fl_define_FL_EMBOSSED_LABEL()

Member Fl_String FIXME: temporary (?) typedef to mark UTF8 and Unicode conversions

Member fl_intptr_t typedef’s fl_intptr_t and fl_uintptr_t should be documented.

Member fl_height In the future, when the XFT issues are resolved, this function should simply return the
’size’ value.

Member fl_reset_spot provide user documentation for fl_reset_spot function

Member fl_set_spot provide user documentation for fl_set_spot function

Member fl_set_status provide user documentation for fl_set_status function

Member fl_nonspacing explain what non-spacing means.

Member fl_utf_strcasecmp Correct the incorrect logic where length of strings tested

Member fl_utf_strncasecmp Correct the incorrect logic where length of strings tested

Member fl_utf_strncasecmp Clarify whether n means number of bytes, or characters.

Page Drawing Things in FLTK work out why Fl::get_color() does not give links!

Page Drawing Things in FLTK work out why these do not give links!

Page Drawing Things in FLTK add an Fl_Draw_Area_Cb typedef to allow fl_scroll(...) to be doxy-
genated?

Page Drawing Things in FLTK Rework the Character Encoding section for UTF-8

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

212 Todo List

Page Drawing Things in FLTK drawing.dox: I fixed the above encoding problem of these ¸ and
umlaut characters, but this text is obsoleted by FLTK 1.3 with UTF-8 encoding, or must be rewritten
accordingly: How to use native (e.g. Windows "ANSI", or ISO-8859-x) encoding in embedded
strings for labels, error messages and more. Please check this (UTF-8) encoding on different OS’es
and with different language and font environments.

Page Handling Events Is this correct? IMHO, mouse motion (FL_MOVE) events are sent to the below-
mouse() widget, i.e. the widget that returned 1 on an FL_ENTER event. The pushed() widget will
usually get an FL_FOCUS event and becomes the focus() widget if it returns 1 on FL_FOCUS, and
will then get keyboard events (see below).

Page Adding and Extending Widgets Clarify Fl_Window::damage(n) handling - seems con-
fused/wrong? ORing value doesn’t match setting behaviour in FL_Widget.H!

Page Adding and Extending Widgets Clarify Fl_Widget::test_shortcut() explanations. Fl_Widget.h
says Internal Use only, but subclassing chapter gives details!

Page Unicode and UTF-8 Support Do we need this info about planes?

Page Unicode and UTF-8 Support Work through the code and this documentation to harmonize the
[OksiD] and [fltk2] functions.

Page Unicode and UTF-8 Support Verify 16/24 bit Unicode limit for different character sets? OksiD’s
code appears limited to 16-bit whereas the FLTK2 code appears to handle a wider set. What about
illegal characters? See comments in fl_utf8fromwc() and fl_utf8toUtf16().

Page Developer Information This is an example todo entry, please ignore !

Page Developer Information HACK∗ : include image file for footer. Doxygen does not include the file
"tiny.gif" from "html_footer" in its output html dir. Find out, how this can be done, or avoid using an
image in the HTML footer.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 25

Module Index

25.1 Modules

Here is a list of all modules:

Callback function typedefs . 229
Windows handling functions . 231
Events handling functions . 234
Selection & Clipboard functions . 246
Screen functions . 248
Color & Font functions . 250
Drawing functions . 260
Multithreading support functions . 281
Safe widget deletion support functions . 283
Cairo support functions and classes . 287
Unicode and UTF-8 functions . 289
Mac OS X-specific functions . 298
Common Dialogs classes and functions . 300
File names and URI utility functions . 309

214 Module Index

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 26

Class Index

26.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Fl . 315
Fl_Cairo_State . 392
FL_CHART_ENTRY . 401
Fl_Device . 428

Fl_Graphics_Driver . 488
Fl_GDI_Graphics_Driver . 473
Fl_PostScript_Graphics_Driver . 658
Fl_Quartz_Graphics_Driver . 687
Fl_Xlib_Graphics_Driver . 967

Fl_Surface_Device . 732
Fl_Display_Device . 434
Fl_Paged_Device . 631

Fl_PostScript_File_Device . 653
Fl_PostScript_Printer . 661

Fl_Printer . 679
Fl_System_Printer . 739

Fl_Printer . 679
Fl_End . 440
Fl_File_Chooser . 444
Fl_File_Icon . 453
Fl_Font_Descriptor . 465
Fl_Glut_Bitmap_Font . 484
Fl_Help_Dialog . 519
Fl_Help_Font_Style . 523
Fl_Help_Link . 524
Fl_Help_Target . 525
Fl_Image . 536

Fl_Bitmap . 342
Fl_XBM_Image . 966

Fl_Pixmap . 639
Fl_GIF_Image . 475
Fl_XPM_Image . 969

216 Class Index

Fl_RGB_Image . 693
Fl_BMP_Image . 345
Fl_JPEG_Image . 568
Fl_PNG_Image . 647
Fl_PNM_Image . 648

Fl_Shared_Image . 714
Fl_Tiled_Image . 836

Fl_Label . 570
Fl_Menu_Item . 596
Fl_Native_File_Chooser . 617
Fl_Paged_Device::page_format . 638
Fl_Plugin . 643

Fl_Device_Plugin . 430
Fl_Preferences . 663

Fl_Plugin_Manager . 645
Fl_Preferences::Name . 677
Fl_Text_Buffer . 771
Fl_Text_Display::Style_Table_Entry . 821
Fl_Text_Editor::Key_Binding . 829
Fl_Text_Selection . 830
Fl_Tooltip . 843
Fl_Tree_Item . 873
Fl_Tree_Item_Array . 885
Fl_Tree_Prefs . 888
Fl_Widget . 911

Fl_Box . 346
Fl_Button . 387

Fl_Light_Button . 572
Fl_Check_Button . 406
Fl_Round_Button . 700

Fl_Repeat_Button . 689
Fl_Return_Button . 691
Fl_Toggle_Button . 842

Fl_Chart . 395
Fl_Clock_Output . 415

Fl_Clock . 412
Fl_Round_Clock . 701

Fl_FormsBitmap . 466
Fl_FormsPixmap . 468
Fl_Free . 470
Fl_Group . 508

Fl_Browser_ . 370
Fl_Browser . 348

Fl_File_Browser . 441
Fl_Hold_Browser . 535
Fl_Multi_Browser . 613
Fl_Select_Browser . 713

Fl_Check_Browser . 402
Fl_Color_Chooser . 419
Fl_Help_View . 526
Fl_Input_Choice . 563
Fl_Pack . 629

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

26.1 Class Hierarchy 217

Fl_Scroll . 702
Fl_Spinner . 727
Fl_Table . 744

Fl_Table_Row . 763
Fl_Tabs . 767
Fl_Text_Display . 788

Fl_Text_Editor . 822
Fl_Tile . 833
Fl_Tree . 847
Fl_Window . 949

Fl_Double_Window . 436
Fl_Cairo_Window . 393
Fl_Overlay_Window . 626

Fl_Gl_Window . 476
Fl_Glut_Window . 485

Fl_Single_Window . 720
Fl_Menu_Window . 610

Fl_Wizard . 964
Fl_Input_ . 545

Fl_Input . 541
Fl_File_Input . 459
Fl_Float_Input . 464
Fl_Int_Input . 567
Fl_Multiline_Input . 614
Fl_Output . 624

Fl_Multiline_Output . 616
Fl_Secret_Input . 712

Fl_Menu_ . 574
Fl_Choice . 408
Fl_Menu_Bar . 589

Fl_Sys_Menu_Bar . 735
Fl_Menu_Button . 592

Fl_Positioner . 649
Fl_Progress . 685
Fl_Timer . 839
Fl_Valuator . 893

Fl_Adjuster . 339
Fl_Counter . 424

Fl_Simple_Counter . 719
Fl_Dial . 431

Fl_Fill_Dial . 462
Fl_Roller . 697
Fl_Slider . 723

Fl_Fill_Slider . 463
Fl_Scrollbar . 708
Fl_Value_Slider . 908

Fl_Value_Input . 899
Fl_Value_Output . 904

Fl_Widget_Tracker . 947

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

218 Class Index

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 27

Class Index

27.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Fl (The Fl is the FLTK global (static) containing state information and global methods for the
current application) . 315

Fl_Adjuster (Was stolen from Prisms, and has proven to be very useful for values that need a
large dynamic range) . 339

Fl_Bitmap (Supports caching and drawing of mono-color (bitmap) images) 342
Fl_BMP_Image (Supports loading, caching, and drawing of Windows Bitmap (BMP) image files)345
Fl_Box (This widget simply draws its box, and possibly it’s label) 346
Fl_Browser (Displays a scrolling list of text lines, and manages all the storage for the text) . . . 348
Fl_Browser_ (This is the base class for browsers) . 370
Fl_Button (Buttons generate callbacks when they are clicked by the user) 387
Fl_Cairo_State (Contains all the necessary info on the current cairo context) 392
Fl_Cairo_Window (This defines a pre-configured cairo fltk window) 393
Fl_Chart (Fl_Chart displays simple charts) . 395
FL_CHART_ENTRY (For internal use only) . 401
Fl_Check_Browser (Displays a scrolling list of text lines that may be selected and/or checked by

the user) . 402
Fl_Check_Button (A button with an "checkmark" to show its status) 406
Fl_Choice (A button that is used to pop up a menu) . 408
Fl_Clock (This widget provides a round analog clock display) 412
Fl_Clock_Output (This widget can be used to display a program-supplied time) 415
Fl_Color_Chooser (Standard RGB color chooser) . 419
Fl_Counter (Controls a single floating point value with button (or keyboard) arrows) 424
Fl_Device (All graphical output devices and all graphics systems) 428
Fl_Device_Plugin (This plugin socket allows the integration of new device drivers for special

window or screen types) . 430
Fl_Dial (Circular dial to control a single floating point value) 431
Fl_Display_Device (A display to which the computer can draw) 434
Fl_Double_Window (The Fl_Double_Window provides a double-buffered window) 436
Fl_End (This is a dummy class that allows you to end a Fl_Group in a constructor list of a class:) 440
Fl_File_Browser (Displays a list of filenames, optionally with file-specific icons) 441
Fl_File_Chooser (Displays a standard file selection dialog that supports various selection modes) 444
Fl_File_Icon (Manages icon images that can be used as labels in other widgets and as icons in

the FileBrowser widget) . 453

220 Class Index

Fl_File_Input (This widget displays a pathname in a text input field) 459
Fl_Fill_Dial (Draws a dial with a filled arc) . 462
Fl_Fill_Slider (Widget that draws a filled horizontal slider, useful as a progress or value meter) . 463
Fl_Float_Input (Subclass of Fl_Input that only allows the user to type floating point numbers

(sign, digits, decimal point, more digits, ’E’ or ’e’, sign, digits)) 464
Fl_Font_Descriptor (This a structure for an actual system font, with junk to help choose it and

info on character sizes) . 465
Fl_FormsBitmap (Forms compatibility Bitmap Image Widget) 466
Fl_FormsPixmap (Forms pixmap drawing routines) . 468
Fl_Free (Emulation of the Forms "free" widget) . 470
Fl_GDI_Graphics_Driver (The MSWindows-specific graphics class) 473
Fl_GIF_Image (Supports loading, caching, and drawing of Compuserve GIFSM images) 475
Fl_Gl_Window (Sets things up so OpenGL works) . 476
Fl_Glut_Bitmap_Font (Fltk glut font/size attributes used in the glutXXX functions) 484
Fl_Glut_Window (GLUT is emulated using this window class and these static variables (plus

several more static variables hidden in glut_compatability.cxx):) 485
Fl_Graphics_Driver (A virtual class subclassed for each graphics driver FLTK uses) 488
Fl_Group (FLTK container widget) . 508
Fl_Help_Dialog (Displays a standard help dialog window using the Fl_Help_View widget) . . . 519
Fl_Help_Font_Style (Fl_Help_View font stack element definition) 523
Fl_Help_Link (Definition of a link for the html viewer) . 524
Fl_Help_Target (Fl_Help_Target structure) . 525
Fl_Help_View (Displays HTML text) . 526
Fl_Hold_Browser (The Fl_Hold_Browser is a subclass of Fl_Browser which lets the user select

a single item, or no items by clicking on the empty space) 535
Fl_Image (Fl_Image is the base class used for caching and drawing all kinds of images in FLTK) 536
Fl_Input (This is the FLTK text input widget) . 541
Fl_Input_ (This class provides a low-overhead text input field) 545
Fl_Input_Choice (A combination of the input widget and a menu button) 563
Fl_Int_Input (Subclass of Fl_Input that only allows the user to type decimal digits (or hex num-

bers of the form 0xaef)) . 567
Fl_JPEG_Image (Supports loading, caching, and drawing of Joint Photographic Experts Group

(JPEG) File Interchange Format (JFIF) images) . 568
Fl_Label (This struct stores all information for a text or mixed graphics label) 570
Fl_Light_Button . 572
Fl_Menu_ (Base class of all widgets that have a menu in FLTK) 574
Fl_Menu_Bar (This widget provides a standard menubar interface) 589
Fl_Menu_Button (This is a button that when pushed pops up a menu (or hierarchy of menus)

defined by an array of Fl_Menu_Item objects) . 592
Fl_Menu_Item (The Fl_Menu_Item structure defines a single menu item that is used by the Fl_-

Menu_ class) . 596
Fl_Menu_Window (Window type used for menus) . 610
Fl_Multi_Browser (Subclass of Fl_Browser which lets the user select any set of the lines) . . . 613
’ characters as new lines rather than ∧J, and accepts the Return, Tab, and up and down arrow keys)614
Fl_Multiline_Output (This widget is a subclass of Fl_Output that displays multiple lines of text) 616
Fl_Native_File_Chooser (This class lets an FLTK application easily and consistently access the

operating system’s native file chooser) . 617
Fl_Output (This widget displays a piece of text) . 624
Fl_Overlay_Window (This window provides double buffering and also the ability to draw the

"overlay" which is another picture placed on top of the main image) 626
Fl_Pack (This widget was designed to add the functionality of compressing and aligning widgets) 629
Fl_Paged_Device (Represents page-structured drawing surfaces) 631
Fl_Paged_Device::page_format (Width, height and name of a page format) 638

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

27.1 Class List 221

Fl_Pixmap (Supports caching and drawing of colormap (pixmap) images, including transparency) 639
Fl_Plugin (Fl_Plugin allows link-time and run-time integration of binary modules) 643
Fl_Plugin_Manager (Fl_Plugin_Manager manages link-time and run-time plugin binaries) . . . 645
Fl_PNG_Image (Supports loading, caching, and drawing of Portable Network Graphics (PNG)

image files) . 647
Fl_PNM_Image (Supports loading, caching, and drawing of Portable Anymap (PNM, PBM,

PGM, PPM) image files) . 648
Fl_Positioner (This class is provided for Forms compatibility) 649
Fl_PostScript_File_Device (To send graphical output to a PostScript file) 653
Fl_PostScript_Graphics_Driver (PostScript graphical backend) 658
Fl_PostScript_Printer (Print support under Unix/Linux) . 661
Fl_Preferences (Fl_Preferences provides methods to store user settings between application starts)663
Fl_Preferences::Name (’Name’ provides a simple method to create numerical or more complex

procedural names for entries and groups on the fly) 677
Fl_Printer (OS-independent print support) . 679
Fl_Progress (Displays a progress bar for the user) . 685
Fl_Quartz_Graphics_Driver (The Mac OS X-specific graphics class) 687
Fl_Repeat_Button (The Fl_Repeat_Button is a subclass of Fl_Button that generates a callback

when it is pressed and then repeatedly generates callbacks as long as it is held down) . 689
Fl_Return_Button (The Fl_Return_Button is a subclass of Fl_Button that generates a callback

when it is pressed or when the user presses the Enter key) 691
Fl_RGB_Image (Supports caching and drawing of full-color images with 1 to 4 channels of color

information) . 693
Fl_Roller ("dolly" control commonly used to move 3D objects) 697
Fl_Round_Button (Buttons generate callbacks when they are clicked by the user) 700
Fl_Round_Clock (A clock widget of type FL_ROUND_CLOCK) 701
Fl_Scroll (This container widget lets you maneuver around a set of widgets much larger than

your window) . 702
Fl_Scrollbar (Displays a slider with arrow buttons at the ends of the scrollbar) 708
Fl_Secret_Input (Subclass of Fl_Input that displays its input as a string of asterisks) 712
Fl_Select_Browser (The class is a subclass of Fl_Browser which lets the user select a single item,

or no items by clicking on the empty space) . 713
Fl_Shared_Image (This class supports caching, loading, and drawing of image files) 714
Fl_Simple_Counter (This widget creates a counter with only 2 arrow buttons) 719
Fl_Single_Window (This is the same as Fl_Window) . 720
Fl_Slider (Sliding knob inside a box) . 723
Fl_Spinner (This widget is a combination of the input widget and repeat buttons) 727
Fl_Surface_Device (A surface that’s susceptible to receive graphical output) 732
Fl_Sys_Menu_Bar (A class to create, modify and delete menus that appear on Mac OS X in the

menu bar at the top of the screen) . 735
Fl_System_Printer (Print support under MSWindows and Mac OS X) 739
Fl_Table (A table of widgets or other content) . 744
Fl_Table_Row (A table with row selection capabilities) . 763
Fl_Tabs ("file card tabs" interface that allows you to put lots and lots of buttons and switches in

a panel, as popularized by many toolkits) . 767
Fl_Text_Buffer (This class manages unicode displayed in one or more Fl_Text_Display widgets) 771
Fl_Text_Display (Rich text display widget) . 788
Fl_Text_Display::Style_Table_Entry (This structure associates the color, font, andsize of a string

to draw with an attribute mask matching attr) . 821
Fl_Text_Editor (This is the FLTK text editor widget) . 822
Fl_Text_Editor::Key_Binding (Simple linked list associating a key/state to a function) 829
Fl_Text_Selection (This is an internal class for Fl_Text_Buffer to manage text selections) . . . 830
Fl_Tile (Lets you resize the children by dragging the border between them:) 833
Fl_Tiled_Image (This class supports tiling of images over a specified area) 836

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

222 Class Index

Fl_Timer (This is provided only to emulate the Forms Timer widget) 839
Fl_Toggle_Button (The toggle button is a push button that needs to be clicked once to toggle on,

and one more time to toggle off) . 842
Fl_Tooltip (Tooltip support for all FLTK widgets) . 843
Fl_Tree (Tree widget) . 847
Fl_Tree_Item (Tree item) . 873
Fl_Tree_Item_Array (Manages an array of Fl_Tree_Item pointers) 885
Fl_Tree_Prefs (Tree widget’s preferences) . 888
Fl_Valuator (Controls a single floating-point value and provides a consistent interface to set the

value, range, and step, and insures that callbacks are done the same for every object) . 893
Fl_Value_Input (Displays a numeric value) . 899
Fl_Value_Output (Displays a floating point value) . 904
Fl_Value_Slider (Fl_Slider widget with a box displaying the current value) 908
Fl_Widget (Fl_Widget is the base class for all widgets in FLTK) 911
Fl_Widget_Tracker (This class should be used to control safe widget deletion) 947
Fl_Window (This widget produces an actual window) . 949
Fl_Wizard (This widget is based off the Fl_Tabs widget, but instead of displaying tabs it only

changes "tabs" under program control) . 964
Fl_XBM_Image (Supports loading, caching, and drawing of X Bitmap (XBM) bitmap files) . . 966
Fl_Xlib_Graphics_Driver (The Xlib-specific graphics class) 967
Fl_XPM_Image (Supports loading, caching, and drawing of X Pixmap (XPM) images, including

transparency) . 969

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 28

File Index

28.1 File List

Here is a list of all documented files with brief descriptions:

aimm.h . ??
armscii_8.h . ??
ascii.h . ??
big5.h . ??
big5_emacs.h . ??
case.h . ??
cgdebug.h . ??
cp1133.h . ??
cp1251.h . ??
cp1255.h . ??
cp1256.h . ??
cp936ext.h . ??
dingbats_.h . ??
dirent.h . ??
Enumerations.H (This file contains type definitions and general enumerations) 971
fastarrow.h . ??
filename.H . ??
Fl.H . ??
Fl_Adjuster.H . ??
fl_arc.cxx (Utility functions for drawing arcs and circles) . 985
fl_arci.cxx (Utility functions for drawing circles using integers) 986
fl_ask.H . ??
Fl_Bitmap.H . ??
Fl_BMP_Image.H . ??
Fl_Box.H . ??
fl_boxtype.cxx (Drawing code for common box types) . 987
Fl_Browser.H . ??
Fl_Browser_.H . ??
Fl_Button.H . ??
Fl_Cairo.H . ??
Fl_Cairo_Window.H . ??
Fl_Chart.H . ??
Fl_Check_Browser.H . ??

224 File Index

Fl_Check_Button.H . ??
Fl_Choice.H . ??
Fl_Clock.H . ??
fl_cmap.h . ??
fl_color.cxx (Color handling) . 989
Fl_Color_Chooser.H (Fl_Color_Chooser widget) . 991
Fl_Counter.H . ??
fl_curve.cxx (Utility for drawing Bezier curves, adding the points to the current fl_begin/fl_-

vertex/fl_end path) . 992
Fl_Device.H (Declaration of classes Fl_Device, Fl_Graphics_Driver, Fl_Surface_Device, Fl_-

Display_Device, Fl_Device_Plugin) . 993
Fl_Dial.H . ??
Fl_Double_Window.H . ??
fl_draw.H (Utility header to pull drawing functions together) 995
Fl_Export.H . ??
Fl_File_Browser.H . ??
Fl_File_Chooser.H . ??
Fl_File_Icon.H . ??
Fl_File_Input.H . ??
Fl_Fill_Dial.H . ??
Fl_Fill_Slider.H . ??
Fl_Float_Input.H . ??
Fl_Font.H . ??
Fl_FormsBitmap.H . ??
Fl_FormsPixmap.H . ??
Fl_Free.H . ??
Fl_GIF_Image.H . ??
Fl_Gl_Choice.H . ??
Fl_Gl_Window.H . ??
Fl_Group.H . ??
Fl_Help_Dialog.H . ??
Fl_Help_View.H . ??
Fl_Hold_Browser.H . ??
Fl_Hor_Fill_Slider.H . ??
Fl_Hor_Nice_Slider.H . ??
Fl_Hor_Slider.H . ??
Fl_Hor_Value_Slider.H . ??
Fl_Image.H . ??
Fl_Input.H . ??
Fl_Input_.H . ??
Fl_Input_Choice.H . ??
Fl_Int_Input.H . ??
Fl_JPEG_Image.H . ??
Fl_Light_Button.H . ??
Fl_Line_Dial.H . ??
fl_line_style.cxx (Line style drawing utility hiding different platforms) 1003
Fl_Menu.H . ??
Fl_Menu_.H . ??
Fl_Menu_Bar.H . ??
Fl_Menu_Button.H . ??
Fl_Menu_Item.H . ??
Fl_Menu_Window.H . ??
fl_message.H . ??
Fl_Multi_Browser.H . ??

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

28.1 File List 225

Fl_Multi_Label.H . ??
Fl_Multiline_Input.H . ??
Fl_Multiline_Output.H . ??
Fl_Native_File_Chooser.H . ??
Fl_Native_File_Chooser_FLTK.H . ??
Fl_Native_File_Chooser_MAC.H . ??
Fl_Native_File_Chooser_WIN32.H . ??
Fl_Nice_Slider.H . ??
Fl_Object.H . ??
Fl_Output.H . ??
Fl_Overlay_Window.H . ??
Fl_Pack.H . ??
Fl_Paged_Device.cxx (Implementation of class Fl_Paged_Device) 1004
Fl_Paged_Device.H (Declaration of class Fl_Paged_Device) 1005
Fl_Pixmap.H . ??
Fl_Plugin.H . ??
Fl_PNG_Image.H . ??
Fl_PNM_Image.H . ??
Fl_Positioner.H . ??
Fl_PostScript.H (Declaration of classes Fl_PostScript_Graphics_Driver, Fl_PostScript_File_-

Device) . 1006
Fl_Preferences.H . ??
Fl_Printer.H (Declaration of classes Fl_System_Printer, Fl_PostScript_Printer, Fl_Printer, Fl_-

Device_Plugin) . 1007
Fl_Progress.H . ??
Fl_Radio_Button.H . ??
Fl_Radio_Light_Button.H . ??
Fl_Radio_Round_Button.H . ??
fl_rect.cxx (Drawing and clipping routines for rectangles) . 1008
Fl_Repeat_Button.H . ??
Fl_Return_Button.H . ??
Fl_RGB_Image.H . ??
Fl_Roller.H . ??
Fl_Round_Button.H . ??
Fl_Round_Clock.H . ??
Fl_Scroll.H . ??
Fl_Scrollbar.H . ??
Fl_Secret_Input.H . ??
Fl_Select_Browser.H . ??
Fl_Shared_Image.H (Fl_Shared_Image class) . 1009
fl_show_colormap.H (The fl_show_colormap() function hides the implementation classes used

to provide the popup window and color selection mechanism) 1010
fl_show_input.H . ??
Fl_Simple_Counter.H . ??
Fl_Single_Window.H . ??
Fl_Slider.H . ??
Fl_Spinner.H . ??
Fl_Sys_Menu_Bar.H . ??
Fl_Table.H . ??
Fl_Table_Row.H . ??
Fl_Tabs.H . ??
Fl_Text_Buffer.H . ??
Fl_Text_Display.H . ??
Fl_Text_Editor.H . ??

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

226 File Index

Fl_Tile.H . ??
Fl_Tiled_Image.H . ??
Fl_Timer.H . ??
Fl_Toggle_Button.H . ??
Fl_Toggle_Light_Button.H . ??
Fl_Toggle_Round_Button.H . ??
Fl_Tooltip.H . ??
Fl_Tree.H (This file contains the definitions of the Fl_Tree class) 1011
Fl_Tree_Item.H (This file contains the definitions for Fl_Tree_Item) 1012
Fl_Tree_Item_Array.H (This file defines a class that manages an array of Fl_Tree_Item pointers) 1013
Fl_Tree_Prefs.H (This file contains the definitions for Fl_Tree’s preferences) 1014
fl_types.h (This file contains simple "C"-style type definitions) 1016
fl_utf8.h (Header for Unicode and UTF8 chracter handling) 1017
Fl_Valuator.H . ??
Fl_Value_Input.H . ??
Fl_Value_Output.H . ??
Fl_Value_Slider.H . ??
fl_vertex.cxx (Portable drawing code for drawing arbitrary shapes with simple 2D transforma-

tions) . 1020
Fl_Widget.H (Fl_Widget, Fl_Label classes) . 1022
Fl_Window.H . ??
Fl_Wizard.H . ??
Fl_XBM_Image.H . ??
Fl_XColor.H . ??
Fl_XPM_Image.H . ??
flstring.h . ??
forms.H . ??
freeglut_teapot_data.h . ??
gb2312.h . ??
georgian_academy.h . ??
georgian_ps.h . ??
gl.h (This file defines wrapper functions for OpenGL in FLTK) 1024
gl2opengl.h . ??
gl_draw.H . ??
glu.h . ??
glut.H . ??
iso8859_1.h . ??
iso8859_10.h . ??
iso8859_11.h . ??
iso8859_13.h . ??
iso8859_14.h . ??
iso8859_15.h . ??
iso8859_16.h . ??
iso8859_2.h . ??
iso8859_3.h . ??
iso8859_4.h . ??
iso8859_5.h . ??
iso8859_6.h . ??
iso8859_7.h . ??
iso8859_8.h . ??
iso8859_9.h . ??
iso8859_9e.h . ??
jisx0201.h . ??
jisx0208.h . ??

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

28.1 File List 227

jisx0212.h . ??
koi8_c.h . ??
koi8_r.h . ??
koi8_u.h . ??
ksc5601.h . ??
mac.H . ??
math.h . ??
mediumarrow.h . ??
mulelao.h . ??
names.h . ??
print_panel.h . ??
slowarrow.h . ??
spacing.h . ??
symbol_.h . ??
tatar_cyr.h . ??
tcvn.h . ??
tis620.h . ??
ucs2be.h . ??
utf8.h . ??
viscii.h . ??
win32.H . ??
x.H . ??
Ximint.h . ??
Xlibint.h . ??
Xutf8.h . ??

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

228 File Index

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 29

Module Documentation

29.1 Callback function typedefs

Typedefs defined in <FL/Fl.H> for callback or handler functions passed as function parameters.

Typedefs

• typedef void(∗ Fl_Abort_Handler)(const char ∗format,...)
signature of set_abort functions passed as parameters

• typedef int(∗ Fl_Args_Handler)(int argc, char ∗∗argv, int &i)
signature of args functions passed as parameters

• typedef void(∗ Fl_Atclose_Handler)(Fl_Window ∗window, void ∗data)
signature of set_atclose functions passed as parameters

• typedef void(∗ Fl_Awake_Handler)(void ∗data)
signature of some wakeup callback functions passed as parameters

• typedef void(Fl_Box_Draw_F)(int x, int y, int w, int h, Fl_Color color)
signature of some box drawing functions passed as parameters

• typedef int(∗ Fl_Event_Handler)(int event)
signature of add_handler functions passed as parameters

• typedef void(∗ Fl_FD_Handler)(int fd, void ∗data)
signature of add_fd functions passed as parameters

• typedef void(∗ Fl_Idle_Handler)(void ∗data)
signature of add_idle callback functions passed as parameters

• typedef void(Fl_Label_Draw_F)(const Fl_Label ∗label, int x, int y, int w, int h, Fl_Align align)
signature of some label drawing functions passed as parameters

• typedef void(Fl_Label_Measure_F)(const Fl_Label ∗label, int &width, int &height)

230 Module Documentation

signature of some label measurement functions passed as parameters

• typedef void(∗ Fl_Old_Idle_Handler)()
signature of set_idle callback functions passed as parameters

• typedef void(∗ Fl_Timeout_Handler)(void ∗data)
signature of some timeout callback functions passed as parameters

29.1.1 Detailed Description

Typedefs defined in <FL/Fl.H> for callback or handler functions passed as function parameters.

FLTK uses callback functions as parameters for some function calls, e.g. to set up global event handlers
(Fl::add_handler()), to add a timeout handler (Fl::add_timeout()), and many more.

The typedefs defined in this group describe the function parameters used to set up or clear the callback
functions and should also be referenced to define the callback function to handle such events in the user’s
code.

See also:

Fl::add_handler(), Fl::add_timeout(), Fl::repeat_timeout(), Fl::remove_timeout() and others

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.2 Windows handling functions 231

29.2 Windows handling functions

Windows and standard dialogs handling declared in <FL/Fl.H>.

Functions

• static void Fl::default_atclose (Fl_Window ∗, void ∗)

Default callback for window widgets.

• static void Fl::first_window (Fl_Window ∗)

See Fl_Window∗ first_window().

• static Fl_Window ∗ Fl::first_window ()

Returns the first top-level window in the list of shown() windows.

• static void Fl::grab (Fl_Window ∗)

Selects the window to grab.

• static Fl_Window ∗ Fl::grab ()

This is used when pop-up menu systems are active.

• static Fl_Window ∗ Fl::modal ()

Returns the top-most modal() window currently shown.

• static Fl_Window ∗ Fl::next_window (const Fl_Window ∗)

Returns the next top-level window in the list of shown() windows.

• static void Fl::set_abort (Fl_Abort_Handler f)

For back compatibility, sets the void Fl::fatal handler callback.

• static void Fl::set_atclose (Fl_Atclose_Handler f)

For back compatibility, sets the Fl::atclose handler callback.

Variables

• static void(∗ Fl::atclose)(Fl_Window ∗, void ∗) = default_atclose

Back compatibility: default window callback handler.

29.2.1 Detailed Description

Windows and standard dialogs handling declared in <FL/Fl.H>.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

232 Module Documentation

29.2.2 Function Documentation

29.2.2.1 void Fl::default_atclose (Fl_Window ∗ window, void ∗ v) [static, inherited]

Default callback for window widgets.

It hides the window and then calls the default widget callback.

29.2.2.2 Fl_Window ∗ Fl::first_window () [static, inherited]

Returns the first top-level window in the list of shown() windows.

If a modal() window is shown this is the top-most modal window, otherwise it is the most recent window
to get an event.

The second form sets the window that is returned by first_window. The window is removed from wherever
it is in the list and inserted at the top. This is not done if Fl::modal() is on or if the window is not shown().
Because the first window is used to set the "parent" of modal windows, this is often useful.

29.2.2.3 void Fl::grab (Fl_Window ∗ win) [static, inherited]

Selects the window to grab.

See Fl_Window∗ Fl::grab()

29.2.2.4 static Fl_Window∗ Fl::grab () [inline, static, inherited]

This is used when pop-up menu systems are active.

Send all events to the passed window no matter where the pointer or focus is (including in other programs).
The window does not have to be shown() , this lets the handle() method of a "dummy" window override
all event handling and allows you to map and unmap a complex set of windows (under both X and WIN32
some window must be mapped because the system interface needs a window id).

If grab() is on it will also affect show() of windows by doing system-specific operations (on X it turns on
override-redirect). These are designed to make menus popup reliably and faster on the system.

To turn off grabbing do Fl::grab(0).

Be careful that your program does not enter an infinite loop while grab() is on. On X this will lock up your
screen! To avoid this potential lockup, all newer operating systems seem to limit mouse pointer grabbing
to the time during which a mouse button is held down. Some OS’s may not support grabbing at all.

29.2.2.5 static Fl_Window∗ Fl::modal () [inline, static, inherited]

Returns the top-most modal() window currently shown.

This is the most recently shown() window with modal() true, or NULL if there are no modal() windows
shown(). The modal() window has its handle() method called for all events, and no other windows will
have handle() called (grab() overrides this).

29.2.2.6 Fl_Window ∗ Fl::next_window (const Fl_Window ∗ window) [static, inherited]

Returns the next top-level window in the list of shown() windows.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.2 Windows handling functions 233

You can use this call to iterate through all the windows that are shown().

29.2.2.7 static void Fl::set_atclose (Fl_Atclose_Handler f) [inline, static, inherited]

For back compatibility, sets the Fl::atclose handler callback.

You can now simply change the callback for the window instead.

See also:

Fl_Window::callback(Fl_Callback∗)

29.2.3 Variable Documentation

29.2.3.1 void(∗ Fl::atclose)(Fl_Window ∗, void ∗) (Fl_Window ∗, void ∗) = default_atclose
[static, inherited]

Back compatibility: default window callback handler.

See also:

Fl::set_atclose()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

234 Module Documentation

29.3 Events handling functions

Fl class events handling API declared in <FL/Fl.H>.

Functions

• static void Fl::add_handler (Fl_Event_Handler h)

Install a function to parse unrecognized events.

• static void Fl::belowmouse (Fl_Widget ∗)
Sets the widget that is below the mouse.

• static Fl_Widget ∗ Fl::belowmouse ()

Gets the widget that is below the mouse.

• static int Fl::compose (int &del)

Any text editing widget should call this for each FL_KEYBOARD event.

• static void Fl::compose_reset ()

If the user moves the cursor, be sure to call Fl::compose_reset().

• static int Fl::event ()

Returns the last event that was processed.

• static int Fl::event_alt ()

Returns non-zero if the Alt key is pressed.

• static int Fl::event_button ()

Gets which particular mouse button caused the current event.

• static int Fl::event_button1 ()

Returns non-zero if mouse button 1 is currently held down.

• static int Fl::event_button2 ()

Returns non-zero if button 2 is currently held down.

• static int Fl::event_button3 ()

Returns non-zero if button 3 is currently held down.

• static int Fl::event_buttons ()

Returns the mouse buttons state bits; if non-zero, then at least one button is pressed now.

• static void Fl::event_clicks (int i)

Manually sets the number returned by Fl::event_clicks().

• static int Fl::event_clicks ()

Returns non zero if we had a double click event.

• static int Fl::event_command ()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.3 Events handling functions 235

Returns non-zero if the FL_COMMAND key is pressed, either FL_CTRL or on OSX FL_META.

• static int Fl::event_ctrl ()

Returns non-zero if the Control key is pressed.

• static int Fl::event_dx ()

Returns the current horizontal mouse scrolling associated with the FL_MOUSEWHEEL event.

• static int Fl::event_dy ()

Returns the current vertical mouse scrolling associated with the FL_MOUSEWHEEL event.

• static int Fl::event_inside (const Fl_Widget ∗)
Returns whether or not the mouse event is inside the given widget.

• static int Fl::event_inside (int, int, int, int)

Returns whether or not the mouse event is inside the given rectangle.

• static void Fl::event_is_click (int i)

Only i=0 works! See int event_is_click().

• static int Fl::event_is_click ()

The first form returns non-zero if the mouse has not moved far enough and not enough time has passed since
the last FL_PUSH or FL_KEYBOARD event for it to be considered a "drag" rather than a "click".

• static int Fl::event_key (int key)

Returns true if the given key was held down (or pressed) during the last event.

• static int Fl::event_key ()

Gets which key on the keyboard was last pushed.

• static int Fl::event_length ()

Returns the length of the text in Fl::event_text().

• static int Fl::event_original_key ()

Returns the keycode of the last key event, regardless of the NumLock state.

• static int Fl::event_shift ()

Returns non-zero if the Shift key is pressed.

• static int Fl::event_state (int i)

See int event_state().

• static int Fl::event_state ()

This is a bitfield of what shift states were on and what mouse buttons were held down during the most recent
event.

• static const char ∗ Fl::event_text ()

Returns the text associated with the current event, including FL_PASTE or FL_DND_RELEASE events.

• static int Fl::event_x ()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

236 Module Documentation

Returns the mouse position of the event relative to the Fl_Window it was passed to.

• static int Fl::event_x_root ()

Returns the mouse position on the screen of the event.

• static int Fl::event_y ()

Returns the mouse position of the event relative to the Fl_Window it was passed to.

• static int Fl::event_y_root ()

Returns the mouse position on the screen of the event.

• static void Fl::focus (Fl_Widget ∗)
Sets the widget that will receive FL_KEYBOARD events.

• static Fl_Widget ∗ Fl::focus ()

Gets the current Fl::focus() widget.

• static int Fl::get_key (int key)

Returns true if the given key is held down now.

• static void Fl::get_mouse (int &, int &)

Return where the mouse is on the screen by doing a round-trip query to the server.

• static int Fl::handle (int, Fl_Window ∗)
Sends the event to a window for processing.

• static void Fl::pushed (Fl_Widget ∗)
Sets the widget that is being pushed.

• static Fl_Widget ∗ Fl::pushed ()

Gets the widget that is being pushed.

• static void Fl::remove_handler (Fl_Event_Handler h)

Removes a previously added event handler.

• static int Fl::test_shortcut (Fl_Shortcut)

Test the current event, which must be an FL_KEYBOARD or FL_SHORTCUT, against a shortcut value
(described in Fl_Button).

Variables

• const char ∗const fl_eventnames []

This is an array of event names you can use to convert event numbers into names.

• const char ∗const fl_fontnames []

This is an array of font names you can use to convert font numbers into names.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.3 Events handling functions 237

29.3.1 Detailed Description

Fl class events handling API declared in <FL/Fl.H>.

29.3.2 Function Documentation

29.3.2.1 void Fl::add_handler (Fl_Event_Handler ha) [static, inherited]

Install a function to parse unrecognized events.

If FLTK cannot figure out what to do with an event, it calls each of these functions (most recent first) until
one of them returns non-zero. If none of them returns non zero then the event is ignored. Events that cause
this to be called are:

• FL_SHORTCUT events that are not recognized by any widget. This lets you provide global shortcut
keys.

• System events that FLTK does not recognize. See fl_xevent.

• Some other events when the widget FLTK selected returns zero from its handle() method. Exactly
which ones may change in future versions, however.

29.3.2.2 void Fl::belowmouse (Fl_Widget ∗ o) [static, inherited]

Sets the widget that is below the mouse.

This is for highlighting buttons. It is not used to send FL_PUSH or FL_MOVE directly, for several obscure
reasons, but those events typically go to this widget. This is also the first widget tried for FL_SHORTCUT
events.

If you change the belowmouse widget, the previous one and all parents (that don’t contain the new widget)
are sent FL_LEAVE events. Changing this does not send FL_ENTER to this or any widget, because
sending FL_ENTER is supposed to test if the widget wants the mouse (by it returning non-zero from
handle()).

29.3.2.3 static Fl_Widget∗ Fl::belowmouse () [inline, static, inherited]

Gets the widget that is below the mouse.

See also:

belowmouse(Fl_Widget∗)

29.3.2.4 int Fl::compose (int & del) [static, inherited]

Any text editing widget should call this for each FL_KEYBOARD event.

Use of this function is very simple.

If true is returned, then it has modified the Fl::event_text() and Fl::event_length() to a set of bytes to insert
(it may be of zero length!). In will also set the "del" parameter to the number of bytes to the left of the
cursor to delete, this is used to delete the results of the previous call to Fl::compose().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

238 Module Documentation

If false is returned, the keys should be treated as function keys, and del is set to zero. You could insert the
text anyways, if you don’t know what else to do.

Though the current implementation returns immediately, future versions may take quite awhile, as they
may pop up a window or do other user-interface things to allow characters to be selected.

29.3.2.5 static void Fl::compose_reset () [inline, static, inherited]

If the user moves the cursor, be sure to call Fl::compose_reset().

The next call to Fl::compose() will start out in an initial state. In particular it will not set "del" to non-zero.
This call is very fast so it is ok to call it many times and in many places.

29.3.2.6 static int Fl::event () [inline, static, inherited]

Returns the last event that was processed.

This can be used to determine if a callback is being done in response to a keypress, mouse click, etc.

29.3.2.7 static int Fl::event_alt () [inline, static, inherited]

Returns non-zero if the Alt key is pressed.

29.3.2.8 static int Fl::event_button () [inline, static, inherited]

Gets which particular mouse button caused the current event.

This returns garbage if the most recent event was not a FL_PUSH or FL_RELEASE event.

Return values:

FL_LEFT_MOUSE

FL_MIDDLE_MOUSE

FL_RIGHT_MOUSE.

See also:

Fl::event_buttons()

29.3.2.9 static int Fl::event_button1 () [inline, static, inherited]

Returns non-zero if mouse button 1 is currently held down.

For more details, see Fl::event_buttons().

29.3.2.10 static int Fl::event_button2 () [inline, static, inherited]

Returns non-zero if button 2 is currently held down.

For more details, see Fl::event_buttons().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.3 Events handling functions 239

29.3.2.11 static int Fl::event_button3 () [inline, static, inherited]

Returns non-zero if button 3 is currently held down.

For more details, see Fl::event_buttons().

29.3.2.12 static int Fl::event_buttons () [inline, static, inherited]

Returns the mouse buttons state bits; if non-zero, then at least one button is pressed now.

This function returns the button state at the time of the event. During an FL_RELEASE event, the state
of the released button will be 0. To find out, which button caused an FL_RELEASE event, you can use
Fl::event_button() instead.

Returns:

a bit mask value like { [FL_BUTTON1] | [FL_BUTTON2] | [FL_BUTTON3] }

29.3.2.13 static void Fl::event_clicks (int i) [inline, static, inherited]

Manually sets the number returned by Fl::event_clicks().

This can be used to set it to zero so that later code does not think an item was double-clicked.

Parameters:

← i corresponds to no double-click if 0, i+1 mouse clicks otherwise

See also:

int event_clicks()

29.3.2.14 static int Fl::event_clicks () [inline, static, inherited]

Returns non zero if we had a double click event.

Return values:

Non-zero if the most recent FL_PUSH or FL_KEYBOARD was a "double click".

N-1 for N clicks. A double click is counted if the same button is pressed again while event_is_click()
is true.

29.3.2.15 static int Fl::event_command () [inline, static, inherited]

Returns non-zero if the FL_COMMAND key is pressed, either FL_CTRL or on OSX FL_META.

29.3.2.16 static int Fl::event_ctrl () [inline, static, inherited]

Returns non-zero if the Control key is pressed.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

240 Module Documentation

29.3.2.17 static int Fl::event_dx () [inline, static, inherited]

Returns the current horizontal mouse scrolling associated with the FL_MOUSEWHEEL event.

Right is positive.

29.3.2.18 static int Fl::event_dy () [inline, static, inherited]

Returns the current vertical mouse scrolling associated with the FL_MOUSEWHEEL event.

Down is positive.

29.3.2.19 int Fl::event_inside (const Fl_Widget ∗ o) [static, inherited]

Returns whether or not the mouse event is inside the given widget.

Returns non-zero if the current event_x and event_y put it inside the widget or inside an arbitrary bounding
box. You should always call this rather than doing your own comparison so you are consistent about edge
effects.

29.3.2.20 int Fl::event_inside (int xx, int yy, int ww, int hh) [static, inherited]

Returns whether or not the mouse event is inside the given rectangle.

Returns non-zero if the current event_x and event_y put it inside the widget or inside an arbitrary bounding
box. You should always call this rather than doing your own comparison so you are consistent about edge
effects.

29.3.2.21 static int Fl::event_is_click () [inline, static, inherited]

The first form returns non-zero if the mouse has not moved far enough and not enough time has passed
since the last FL_PUSH or FL_KEYBOARD event for it to be considered a "drag" rather than a "click".

You can test this on FL_DRAG, FL_RELEASE, and FL_MOVE events. The second form clears the value
returned by Fl::event_is_click(). Useful to prevent the next click from being counted as a double-click or
to make a popup menu pick an item with a single click. Don’t pass non-zero to this.

29.3.2.22 int Fl::event_key (int key) [static, inherited]

Returns true if the given key was held down (or pressed) during the last event.

This is constant until the next event is read from the server.

Fl::get_key(int) returns true if the given key is held down now. Under X this requires a round-trip to the
server and is much slower than Fl::event_key(int).

Keys are identified by the unshifted values. FLTK defines a set of symbols that should work on most
modern machines for every key on the keyboard:

• All keys on the main keyboard producing a printable ASCII character use the value of that ASCII
character (as though shift, ctrl, and caps lock were not on). The space bar is 32.

• All keys on the numeric keypad producing a printable ASCII character use the value of that ASCII
character plus FL_KP. The highest possible value is FL_KP_Last so you can range-check to see if
something is on the keypad.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.3 Events handling functions 241

• All numbered function keys use the number on the function key plus FL_F. The highest possible
number is FL_F_Last, so you can range-check a value.

• Buttons on the mouse are considered keys, and use the button number (where the left button is 1)
plus FL_Button.

• All other keys on the keypad have a symbol: FL_Escape, FL_BackSpace, FL_Tab, FL_Enter,
FL_Print, FL_Scroll_Lock, FL_Pause, FL_Insert, FL_Home, FL_Page_Up, FL_Delete, FL_End,
FL_Page_Down, FL_Left, FL_Up, FL_Right, FL_Down, FL_Shift_L, FL_Shift_R, FL_Control_L,
FL_Control_R, FL_Caps_Lock, FL_Alt_L, FL_Alt_R, FL_Meta_L, FL_Meta_R, FL_Menu, FL_-
Num_Lock, FL_KP_Enter. Be careful not to confuse these with the very similar, but all-caps, sym-
bols used by Fl::event_state().

On X Fl::get_key(FL_Button+n) does not work.

On WIN32 Fl::get_key(FL_KP_Enter) and Fl::event_key(FL_KP_Enter) do not work.

29.3.2.23 static int Fl::event_key () [inline, static, inherited]

Gets which key on the keyboard was last pushed.

The returned integer ’key code’ is not necessarily a text equivalent for the keystroke. For instance: if
someone presses ’5’ on the numeric keypad with numlock on, Fl::event_key() may return the ’key code’
for this key, and NOT the character ’5’. To always get the ’5’, use Fl::event_text() instead.

Returns:

an integer ’key code’, or 0 if the last event was not a key press or release.

See also:

int event_key(int), event_text(), compose(int&).

29.3.2.24 static int Fl::event_length () [inline, static, inherited]

Returns the length of the text in Fl::event_text().

There will always be a nul at this position in the text. However there may be a nul before that if the
keystroke translates to a nul character or you paste a nul character.

29.3.2.25 static int Fl::event_original_key () [inline, static, inherited]

Returns the keycode of the last key event, regardless of the NumLock state.

If NumLock is deactivated, FLTK translates events from the numeric keypad into the corresponding arrow
key events. event_key() returns the translated key code, whereas event_original_key() returns the keycode
before NumLock translation.

29.3.2.26 static int Fl::event_shift () [inline, static, inherited]

Returns non-zero if the Shift key is pressed.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

242 Module Documentation

29.3.2.27 static int Fl::event_state () [inline, static, inherited]

This is a bitfield of what shift states were on and what mouse buttons were held down during the most
recent event.

The second version returns non-zero if any of the passed bits are turned on. The legal bits are:

• FL_SHIFT

• FL_CAPS_LOCK

• FL_CTRL

• FL_ALT

• FL_NUM_LOCK

• FL_META

• FL_SCROLL_LOCK

• FL_BUTTON1

• FL_BUTTON2

• FL_BUTTON3

X servers do not agree on shift states, and FL_NUM_LOCK, FL_META, and FL_SCROLL_LOCK may
not work. The values were selected to match the XFree86 server on Linux. In addition there is a bug in the
way X works so that the shift state is not correctly reported until the first event after the shift key is pressed
or released.

29.3.2.28 static const char∗ Fl::event_text () [inline, static, inherited]

Returns the text associated with the current event, including FL_PASTE or FL_DND_RELEASE events.

This can be used in response to FL_KEYUP, FL_KEYDOWN, FL_PASTE, FL_DND_RELEASE.

When responding to FL_KEYUP/FL_KEYDOWN, use this function instead of Fl::event_key() to get the
text equivalent of keystrokes suitable for inserting into strings and text widgets.

The returned string is guaranteed to be be NULL terminated. However, see Fl::event_length() for the actual
length of the string, in case the string itself contains NULLs that are part of the text data.

Returns:

A NULL terminated text string equivalent of the last keystroke.

29.3.2.29 static int Fl::event_x_root () [inline, static, inherited]

Returns the mouse position on the screen of the event.

To find the absolute position of an Fl_Window on the screen, use the difference between event_x_-
root(),event_y_root() and event_x(),event_y().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.3 Events handling functions 243

29.3.2.30 static int Fl::event_y_root () [inline, static, inherited]

Returns the mouse position on the screen of the event.

To find the absolute position of an Fl_Window on the screen, use the difference between event_x_-
root(),event_y_root() and event_x(),event_y().

29.3.2.31 void Fl::focus (Fl_Widget ∗ o) [static, inherited]

Sets the widget that will receive FL_KEYBOARD events.

If you change Fl::focus(), the previous widget and all parents (that don’t contain the new widget) are sent
FL_UNFOCUS events. Changing the focus does not send FL_FOCUS to this or any widget, because send-
ing FL_FOCUS is supposed to test if the widget wants the focus (by it returning non-zero from handle()).

See also:

Fl_Widget::take_focus()

29.3.2.32 static Fl_Widget∗ Fl::focus () [inline, static, inherited]

Gets the current Fl::focus() widget.

See also:

Fl::focus(Fl_Widget∗)

29.3.2.33 int Fl::get_key (int key) [static, inherited]

Returns true if the given key is held down now.

Under X this requires a round-trip to the server and is much slower than Fl::event_key(int).

See also:

event_key(int)

29.3.2.34 static void Fl::get_mouse (int &, int &) [static, inherited]

Return where the mouse is on the screen by doing a round-trip query to the server.

You should use Fl::event_x_root() and Fl::event_y_root() if possible, but this is necessary if you are not
sure if a mouse event has been processed recently (such as to position your first window). If the display is
not open, this will open it.

29.3.2.35 int Fl::handle (int e, Fl_Window ∗ window) [static, inherited]

Sends the event to a window for processing.

Returns non-zero if any widget uses the event.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

244 Module Documentation

29.3.2.36 void Fl::pushed (Fl_Widget ∗ o) [static, inherited]

Sets the widget that is being pushed.

FL_DRAG or FL_RELEASE (and any more FL_PUSH) events will be sent to this widget.

If you change the pushed widget, the previous one and all parents (that don’t contain the new widget) are
sent FL_RELEASE events. Changing this does not send FL_PUSH to this or any widget, because sending
FL_PUSH is supposed to test if the widget wants the mouse (by it returning non-zero from handle()).

29.3.2.37 static Fl_Widget∗ Fl::pushed () [inline, static, inherited]

Gets the widget that is being pushed.

See also:

void pushed(Fl_Widget∗)

29.3.2.38 int Fl::test_shortcut (Fl_Shortcut shortcut) [static, inherited]

Test the current event, which must be an FL_KEYBOARD or FL_SHORTCUT, against a shortcut value
(described in Fl_Button).

Not to be confused with Fl_Widget::test_shortcut().

Returns:

non-zero if there is a match.

29.3.3 Variable Documentation

29.3.3.1 const char∗ const fl_eventnames[]

Initial value:

{
"FL_NO_EVENT",
"FL_PUSH",
"FL_RELEASE",
"FL_ENTER",
"FL_LEAVE",
"FL_DRAG",
"FL_FOCUS",
"FL_UNFOCUS",
"FL_KEYDOWN",
"FL_KEYUP",
"FL_CLOSE",
"FL_MOVE",
"FL_SHORTCUT",
"FL_DEACTIVATE",
"FL_ACTIVATE",
"FL_HIDE",
"FL_SHOW",
"FL_PASTE",
"FL_SELECTIONCLEAR",
"FL_MOUSEWHEEL",
"FL_DND_ENTER",

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.3 Events handling functions 245

"FL_DND_DRAG",
"FL_DND_LEAVE",
"FL_DND_RELEASE",

}

This is an array of event names you can use to convert event numbers into names.

The array gets defined inline wherever your ’#include <FL/names.h>’ appears.

Example:

#include <FL/names.h> // array will be defined here
int MyClass::handle(int e) {

printf("Event was %s (%d)\n", fl_eventnames[e], e);
// ..resulting output might be e.g. "Event was FL_PUSH (1)"..
[..]

}

29.3.3.2 const char∗ const fl_fontnames[]

Initial value:

{
"FL_HELVETICA",
"FL_HELVETICA_BOLD",
"FL_HELVETICA_ITALIC",
"FL_HELVETICA_BOLD_ITALIC",
"FL_COURIER",
"FL_COURIER_BOLD",
"FL_COURIER_ITALIC",
"FL_COURIER_BOLD_ITALIC",
"FL_TIMES",
"FL_TIMES_BOLD",
"FL_TIMES_ITALIC",
"FL_TIMES_BOLD_ITALIC",
"FL_SYMBOL",
"FL_SCREEN",
"FL_SCREEN_BOLD",
"FL_ZAPF_DINGBATS",

}

This is an array of font names you can use to convert font numbers into names.

The array gets defined inline wherever your ’#include <FL/names.h>’ appears.

Example:

#include <FL/names.h> // array will be defined here
int MyClass::my_callback(Fl_Widget *w, void*) {

int fnum = w->labelfont();
// Resulting output might be e.g. "Label’s font is FL_HELVETICA (0)"
printf("Label’s font is %s (%d)\n", fl_fontnames[fnum], fnum);
// ..resulting output might be e.g. "Label’s font is FL_HELVETICA (0)"..
[..]

}

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

246 Module Documentation

29.4 Selection & Clipboard functions

FLTK global copy/cut/paste functions declared in <FL/Fl.H>.

Functions

• static void Fl::copy (const char ∗stuff, int len, int destination=0)

Copies the data pointed to by stuff to the selection buffer (destination is 0) or the clipboard
(destination is 1); len is the number of relevant bytes in stuff.

• static int Fl::dnd ()

Initiate a Drag And Drop operation.

• static void Fl::paste (Fl_Widget &receiver)

Backward compatibility only:.

• static void Fl::paste (Fl_Widget &receiver, int source)

Pastes the data from the selection buffer (source is 0) or the clipboard (source is 1) into receiver.

• static void Fl::selection (Fl_Widget &owner, const char ∗, int len)

Changes the current selection.

• static void Fl::selection_owner (Fl_Widget ∗)
Back-compatibility only: The single-argument call can be used to move the selection to another widget or
to set the owner to NULL, without changing the actual text of the selection.

• static Fl_Widget ∗ Fl::selection_owner ()

back-compatibility only: Gets the widget owning the current selection

29.4.1 Detailed Description

FLTK global copy/cut/paste functions declared in <FL/Fl.H>.

29.4.2 Function Documentation

29.4.2.1 static void Fl::copy (const char ∗ stuff, int len, int destination = 0) [static,
inherited]

Copies the data pointed to by stuff to the selection buffer (destination is 0) or the clipboard
(destination is 1); len is the number of relevant bytes in stuff.

The selection buffer is used for middle-mouse pastes and for drag-and-drop selections. The clipboard is
used for traditional copy/cut/paste operations.

29.4.2.2 int Fl::dnd () [static, inherited]

Initiate a Drag And Drop operation.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.4 Selection & Clipboard functions 247

The selection buffer should be filled with relevant data before calling this method. FLTK will then initiate
the system wide drag and drop handling. Dropped data will be marked as text.

Create a selection first using: Fl::copy(const char ∗stuff, int len, 0)

29.4.2.3 void Fl::paste (Fl_Widget & receiver) [static, inherited]

Backward compatibility only:.

See also:

Fl::paste(Fl_Widget &receiver, int clipboard)

29.4.2.4 static void Fl::paste (Fl_Widget & receiver, int source) [static, inherited]

Pastes the data from the selection buffer (source is 0) or the clipboard (source is 1) into receiver.

Set things up so the receiver widget will be called with an FL_PASTE event some time in the future with
the data from the specified source in Fl::event_text() and the number of characters in Fl::event_length().
The receiver should be prepared to be called directly by this, or for it to happen later, or possibly not at all.
This allows the window system to take as long as necessary to retrieve the paste buffer (or even to screw
up completely) without complex and error-prone synchronization code in FLTK.

The selection buffer is used for middle-mouse pastes and for drag-and-drop selections. The clipboard is
used for traditional copy/cut/paste operations.

29.4.2.5 void Fl::selection (Fl_Widget & owner, const char ∗ text, int len) [static,
inherited]

Changes the current selection.

The block of text is copied to an internal buffer by FLTK (be careful if doing this in response to an FL_-
PASTE as this may be the same buffer returned by event_text()). The selection_owner() widget is set to the
passed owner.

29.4.2.6 void Fl::selection_owner (Fl_Widget ∗ owner) [static, inherited]

Back-compatibility only: The single-argument call can be used to move the selection to another widget or
to set the owner to NULL, without changing the actual text of the selection.

FL_SELECTIONCLEAR is sent to the previous selection owner, if any.

Copying the buffer every time the selection is changed is obviously wasteful, especially for large selections.
An interface will probably be added in a future version to allow the selection to be made by a callback
function. The current interface will be emulated on top of this.

29.4.2.7 static Fl_Widget∗ Fl::selection_owner () [inline, static, inherited]

back-compatibility only: Gets the widget owning the current selection

See also:

Fl_Widget∗ selection_owner(Fl_Widget∗)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

248 Module Documentation

29.5 Screen functions

fl global screen functions declared in <FL/Fl.H>

Functions

• static int Fl::h ()
Returns the height of the screen in pixels.

• static int Fl::screen_count ()
Gets the number of available screens.

• static void Fl::screen_xywh (int &X, int &Y, int &W, int &H, int n)
Gets the screen bounding rect for the given screen.

• static void Fl::screen_xywh (int &X, int &Y, int &W, int &H, int mx, int my)
Gets the bounding box of a screen that contains the specified screen position mx, my.

• static void Fl::screen_xywh (int &X, int &Y, int &W, int &H)
Gets the bounding box of a screen that contains the mouse pointer.

• static int Fl::w ()
Returns the width of the screen in pixels.

• static int Fl::x ()
Returns the origin of the current screen, where 0 indicates the left side of the screen.

• static int Fl::y ()
Returns the origin of the current screen, where 0 indicates the top edge of the screen.

29.5.1 Detailed Description

fl global screen functions declared in <FL/Fl.H>

29.5.2 Function Documentation

29.5.2.1 static int Fl::h () [static, inherited]

Returns the height of the screen in pixels.

29.5.2.2 void Fl::screen_xywh (int & X, int & Y, int & W, int & H, int n) [static,
inherited]

Gets the screen bounding rect for the given screen.

Parameters:

→ X,Y,W,H the corresponding screen bounding box

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.5 Screen functions 249

← n the screen number (0 to Fl::screen_count() - 1)

See also:

void screen_xywh(int &x, int &y, int &w, int &h, int mx, int my)

29.5.2.3 void Fl::screen_xywh (int & X, int & Y, int & W, int & H, int mx, int my) [static,
inherited]

Gets the bounding box of a screen that contains the specified screen position mx, my.

Parameters:

→ X,Y,W,H the corresponding screen bounding box

← mx,my the absolute screen position

29.5.2.4 static void Fl::screen_xywh (int & X, int & Y, int & W, int & H) [inline, static,
inherited]

Gets the bounding box of a screen that contains the mouse pointer.

Parameters:

→ X,Y,W,H the corresponding screen bounding box

See also:

void screen_xywh(int &x, int &y, int &w, int &h, int mx, int my)

29.5.2.5 static int Fl::w () [static, inherited]

Returns the width of the screen in pixels.

29.5.2.6 static int Fl::x () [static, inherited]

Returns the origin of the current screen, where 0 indicates the left side of the screen.

29.5.2.7 static int Fl::y () [static, inherited]

Returns the origin of the current screen, where 0 indicates the top edge of the screen.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

250 Module Documentation

29.6 Color & Font functions

fl global color, font functions.

Functions

• Fl_Color fl_color ()

Returns the last fl_color() that was set.

• void fl_color (uchar r, uchar g, uchar b)

Set the color for all subsequent drawing operations.

• void fl_color (int c)

for back compatibility - use fl_color(Fl_Color c) instead

• void fl_color (Fl_Color c)

Sets the color for all subsequent drawing operations.

• Fl_Color fl_color_average (Fl_Color color1, Fl_Color color2, float weight)

Returns the weighted average color between the two given colors.

• Fl_Color fl_contrast (Fl_Color fg, Fl_Color bg)

Returns a color that contrasts with the background color.

• FL_EXPORT int fl_descent ()

Returns the recommended distance above the bottom of a fl_height() tall box to draw the text at so it looks
centered vertically in that box.

• Fl_Font fl_font ()

Returns the face set by the most recent call to fl_font().

• void fl_font (Fl_Font face, Fl_Fontsize size)

Sets the current font, which is then used in various drawing routines.

• FL_EXPORT int fl_height (int font, int size)

This function returns the actual height of the specified font and size.

• FL_EXPORT int fl_height ()

Returns the recommended minimum line spacing for the current font.

• Fl_Color fl_inactive (Fl_Color c)

Returns the inactive, dimmed version of the given color.

• FL_EXPORT const char ∗ fl_latin1_to_local (const char ∗t, int n=-1)

convert text from Windows/X11 latin1 charcter set to local encoding.

• FL_EXPORT const char ∗ fl_local_to_latin1 (const char ∗t, int n=-1)

convert text from local encoding to Windowx/X11 latin1 character set.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.6 Color & Font functions 251

• FL_EXPORT const char ∗ fl_local_to_mac_roman (const char ∗t, int n=-1)
convert text from local encoding to Mac Roman character set.

• FL_EXPORT const char ∗ fl_mac_roman_to_local (const char ∗t, int n=-1)
convert text from Mac Roman charcter set to local encoding.

• FL_EXPORT Fl_Color fl_show_colormap (Fl_Color oldcol)
Pops up a window to let the user pick an colormap entry.

• Fl_Fontsize fl_size ()
Returns the size set by the most recent call to fl_font().

• FL_EXPORT void fl_text_extents (const char ∗, int n, int &dx, int &dy, int &w, int &h)
Determine the minimum pixel dimensions of a sequence of n characters.

• FL_EXPORT void fl_text_extents (const char ∗, int &dx, int &dy, int &w, int &h)
Determine the minimum pixel dimensions of a nul-terminated string.

• FL_EXPORT double fl_width (unsigned int)
Return the typographical width of a single character :.

• FL_EXPORT double fl_width (const char ∗txt, int n)
Return the typographical width of a sequence of n characters.

• FL_EXPORT double fl_width (const char ∗txt)
Return the typographical width of a nul-terminated string.

• ulong fl_xpixel (Fl_Color i)
Returns the X pixel number used to draw the given FLTK color index.

• ulong fl_xpixel (uchar r, uchar g, uchar b)
Returns the X pixel number used to draw the given rgb color.

• static void Fl::free_color (Fl_Color i, int overlay=0)
Frees the specified color from the colormap, if applicable.

• static void Fl::get_color (Fl_Color i, uchar &red, uchar &green, uchar &blue)
Returns the RGB value(s) for the given FLTK color index.

• static unsigned Fl::get_color (Fl_Color i)
Returns the RGB value(s) for the given FLTK color index.

• static const char ∗ Fl::get_font (Fl_Font)
Gets the string for this face.

• static const char ∗ Fl::get_font_name (Fl_Font, int ∗attributes=0)
Get a human-readable string describing the family of this face.

• static int Fl::get_font_sizes (Fl_Font, int ∗&sizep)
Return an array of sizes in sizep.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

252 Module Documentation

• static void Fl::set_color (Fl_Color i, unsigned c)

Sets an entry in the fl_color index table.

• static void Fl::set_color (Fl_Color, uchar, uchar, uchar)

Sets an entry in the fl_color index table.

• static void Fl::set_font (Fl_Font, Fl_Font)

Copies one face to another.

• static void Fl::set_font (Fl_Font, const char ∗)
Changes a face.

• static Fl_Font Fl::set_fonts (const char ∗=0)

FLTK will open the display, and add every fonts on the server to the face table.

Variables

• FL_EXPORT Fl_Color fl_color_

The current color.

• FL_EXPORT Fl_Font fl_font_

current font index

• FL_EXPORT Fl_Fontsize fl_size_

current font size

29.6.1 Detailed Description

fl global color, font functions.

These functions are declared in <FL/Fl.H> or <FL/fl_draw.H>.

29.6.2 Function Documentation

29.6.2.1 Fl_Color fl_color () [inline]

Returns the last fl_color() that was set.

This can be used for state save/restore.

29.6.2.2 void fl_color (uchar r, uchar g, uchar b) [inline]

Set the color for all subsequent drawing operations.

The closest possible match to the RGB color is used. The RGB color is used directly on TrueColor displays.
For colormap visuals the nearest index in the gray ramp or color cube is used. If no valid graphical context
(fl_gc) is available, the foreground is not set for the current window.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.6 Color & Font functions 253

Parameters:

← r,g,b color components

29.6.2.3 void fl_color (Fl_Color c) [inline]

Sets the color for all subsequent drawing operations.

For colormapped displays, a color cell will be allocated out of fl_colormap the first time you use a
color. If the colormap fills up then a least-squares algorithm is used to find the closest color. If no valid
graphical context (fl_gc) is available, the foreground is not set for the current window.

Parameters:

← c color

29.6.2.4 Fl_Color fl_color_average (Fl_Color color1, Fl_Color color2, float weight)

Returns the weighted average color between the two given colors.

The red, green and blue values are averages using the following formula:

color = color1 * weight + color2 * (1 - weight)

Thus, a weight value of 1.0 will return the first color, while a value of 0.0 will return the second color.

Parameters:

← color1,color2 boundary colors

← weight weighting factor

29.6.2.5 Fl_Color fl_contrast (Fl_Color fg, Fl_Color bg)

Returns a color that contrasts with the background color.

This will be the foreground color if it contrasts sufficiently with the background color. Otherwise, returns
FL_WHITE or FL_BLACK depending on which color provides the best contrast.

Parameters:

← fg,bg foreground and background colors

Returns:

contrasting color

29.6.2.6 Fl_Font fl_font () [inline]

Returns the face set by the most recent call to fl_font().

This can be used to save/restore the font.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

254 Module Documentation

29.6.2.7 void fl_font (Fl_Font face, Fl_Fontsize size) [inline]

Sets the current font, which is then used in various drawing routines.

You may call this outside a draw context if necessary to call fl_width(), but on X this will open the display.

The font is identified by a face and a size. The size of the font is measured in pixels and not "points".
Lines should be spaced size pixels apart or more.

29.6.2.8 FL_EXPORT int fl_height (int font, int size)

This function returns the actual height of the specified font and size.

Normally the font height should always be ’size’, but with the advent of XFT, there are (currently) com-
plexities that seem to only be solved by asking the font what its actual font height is. (See STR#2115)

This function was originally undocumented in 1.1.x, and was used only by Fl_Text_Display. We’re now
documenting it in 1.3.x so that apps that need precise height info can get it with this function.

Returns:

the height of the font in pixels.

Todo

In the future, when the XFT issues are resolved, this function should simply return the ’size’ value.

29.6.2.9 FL_EXPORT int fl_height ()

Returns the recommended minimum line spacing for the current font.

You can also use the value of size passed to fl_font()

29.6.2.10 FL_EXPORT const char∗ fl_latin1_to_local (const char ∗ t, int n = -1)

convert text from Windows/X11 latin1 charcter set to local encoding.

Parameters:

← t character string (latin1 encoding)

← n optional number of characters to convert (default is all)

Returns:

pointer to internal buffer containing converted characters

29.6.2.11 FL_EXPORT const char∗ fl_local_to_latin1 (const char ∗ t, int n = -1)

convert text from local encoding to Windowx/X11 latin1 character set.

Parameters:

← t character string (local encoding)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.6 Color & Font functions 255

← n optional number of characters to convert (default is all)

Returns:

pointer to internal buffer containing converted characters

29.6.2.12 FL_EXPORT const char∗ fl_local_to_mac_roman (const char ∗ t, int n = -1)

convert text from local encoding to Mac Roman character set.

Parameters:

← t character string (local encoding)

← n optional number of characters to convert (default is all)

Returns:

pointer to internal buffer containing converted characters

29.6.2.13 FL_EXPORT const char∗ fl_mac_roman_to_local (const char ∗ t, int n = -1)

convert text from Mac Roman charcter set to local encoding.

Parameters:

← t character string (Mac Roman encoding)

← n optional number of characters to convert (default is all)

Returns:

pointer to internal buffer containing converted characters

29.6.2.14 FL_EXPORT Fl_Color fl_show_colormap (Fl_Color oldcol)

Pops up a window to let the user pick an colormap entry.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

256 Module Documentation

Figure 29.1: fl_show_colormap

Parameters:

← oldcol color to be highlighted when grid is shown.

Return values:

Fl_Color value of the chosen colormap entry.

See also:

Fl_Color_Chooser

29.6.2.15 Fl_Fontsize fl_size () [inline]

Returns the size set by the most recent call to fl_font().

This can be used to save/restore the font.

29.6.2.16 FL_EXPORT void fl_text_extents (const char ∗, int n, int & dx, int & dy, int & w, int
& h)

Determine the minimum pixel dimensions of a sequence of n characters.

See also:

fl_text_extents(const char∗, int& dx, int& dy, int& w, int& h)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.6 Color & Font functions 257

29.6.2.17 FL_EXPORT void fl_text_extents (const char ∗, int & dx, int & dy, int & w, int & h)

Determine the minimum pixel dimensions of a nul-terminated string.

Usage: given a string "txt" drawn using fl_draw(txt, x, y) you would determine its pixel extents on the
display using fl_text_extents(txt, dx, dy, wo, ho) such that a bounding box that exactly fits around the text
could be drawn with fl_rect(x+dx, y+dy, wo, ho). Note the dx, dy values hold the offset of the first "colored
in" pixel of the string, from the draw origin.

29.6.2.18 FL_EXPORT double fl_width (unsigned int)

Return the typographical width of a single character :.

Note:

if a valid fl_gc is NOT found then it uses the first window gc, or the screen gc if no fltk window is
available when called.

29.6.2.19 ulong fl_xpixel (Fl_Color i)

Returns the X pixel number used to draw the given FLTK color index.

This is the X pixel that fl_color() would use.

Parameters:

← i color index

Returns:

X pixel number

29.6.2.20 ulong fl_xpixel (uchar r, uchar g, uchar b)

Returns the X pixel number used to draw the given rgb color.

This is the X pixel that fl_color() would use.

Parameters:

← r,g,b color components

Returns:

X pixel number

29.6.2.21 void Fl::free_color (Fl_Color i, int overlay = 0) [static, inherited]

Frees the specified color from the colormap, if applicable.

Free color i if used, and clear mapping table entry.

If overlay is non-zero then the color is freed from the overlay colormap.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

258 Module Documentation

Parameters:

← i color index

← overlay 0 for normal, 1 for overlay color

29.6.2.22 void Fl::get_color (Fl_Color i, uchar & red, uchar & green, uchar & blue) [static,
inherited]

Returns the RGB value(s) for the given FLTK color index.

This form returns the red, green, and blue values separately in referenced variables.

See also unsigned get_color(Fl_Color c)

29.6.2.23 unsigned Fl::get_color (Fl_Color i) [static, inherited]

Returns the RGB value(s) for the given FLTK color index.

This form returns the RGB values packed in a 32-bit unsigned integer with the red value in the upper 8 bits,
the green value in the next 8 bits, and the blue value in bits 8-15. The lower 8 bits will always be 0.

29.6.2.24 const char ∗ Fl::get_font (Fl_Font fnum) [static, inherited]

Gets the string for this face.

This string is different for each face. Under X this value is passed to XListFonts to get all the sizes of this
face.

29.6.2.25 const char ∗ Fl::get_font_name (Fl_Font fnum, int ∗ attributes = 0) [static,
inherited]

Get a human-readable string describing the family of this face.

This is useful if you are presenting a choice to the user. There is no guarantee that each face has a different
name. The return value points to a static buffer that is overwritten each call.

The integer pointed to by attributes (if the pointer is not zero) is set to zero, FL_BOLD or FL_ITALIC
or FL_BOLD | FL_ITALIC. To locate a "family" of fonts, search forward and back for a set with non-zero
attributes, these faces along with the face with a zero attribute before them constitute a family.

29.6.2.26 int Fl::get_font_sizes (Fl_Font fnum, int ∗& sizep) [static, inherited]

Return an array of sizes in sizep.

The return value is the length of this array. The sizes are sorted from smallest to largest and indicate what
sizes can be given to fl_font() that will be matched exactly (fl_font() will pick the closest size for other
sizes). A zero in the first location of the array indicates a scalable font, where any size works, although the
array may list sizes that work "better" than others. Warning: the returned array points at a static buffer that
is overwritten each call. Under X this will open the display.

29.6.2.27 void Fl::set_color (Fl_Color i, unsigned c) [static, inherited]

Sets an entry in the fl_color index table.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.6 Color & Font functions 259

Set color mapping table entry i to color c.

You can set it to any 8-bit RGB color. The color is not allocated until fl_color(i) is used.

Parameters:

← i color index

← c color

29.6.2.28 void Fl::set_color (Fl_Color i, uchar red, uchar green, uchar blue) [static,
inherited]

Sets an entry in the fl_color index table.

You can set it to any 8-bit RGB color. The color is not allocated until fl_color(i) is used.

29.6.2.29 void Fl::set_font (Fl_Font fnum, Fl_Font from) [static, inherited]

Copies one face to another.

29.6.2.30 void Fl::set_font (Fl_Font fnum, const char ∗ name) [static, inherited]

Changes a face.

The string pointer is simply stored, the string is not copied, so the string must be in static memory.

29.6.2.31 Fl_Font Fl::set_fonts (const char ∗ xstarname = 0) [static, inherited]

FLTK will open the display, and add every fonts on the server to the face table.

It will attempt to put "families" of faces together, so that the normal one is first, followed by bold, italic,
and bold italic.

The optional argument is a string to describe the set of fonts to add. Passing NULL will select only fonts
that have the ISO8859-1 character set (and are thus usable by normal text). Passing "-∗" will select all
fonts with any encoding as long as they have normal X font names with dashes in them. Passing "∗" will
list every font that exists (on X this may produce some strange output). Other values may be useful but are
system dependent. With WIN32 NULL selects fonts with ISO8859-1 encoding and non-NULL selects all
fonts.

The return value is how many faces are in the table after this is done.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

260 Module Documentation

29.7 Drawing functions

FLTK global graphics and GUI drawing functions.

Defines

• #define fl_clip fl_push_clip
The fl_clip() name is deprecated and will be removed from future releases.

Enumerations

• enum {

FL_SOLID = 0, FL_DASH = 1, FL_DOT = 2, FL_DASHDOT = 3,

FL_DASHDOTDOT = 4, FL_CAP_FLAT = 0x100, FL_CAP_ROUND = 0x200, FL_CAP_-
SQUARE = 0x300,

FL_JOIN_MITER = 0x1000, FL_JOIN_ROUND = 0x2000, FL_JOIN_BEVEL = 0x3000 }

Functions

• FL_EXPORT int fl_add_symbol (const char ∗name, void(∗drawit)(Fl_Color), int scalable)
Adds a symbol to the system.

• void fl_arc (double x, double y, double r, double start, double end)
Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using scale
and rotate before calling fl_arc().

• void fl_arc (int x, int y, int w, int h, double a1, double a2)
Draw ellipse sections using integer coordinates.

• void fl_begin_complex_polygon ()
Starts drawing a complex filled polygon.

• void fl_begin_line ()
Starts drawing a list of lines.

• void fl_begin_loop ()
Starts drawing a closed sequence of lines.

• void fl_begin_offscreen (Fl_Offscreen ctx)
Send all subsequent drawing commands to this offscreen buffer.

• void fl_begin_points ()
Starts drawing a list of points.

• void fl_begin_polygon ()
Starts drawing a convex filled polygon.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.7 Drawing functions 261

• FL_EXPORT char fl_can_do_alpha_blending ()

Checks whether platform supports true alpha blending for RGBA images.

• FL_EXPORT void fl_chord (int x, int y, int w, int h, double a1, double a2)

fl_chord declaration is a place holder - the function does not yet exist

• void fl_circle (double x, double y, double r)

fl_circle() is equivalent to fl_arc(x,y,r,0,360), but may be faster.

• int fl_clip_box (int x, int y, int w, int h, int &X, int &Y, int &W, int &H)

Intersects the rectangle with the current clip region and returns the bounding box of the result.

• Fl_Region fl_clip_region ()

returns the current clipping region.

• FL_EXPORT void fl_clip_region (Fl_Region r)

Replaces the top of the clipping stack with a clipping region of any shape.

• void fl_copy_offscreen (int x, int y, int w, int h, Fl_Offscreen pixmap, int srcx, int srcy)

Copy a rectangular area of the given offscreen buffer into the current drawing destination.

• Fl_Offscreen fl_create_offscreen (int w, int h)

Creation of an offscreen graphics buffer.

• FL_EXPORT void fl_cursor (Fl_Cursor, Fl_Color fg=FL_BLACK, Fl_Color bg=FL_WHITE)

Sets the cursor for the current window to the specified shape and colors.

• void fl_curve (double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3,
double Y3)

Add a series of points on a Bezier curve to the path.

• void fl_delete_offscreen (Fl_Offscreen ctx)

Deletion of an offscreen graphics buffer.

• FL_EXPORT void fl_draw (const char ∗str, int x, int y, int w, int h, Fl_Align align,
void(∗callthis)(const char ∗, int, int, int), Fl_Image ∗img=0, int draw_symbols=1)

The same as fl_draw(const char∗,int,int,int,int,Fl_Align,Fl_Image∗,int) with the addition of the callthis
parameter, which is a pointer to a text drawing function such as fl_draw(const char∗, int, int, int) to do the
real work.

• FL_EXPORT void fl_draw (const char ∗str, int x, int y, int w, int h, Fl_Align align, Fl_Image ∗img=0,
int draw_symbols=1)

Fancy string drawing function which is used to draw all the labels.

• void fl_draw (int angle, const char ∗str, int n, int x, int y)

Draws an array of n characters starting at the given location, rotating angle degrees counterclockwise.

• void fl_draw (const char ∗str, int n, int x, int y)

Draws an array of n characters starting at the given location.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

262 Module Documentation

• FL_EXPORT void fl_draw (int angle, const char ∗str, int x, int y)

Draws a nul-terminated string starting at the given location and rotating angle degrees counterclockwise.

• FL_EXPORT void fl_draw (const char ∗str, int x, int y)

Draws a nul-terminated string starting at the given location.

• FL_EXPORT void fl_draw_box (Fl_Boxtype, int x, int y, int w, int h, Fl_Color)

Draws a box using given type, position, size and color.

• void fl_draw_image (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int H, int D=3)

Draw image using callback function to generate image data.

• void fl_draw_image (const uchar ∗buf, int X, int Y, int W, int H, int D=3, int L=0)

Draw an 8-bit per color RGB or luminance image.

• FL_EXPORT void fl_draw_image_mono (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int
H, int D=1)

Draw gray-scale image using callback function to generate image data.

• void fl_draw_image_mono (const uchar ∗buf, int X, int Y, int W, int H, int D=1, int L=0)

Draw a gray-scale (1 channel) image.

• FL_EXPORT int fl_draw_pixmap (const char ∗const ∗cdata, int x, int y, Fl_Color=FL_GRAY)

Draw XPM image data, with the top-left corner at the given position.

• FL_EXPORT int fl_draw_pixmap (char ∗const ∗data, int x, int y, Fl_Color=FL_GRAY)

Draw XPM image data, with the top-left corner at the given position.

• FL_EXPORT int fl_draw_symbol (const char ∗label, int x, int y, int w, int h, Fl_Color)

Draw the named symbol in the given rectangle using the given color.

• void fl_end_complex_polygon ()

Ends complex filled polygon, and draws.

• void fl_end_line ()

Ends list of lines, and draws.

• void fl_end_loop ()

Ends closed sequence of lines, and draws.

• void fl_end_offscreen ()

Quit sending drawing commands to the current offscreen buffer.

• void fl_end_points ()

Ends list of points, and draws.

• void fl_end_polygon ()

Ends convex filled polygon, and draws.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.7 Drawing functions 263

• FL_EXPORT const char ∗ fl_expand_text (const char ∗from, char ∗buf, int maxbuf, double maxw,
int &n, double &width, int wrap, int draw_symbols=0)

Copy from to buf, replacing unprintable characters with ∧X and \nnn.

• FL_EXPORT void fl_frame (const char ∗s, int x, int y, int w, int h)
Draws a series of line segments around the given box.

• FL_EXPORT void fl_frame2 (const char ∗s, int x, int y, int w, int h)
Draws a series of line segments around the given box.

• void fl_gap ()
Call fl_gap() to separate loops of the path.

• void fl_line (int x, int y, int x1, int y1, int x2, int y2)
Draws a line from (x,y) to (x1,y1) and another from (x1,y1) to (x2,y2).

• void fl_line (int x, int y, int x1, int y1)
Draws a line from (x,y) to (x1,y1).

• void fl_line_style (int style, int width=0, char ∗dashes=0)
Sets how to draw lines (the "pen").

• void fl_loop (int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)
Outlines a 4-sided polygon with lines.

• void fl_loop (int x, int y, int x1, int y1, int x2, int y2)
Outlines a 3-sided polygon with lines.

• FL_EXPORT void fl_measure (const char ∗str, int &x, int &y, int draw_symbols=1)
Measure how wide and tall the string will be when printed by the fl_draw() function with align parameter.

• FL_EXPORT int fl_measure_pixmap (const char ∗const ∗cdata, int &w, int &h)
Get the dimensions of a pixmap.

• FL_EXPORT int fl_measure_pixmap (char ∗const ∗data, int &w, int &h)
Get the dimensions of a pixmap.

• FL_EXPORT void fl_mult_matrix (double a, double b, double c, double d, double x, double y)
Concatenates another transformation onto the current one.

• int fl_not_clipped (int x, int y, int w, int h)
Does the rectangle intersect the current clip region?

• FL_EXPORT unsigned int fl_old_shortcut (const char ∗s)
Emulation of XForms named shortcuts.

• FL_EXPORT void fl_overlay_clear ()
Erase a selection rectangle without drawing a new one.

• FL_EXPORT void fl_overlay_rect (int x, int y, int w, int h)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

264 Module Documentation

Draws a selection rectangle, erasing a previous one by XOR’ing it first.

• void fl_pie (int x, int y, int w, int h, double a1, double a2)
Draw filled ellipse sections using integer coordinates.

• void fl_point (int x, int y)
Draws a single pixel at the given coordinates.

• void fl_polygon (int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)
Fills a 4-sided polygon.

• void fl_polygon (int x, int y, int x1, int y1, int x2, int y2)
Fills a 3-sided polygon.

• void fl_pop_clip ()
Restores the previous clip region.

• FL_EXPORT void fl_pop_matrix ()
Restores the current transformation matrix from the stack.

• void fl_push_clip (int x, int y, int w, int h)
Intersects the current clip region with a rectangle and pushes this new region onto the stack.

• FL_EXPORT void fl_push_matrix ()
Saves the current transformation matrix on the stack.

• void fl_push_no_clip ()
Pushes an empty clip region onto the stack so nothing will be clipped.

• FL_EXPORT uchar ∗ fl_read_image (uchar ∗p, int X, int Y, int W, int H, int alpha=0)
Read an RGB(A) image from the current window or off-screen buffer.

• void fl_rect (int x, int y, int w, int h, Fl_Color c)
Draws with passed color a 1-pixel border inside the given bounding box.

• void fl_rect (int x, int y, int w, int h)
Draws a 1-pixel border inside the given bounding box.

• FL_EXPORT void fl_rectf (int x, int y, int w, int h, uchar r, uchar g, uchar b)
Color a rectangle with "exactly" the passed r,g,b color.

• void fl_rectf (int x, int y, int w, int h, Fl_Color c)
Colors with passsed color a rectangle that exactly fills the given bounding box.

• void fl_rectf (int x, int y, int w, int h)
Colors with current color a rectangle that exactly fills the given bounding box.

• FL_EXPORT void fl_reset_spot (void)
• void fl_restore_clip ()

Undoes any clobbering of clip done by your program.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.7 Drawing functions 265

• FL_EXPORT void fl_rotate (double d)

Concatenates rotation transformation onto the current one.

• void fl_rtl_draw (const char ∗str, int n, int x, int y)

Draws an array of n characters right to left starting at given location.

• FL_EXPORT void fl_scale (double x)

Concatenates scaling transformation onto the current one.

• FL_EXPORT void fl_scale (double x, double y)

Concatenates scaling transformation onto the current one.

• FL_EXPORT void fl_scroll (int X, int Y, int W, int H, int dx, int dy, void(∗draw_area)(void ∗, int,
int, int, int), void ∗data)

Scroll a rectangle and draw the newly exposed portions.

• FL_EXPORT void fl_set_spot (int font, int size, int X, int Y, int W, int H, Fl_Window ∗win=0)
• FL_EXPORT void fl_set_status (int X, int Y, int W, int H)
• FL_EXPORT const char ∗ fl_shortcut_label (unsigned int shortcut, const char ∗∗eom)

Get a human-readable string from a shortcut value.

• FL_EXPORT const char ∗ fl_shortcut_label (unsigned int shortcut)

Get a human-readable string from a shortcut value.

• FL_EXPORT double fl_transform_dx (double x, double y)

Transforms distance using current transformation matrix.

• FL_EXPORT double fl_transform_dy (double x, double y)

Transforms distance using current transformation matrix.

• FL_EXPORT double fl_transform_x (double x, double y)

Transforms coordinate using the current transformation matrix.

• FL_EXPORT double fl_transform_y (double x, double y)

Transform coordinate using the current transformation matrix.

• void fl_transformed_vertex (double xf, double yf)

Adds coordinate pair to the vertex list without further transformations.

• FL_EXPORT void fl_translate (double x, double y)

Concatenates translation transformation onto the current one.

• void fl_vertex (double x, double y)

Adds a single vertex to the current path.

• void fl_xyline (int x, int y, int x1, int y2, int x3)

Draws a horizontal line from (x,y) to (x1,y), then a vertical from (x1,y) to (x1,y2) and then another horizontal
from (x1,y2) to (x3,y2).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

266 Module Documentation

• void fl_xyline (int x, int y, int x1, int y2)

Draws a horizontal line from (x,y) to (x1,y), then vertical from (x1,y) to (x1,y2).

• void fl_xyline (int x, int y, int x1)

Draws a horizontal line from (x,y) to (x1,y).

• void fl_yxline (int x, int y, int y1, int x2, int y3)

Draws a vertical line from (x,y) to (x,y1) then a horizontal from (x,y1) to (x2,y1), then another vertical from
(x2,y1) to (x2,y3).

• void fl_yxline (int x, int y, int y1, int x2)

Draws a vertical line from (x,y) to (x,y1), then a horizontal from (x,y1) to (x2,y1).

• void fl_yxline (int x, int y, int y1)

Draws a vertical line from (x,y) to (x,y1).

Variables

• const int stack_max = 16

29.7.1 Detailed Description

FLTK global graphics and GUI drawing functions.

These functions are declared in <FL/fl_draw.H>, and in <FL/x.H> for offscreen buffer-related ones.

29.7.2 Enumeration Type Documentation

29.7.2.1 anonymous enum

Enumerator:

FL_SOLID line style: ___________

FL_DASH line style: _ _ _ _ _ _

FL_DOT line style:

FL_DASHDOT line style: _ . _ . _ .

FL_DASHDOTDOT line style: _ . . _ . .

FL_CAP_FLAT cap style: end is flat

FL_CAP_ROUND cap style: end is round

FL_CAP_SQUARE cap style: end wraps end point

FL_JOIN_MITER join style: line join extends to a point

FL_JOIN_ROUND join style: line join is rounded

FL_JOIN_BEVEL join style: line join is tidied

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.7 Drawing functions 267

29.7.3 Function Documentation

29.7.3.1 FL_EXPORT int fl_add_symbol (const char ∗ name, void(∗)(Fl_Color) drawit, int
scalable)

Adds a symbol to the system.

Parameters:

← name name of symbol (without the "@")

← drawit function to draw symbol

← scalable set to 1 if drawit uses scalable vector drawing

Returns:

1 on success, 0 on failure

29.7.3.2 void fl_arc (double x, double y, double r, double start, double end) [inline]

Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using scale
and rotate before calling fl_arc().

Parameters:

← x,y,r center and radius of circular arc

← start,end angles of start and end of arc measured in degrees counter-clockwise from 3 o’clock. If
end is less than start then it draws the arc in a clockwise direction.

29.7.3.3 void fl_arc (int x, int y, int w, int h, double a1, double a2) [inline]

Draw ellipse sections using integer coordinates.

These functions match the rather limited circle drawing code provided by X and WIN32. The advantage
over using fl_arc with floating point coordinates is that they are faster because they often use the hardware,
and they draw much nicer small circles, since the small sizes are often hard-coded bitmaps.

If a complete circle is drawn it will fit inside the passed bounding box. The two angles are measured in
degrees counterclockwise from 3 o’clock and are the starting and ending angle of the arc, a2 must be
greater or equal to a1.

fl_arc() draws a series of lines to approximate the arc. Notice that the integer version of fl_arc() has a
different number of arguments than the double version fl_arc(double x, double y, double r, double start,
double end)

Parameters:

← x,y,w,h bounding box of complete circle

← a1,a2 start and end angles of arc measured in degrees counter-clockwise from 3 o’clock. a2 must
be greater than or equal to a1.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

268 Module Documentation

29.7.3.4 void fl_begin_complex_polygon () [inline]

Starts drawing a complex filled polygon.

The polygon may be concave, may have holes in it, or may be several disconnected pieces. Call fl_gap() to
separate loops of the path.

To outline the polygon, use fl_begin_loop() and replace each fl_gap() with fl_end_loop();fl_begin_loop()
pairs.

Note:

For portability, you should only draw polygons that appear the same whether "even/odd" or "non-zero"
winding rules are used to fill them. Holes should be drawn in the opposite direction to the outside loop.

29.7.3.5 void fl_begin_offscreen (Fl_Offscreen ctx)

Send all subsequent drawing commands to this offscreen buffer.

Parameters:

ctx the offscreen buffer.

29.7.3.6 void fl_begin_points () [inline]

Starts drawing a list of points.

Points are added to the list with fl_vertex()

29.7.3.7 FL_EXPORT char fl_can_do_alpha_blending ()

Checks whether platform supports true alpha blending for RGBA images.

Returns:

1 if true alpha blending supported by platform
0 not supported so FLTK will use screen door transparency

29.7.3.8 void fl_circle (double x, double y, double r) [inline]

fl_circle() is equivalent to fl_arc(x,y,r,0,360), but may be faster.

It must be the only thing in the path: if you want a circle as part of a complex polygon you must use
fl_arc()

Parameters:

← x,y,r center and radius of circle

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.7 Drawing functions 269

29.7.3.9 int fl_clip_box (int x, int y, int w, int h, int & X, int & Y, int & W, int & H) [inline]

Intersects the rectangle with the current clip region and returns the bounding box of the result.

Returns non-zero if the resulting rectangle is different to the original. This can be used to limit the necessary
drawing to a rectangle. W and H are set to zero if the rectangle is completely outside the region.

Parameters:

← x,y,w,h position and size of rectangle

→ X,Y,W,H position and size of resulting bounding box. W and H are set to zero if the rectangle is
completely outside the region.

Returns:

Non-zero if the resulting rectangle is different to the original.

29.7.3.10 FL_EXPORT void fl_clip_region (Fl_Region r)

Replaces the top of the clipping stack with a clipping region of any shape.

Fl_Region is an operating system specific type.

Parameters:

← r clipping region

29.7.3.11 void fl_copy_offscreen (int x, int y, int w, int h, Fl_Offscreen pixmap, int srcx, int srcy)

Copy a rectangular area of the given offscreen buffer into the current drawing destination.

Parameters:

x,y position where to draw the copied rectangle

w,h size of the copied rectangle

pixmap offscreen buffer containing the rectangle to copy

srcx,srcy origin in offscreen buffer of rectangle to copy

29.7.3.12 Fl_Offscreen fl_create_offscreen (int w, int h)

Creation of an offscreen graphics buffer.

Parameters:

w,h width and height in pixels of the buffer.

Returns:

the created graphics buffer.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

270 Module Documentation

29.7.3.13 FL_EXPORT void fl_cursor (Fl_Cursor c, Fl_Color fg, Fl_Color bg)

Sets the cursor for the current window to the specified shape and colors.

The cursors are defined in the <FL/Enumerations.H> header file.

29.7.3.14 void fl_curve (double X0, double Y0, double X1, double Y1, double X2, double Y2,
double X3, double Y3) [inline]

Add a series of points on a Bezier curve to the path.

The curve ends (and two of the points) are at X0,Y0 and X3,Y3.

Parameters:

← X0,Y0 curve start point

← X1,Y1 curve control point

← X2,Y2 curve control point

← X3,Y3 curve end point

29.7.3.15 void fl_delete_offscreen (Fl_Offscreen ctx)

Deletion of an offscreen graphics buffer.

Parameters:

ctx the buffer to be deleted.

29.7.3.16 FL_EXPORT void fl_draw (const char ∗ str, int x, int y, int w, int h, Fl_Align align,
Fl_Image ∗ img, int draw_symbols)

Fancy string drawing function which is used to draw all the labels.

The string is formatted and aligned inside the passed box. Handles ’\t’ and ’\n’, expands all other control
characters to ’∧X’, and aligns inside or against the edges of the box. See Fl_Widget::align() for values of
align. The value FL_ALIGN_INSIDE is ignored, as this function always prints inside the box. If img
is provided and is not NULL, the image is drawn above or below the text as specified by the align value.
The draw_symbols argument specifies whether or not to look for symbol names starting with the ’@’
character’ The text length is limited to 1024 characters per line.

29.7.3.17 FL_EXPORT void fl_draw (int angle, const char ∗ str, int x, int y)

Draws a nul-terminated string starting at the given location and rotating angle degrees counterclockwise.

This version of fl_draw provides direct access to the text drawing function of the underlying OS and is
supported by Xft, Win32 and MacOS fltk subsets.

29.7.3.18 FL_EXPORT void fl_draw (const char ∗ str, int x, int y)

Draws a nul-terminated string starting at the given location.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.7 Drawing functions 271

Text is aligned to the left and to the baseline of the font. To align to the bottom, subtract fl_descent() from
y. To align to the top, subtract fl_descent() and add fl_height(). This version of fl_draw provides direct
access to the text drawing function of the underlying OS. It does not apply any special handling to control
characters.

29.7.3.19 FL_EXPORT void fl_draw_box (Fl_Boxtype t, int x, int y, int w, int h, Fl_Color c)

Draws a box using given type, position, size and color.

Parameters:

← t box type

← x,y,w,h position and size

← c color

29.7.3.20 void fl_draw_image (Fl_Draw_Image_Cb cb, void ∗ data, int X, int Y, int W, int H, int
D = 3) [inline]

Draw image using callback function to generate image data.

You can generate the image as it is being drawn, or do arbitrary decompression of stored data, provided it
can be decompressed to individual scan lines easily.

Parameters:

← cb callback function to generate scan line data

← data user data passed to callback function

← X,Y

←W,H

← D

See also:

fl_draw_image(const uchar∗ buf, int X,int Y,int W,int H, int D, int L)

The callback function cb is called with the void∗ data user data pointer to allow access to a structure
of information about the image, and the x, y, and w of the scan line desired from the image. 0,0 is the
upper-left corner of the image, not X, Y. A pointer to a buffer to put the data into is passed. You must copy
w pixels from scanline y, starting at pixel x, to this buffer.

Due to cropping, less than the whole image may be requested. So x may be greater than zero, the first y
may be greater than zero, and w may be less than W. The buffer is long enough to store the entire W ∗ D
pixels, this is for convenience with some decompression schemes where you must decompress the entire
line at once: decompress it into the buffer, and then if x is not zero, copy the data over so the x’th pixel
is at the start of the buffer.

You can assume the y’s will be consecutive, except the first one may be greater than zero.

If D is 4 or more, you must fill in the unused bytes with zero.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

272 Module Documentation

29.7.3.21 void fl_draw_image (const uchar ∗ buf, int X, int Y, int W, int H, int D = 3, int L = 0)
[inline]

Draw an 8-bit per color RGB or luminance image.

Parameters:

← buf points at the "r" data of the top-left pixel. Color data must be in r,g,b order.

← X,Y position where to put top-left corner of image

←W,H size of the image

← D delta to add to the pointer between pixels. it may be any value greater than or equal to 3, or it
can be negative to flip the image horizontally

← L delta to add to the pointer between lines (if 0 is passed it uses W ∗ D), and may be larger than W ∗
D to crop data, or negative to flip the image vertically

It is highly recommended that you put the following code before the first show() of any window in your
program to get rid of the dithering if possible:

Fl::visual(FL_RGB);

Gray scale (1-channel) images may be drawn. This is done if abs(D) is less than 3, or by calling fl_-
draw_image_mono(). Only one 8-bit sample is used for each pixel, and on screens with different numbers
of bits for red, green, and blue only gray colors are used. Setting D greater than 1 will let you display one
channel of a color image.

Note:

The X version does not support all possible visuals. If FLTK cannot draw the image in the current
visual it will abort. FLTK supports any visual of 8 bits or less, and all common TrueColor visuals up
to 32 bits.

29.7.3.22 FL_EXPORT void fl_draw_image_mono (Fl_Draw_Image_Cb cb, void ∗ data, int X,
int Y, int W, int H, int D = 1)

Draw gray-scale image using callback function to generate image data.

See also:

fl_draw_image(Fl_Draw_Image_Cb cb, void∗ data, int X,int Y,int W,int H, int D)

29.7.3.23 void fl_draw_image_mono (const uchar ∗ buf, int X, int Y, int W, int H, int D = 1, int
L = 0) [inline]

Draw a gray-scale (1 channel) image.

See also:

fl_draw_image(const uchar∗ buf, int X,int Y,int W,int H, int D, int L)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.7 Drawing functions 273

29.7.3.24 FL_EXPORT int fl_draw_pixmap (const char ∗const ∗ cdata, int x, int y, Fl_Color bg)

Draw XPM image data, with the top-left corner at the given position.

See also:

fl_draw_pixmap(char∗ const∗ data, int x, int y, Fl_Color bg)

29.7.3.25 FL_EXPORT int fl_draw_pixmap (char ∗const ∗ data, int x, int y, Fl_Color bg)

Draw XPM image data, with the top-left corner at the given position.

The image is dithered on 8-bit displays so you won’t lose color space for programs displaying both images
and pixmaps.

Parameters:

← data pointer to XPM image data

← x,y position of top-left corner

← bg background color

Returns:

0 if there was any error decoding the XPM data.

29.7.3.26 FL_EXPORT int fl_draw_symbol (const char ∗ label, int x, int y, int w, int h, Fl_Color
col)

Draw the named symbol in the given rectangle using the given color.

Parameters:

← label name of symbol

← x,y position of symbol

← w,h size of symbol

← col color of symbox

Returns:

1 on success, 0 on failure

29.7.3.27 FL_EXPORT const char∗ fl_expand_text (const char ∗ from, char ∗ buf, int maxbuf,
double maxw, int & n, double & width, int wrap, int draw_symbols)

Copy from to buf, replacing unprintable characters with ∧X and \nnn.

Stop at a newline or if MAXBUF characters written to buffer. Also word-wrap if width exceeds maxw.
Returns a pointer to the start of the next line of characters. Sets n to the number of characters put into the
buffer. Sets width to the width of the string in the current font.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

274 Module Documentation

29.7.3.28 FL_EXPORT void fl_frame (const char ∗ s, int x, int y, int w, int h)

Draws a series of line segments around the given box.

The string s must contain groups of 4 letters which specify one of 24 standard grayscale values, where
’A’ is black and ’X’ is white. The order of each set of 4 characters is: top, left, bottom, right. The result
of calling fl_frame() with a string that is not a multiple of 4 characters in length is undefined. The only
difference between this function and fl_frame2() is the order of the line segments.

Parameters:

← s sets of 4 grayscale values in top, left, bottom, right order

← x,y,w,h position and size

29.7.3.29 FL_EXPORT void fl_frame2 (const char ∗ s, int x, int y, int w, int h)

Draws a series of line segments around the given box.

The string s must contain groups of 4 letters which specify one of 24 standard grayscale values, where
’A’ is black and ’X’ is white. The order of each set of 4 characters is: bottom, right, top, left. The result
of calling fl_frame2() with a string that is not a multiple of 4 characters in length is undefined. The only
difference between this function and fl_frame() is the order of the line segments.

Parameters:

← s sets of 4 grayscale values in bottom, right, top, left order

← x,y,w,h position and size

29.7.3.30 void fl_gap () [inline]

Call fl_gap() to separate loops of the path.

It is unnecessary but harmless to call fl_gap() before the first vertex, after the last vertex, or several times
in a row.

29.7.3.31 void fl_line_style (int style, int width = 0, char ∗ dashes = 0) [inline]

Sets how to draw lines (the "pen").

If you change this it is your responsibility to set it back to the default using fl_line_style(0).

Parameters:

← style A bitmask which is a bitwise-OR of a line style, a cap style, and a join style. If you don’t
specify a dash type you will get a solid line. If you don’t specify a cap or join type you will get a
system-defined default of whatever value is fastest.

← width The thickness of the lines in pixels. Zero results in the system defined default, which on both
X and Windows is somewhat different and nicer than 1.

← dashes A pointer to an array of dash lengths, measured in pixels. The first location is how long to
draw a solid portion, the next is how long to draw the gap, then the solid, etc. It is terminated
with a zero-length entry. A NULL pointer or a zero-length array results in a solid line. Odd array
sizes are not supported and result in undefined behavior.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.7 Drawing functions 275

Note:

Because of how line styles are implemented on Win32 systems, you must set the line style after setting
the drawing color. If you set the color after the line style you will lose the line style settings.
The dashes array does not work under Windows 95, 98 or Me, since those operating systems do not
support complex line styles.

29.7.3.32 FL_EXPORT void fl_measure (const char ∗ str, int & w, int & h, int draw_symbols)

Measure how wide and tall the string will be when printed by the fl_draw() function with align parameter.

If the incoming w is non-zero it will wrap to that width.

Parameters:

← str nul-terminated string

→ w,h width and height of string in current font

← draw_symbols non-zero to enable @symbol handling [default=1]

29.7.3.33 FL_EXPORT int fl_measure_pixmap (const char ∗const ∗ cdata, int & w, int & h)

Get the dimensions of a pixmap.

See also:

fl_measure_pixmap(char∗ const∗ data, int &w, int &h)

29.7.3.34 FL_EXPORT int fl_measure_pixmap (char ∗const ∗ data, int & w, int & h)

Get the dimensions of a pixmap.

An XPM image contains the dimensions in its data. This function returns te width and height.

Parameters:

← data pointer to XPM image data.

→ w,h width and height of image

Returns:

non-zero if the dimensions were parsed OK
0 if there were any problems

29.7.3.35 FL_EXPORT void fl_mult_matrix (double a, double b, double c, double d, double x,
double y)

Concatenates another transformation onto the current one.

Parameters:

← a,b,c,d,x,y transformation matrix elements such that X’ = aX + cY + x and Y’ = bX
+dY + y

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

276 Module Documentation

29.7.3.36 int fl_not_clipped (int x, int y, int w, int h) [inline]

Does the rectangle intersect the current clip region?

Parameters:

← x,y,w,h position and size of rectangle

Returns:

non-zero if any of the rectangle intersects the current clip region. If this returns 0 you don’t have to
draw the object.

Note:

Under X this returns 2 if the rectangle is partially clipped, and 1 if it is entirely inside the clip region.

29.7.3.37 FL_EXPORT unsigned int fl_old_shortcut (const char ∗ s)

Emulation of XForms named shortcuts.

Converts ascii shortcut specifications (eg. "∧c") into the FLTK integer equivalent (eg. FL_CTRL+’c’)

These ascii characters are used to specify the various keyboard modifier keys:

- Alt
+ - Shift
^ - Control

29.7.3.38 void fl_pie (int x, int y, int w, int h, double a1, double a2) [inline]

Draw filled ellipse sections using integer coordinates.

Like fl_arc(), but fl_pie() draws a filled-in pie slice. This slice may extend outside the line drawn by fl_arc();
to avoid this use w - 1 and h - 1.

Parameters:

← x,y,w,h bounding box of complete circle

← a1,a2 start and end angles of arc measured in degrees counter-clockwise from 3 o’clock. a2 must
be greater than or equal to a1.

29.7.3.39 void fl_polygon (int x, int y, int x1, int y1, int x2, int y2, int x3, int y3) [inline]

Fills a 4-sided polygon.

The polygon must be convex.

29.7.3.40 void fl_polygon (int x, int y, int x1, int y1, int x2, int y2) [inline]

Fills a 3-sided polygon.

The polygon must be convex.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.7 Drawing functions 277

29.7.3.41 void fl_pop_clip () [inline]

Restores the previous clip region.

You must call fl_pop_clip() once for every time you call fl_push_clip(). Unpredictable results may occur if
the clip stack is not empty when you return to FLTK.

29.7.3.42 void fl_push_clip (int x, int y, int w, int h) [inline]

Intersects the current clip region with a rectangle and pushes this new region onto the stack.

Parameters:

← x,y,w,h position and size

29.7.3.43 FL_EXPORT void fl_push_matrix ()

Saves the current transformation matrix on the stack.

The maximum depth of the stack is 4.

29.7.3.44 FL_EXPORT uchar∗ fl_read_image (uchar ∗ p, int X, int Y, int W, int H, int alpha = 0)

Read an RGB(A) image from the current window or off-screen buffer.

Parameters:

← p pixel buffer, or NULL to allocate one

← X,Y position of top-left of image to read

←W,H width and height of image to read

← alpha alpha value for image (0 fr none)

Returns:

pointer to pixel buffer, or NULL if allocation failed.

The p argument points to a buffer that can hold the image and must be at least W∗H∗3 bytes when reading
RGB images, or W∗H∗4 bytes when reading RGBA images. If NULL, fl_read_image() will create an array
of the proper suze which can be freed using delete[].

The alpha parameter controls whether an alpha channel is created and the value that is placed in the alpha
channel. If 0, no alpha channel is generated.

29.7.3.45 void fl_rect (int x, int y, int w, int h) [inline]

Draws a 1-pixel border inside the given bounding box.

This function is meant for quick drawing of simple boxes. The behavior is undefined for line widths that
are not 1.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

278 Module Documentation

29.7.3.46 FL_EXPORT void fl_rectf (int x, int y, int w, int h, uchar r, uchar g, uchar b)

Color a rectangle with "exactly" the passed r,g,b color.

On screens with less than 24 bits of color this is done by drawing a solid-colored block using fl_draw_-
image() so that the correct color shade is produced.

29.7.3.47 FL_EXPORT void fl_reset_spot (void)

Todo

provide user documentation for fl_reset_spot function

29.7.3.48 FL_EXPORT void fl_rotate (double d)

Concatenates rotation transformation onto the current one.

Parameters:

← d - rotation angle, counter-clockwise in degrees (not radians)

29.7.3.49 FL_EXPORT void fl_scale (double x)

Concatenates scaling transformation onto the current one.

Parameters:

← x scale factor in both x-direction and y-direction

29.7.3.50 FL_EXPORT void fl_scale (double x, double y)

Concatenates scaling transformation onto the current one.

Parameters:

← x,y scale factors in x-direction and y-direction

29.7.3.51 FL_EXPORT void fl_scroll (int X, int Y, int W, int H, int dx, int dy, void(∗)(void ∗, int,
int, int, int) draw_area, void ∗ data)

Scroll a rectangle and draw the newly exposed portions.

Parameters:

← X,Y position of top-left of rectangle
←W,H size of rectangle
← dx,dy pixel offsets for shifting rectangle
← draw_area callback function to draw rectangular areas
← data pointer to user data for callback The contents of the rectangular area is first shifted by dx and

dy pixels. The draw_area callback is then called for every newly exposed rectangular area.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.7 Drawing functions 279

29.7.3.52 FL_EXPORT void fl_set_spot (int font, int size, int X, int Y, int W, int H, Fl_Window
∗ win = 0)

Todo

provide user documentation for fl_set_spot function

29.7.3.53 FL_EXPORT void fl_set_status (int X, int Y, int W, int H)

Todo

provide user documentation for fl_set_status function

29.7.3.54 FL_EXPORT const char∗ fl_shortcut_label (unsigned int shortcut, const char ∗∗ eom)

Get a human-readable string from a shortcut value.

Parameters:

← shortcut the integer value containing the ascii charcter or extended keystroke plus modifiers
← eom if this pointer is set, it will receive a pointer to the end of the modifier text

Returns:

a pointer to a static buffer containing human readable text for the shortcut

See also:

fl_shortcut_label(unsigned int shortcut)

29.7.3.55 FL_EXPORT const char∗ fl_shortcut_label (unsigned int shortcut)

Get a human-readable string from a shortcut value.

Unparse a shortcut value as used by Fl_Button or Fl_Menu_Item into a human-readable string like "Alt+N".
This only works if the shortcut is a character key or a numbered function key. If the shortcut is zero then
an empty string is returned. The return value points at a static buffer that is overwritten with each call.

Parameters:

← shortcut the integer value containing the ascii charcter or extended keystroke plus modifiers

Returns:

a pointer to a static buffer containing human readable text for the shortcut

29.7.3.56 FL_EXPORT double fl_transform_dx (double x, double y)

Transforms distance using current transformation matrix.

Parameters:

← x,y coordinate

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

280 Module Documentation

29.7.3.57 FL_EXPORT double fl_transform_dy (double x, double y)

Transforms distance using current transformation matrix.

Parameters:

← x,y coordinate

29.7.3.58 FL_EXPORT double fl_transform_x (double x, double y)

Transforms coordinate using the current transformation matrix.

Parameters:

← x,y coordinate

29.7.3.59 FL_EXPORT double fl_transform_y (double x, double y)

Transform coordinate using the current transformation matrix.

Parameters:

← x,y coordinate

29.7.3.60 void fl_transformed_vertex (double xf, double yf) [inline]

Adds coordinate pair to the vertex list without further transformations.

Parameters:

← xf,yf transformed coordinate

29.7.3.61 FL_EXPORT void fl_translate (double x, double y)

Concatenates translation transformation onto the current one.

Parameters:

← x,y translation factor in x-direction and y-direction

29.7.3.62 void fl_vertex (double x, double y) [inline]

Adds a single vertex to the current path.

Parameters:

← x,y coordinate

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.8 Multithreading support functions 281

29.8 Multithreading support functions

fl multithreading support functions declared in <FL/Fl.H>

Functions

• static int Fl::awake (Fl_Awake_Handler cb, void ∗message=0)
See void awake(void∗ message=0).

• static void Fl::awake (void ∗message=0)
The awake() method sends a message pointer to the main thread, causing any pending Fl::wait() call to
terminate so that the main thread can retrieve the message and any pending redraws can be processed.

• static void Fl::lock ()
The lock() method blocks the current thread until it can safely access FLTK widgets and data.

• static void ∗ Fl::thread_message ()
The thread_message() method returns the last message that was sent from a child by the awake() method.

• static void Fl::unlock ()
The unlock() method releases the lock that was set using the lock() method.

29.8.1 Detailed Description

fl multithreading support functions declared in <FL/Fl.H>

29.8.2 Function Documentation

29.8.2.1 int Fl::awake (Fl_Awake_Handler cb, void ∗ message = 0) [static, inherited]

See void awake(void∗ message=0).

Let the main thread know an update is pending and have it call a specific function See void awake(void∗
message=0).

29.8.2.2 void Fl::awake (void ∗ msg = 0) [static, inherited]

The awake() method sends a message pointer to the main thread, causing any pending Fl::wait() call to
terminate so that the main thread can retrieve the message and any pending redraws can be processed.

Multiple calls to Fl::awake() will queue multiple pointers for the main thread to process, up to a system-
defined (typically several thousand) depth. The default message handler saves the last message which can
be accessed using the Fl::thread_message() function.

The second form of awake() registers a function that will be called by the main thread during the next
message handling cycle. awake() will return 0 if the callback function was registered, and -1 if registration
failed. Over a thousand awake callbacks can be registered simultaneously.

In the context of a threaded application, a call to Fl::awake() with no argument will trigger event loop
handling in the main thread. Since it is not possible to call Fl::flush() from a subsidiary thread, Fl::awake()
is the best (and only, really) substitute.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

282 Module Documentation

See also: Multithreading

29.8.2.3 void Fl::lock () [static, inherited]

The lock() method blocks the current thread until it can safely access FLTK widgets and data.

Child threads should call this method prior to updating any widgets or accessing data. The main thread
must call lock() to initialize the threading support in FLTK.

Child threads must call unlock() when they are done accessing FLTK.

When the wait() method is waiting for input or timeouts, child threads are given access to FLTK. Similarly,
when the main thread needs to do processing, it will wait until all child threads have called unlock() before
processing additional data.

See also: Multithreading

29.8.2.4 static void∗ Fl::thread_message () [static, inherited]

The thread_message() method returns the last message that was sent from a child by the awake() method.

See also: multithreading

29.8.2.5 void Fl::unlock () [static, inherited]

The unlock() method releases the lock that was set using the lock() method.

Child threads should call this method as soon as they are finished accessing FLTK.

See also: Multithreading

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.9 Safe widget deletion support functions 283

29.9 Safe widget deletion support functions

These functions, declared in <FL/Fl.H>, support deletion of widgets inside callbacks.

Functions

• static void Fl::clear_widget_pointer (Fl_Widget const ∗w)
Clears a widget pointer in the watch list.

• static void Fl::delete_widget (Fl_Widget ∗w)
Schedules a widget for deletion at the next call to the event loop.

• static void Fl::do_widget_deletion ()
Deletes widgets previously scheduled for deletion.

• static void Fl::release_widget_pointer (Fl_Widget ∗&w)
Releases a widget pointer from the watch list.

• static void Fl::watch_widget_pointer (Fl_Widget ∗&w)
Adds a widget pointer to the widget watch list.

29.9.1 Detailed Description

These functions, declared in <FL/Fl.H>, support deletion of widgets inside callbacks.

Fl::delete_widget() should be called when deleting widgets or complete widget trees (Fl_Group, Fl_-
Window, ...) inside callbacks.

The other functions are intended for internal use. The preferred way to use them is by using the helper
class Fl_Widget_Tracker.

The following is to show how it works ...

There are three groups of related methods:

1. scheduled widget deletion

• Fl::delete_widget() schedules widgets for deletion
• Fl::do_widget_deletion() deletes all scheduled widgets

2. widget watch list ("smart pointers")

• Fl::watch_widget_pointer() adds a widget pointer to the watch list
• Fl::release_widget_pointer() removes a widget pointer from the watch list
• Fl::clear_widget_pointer() clears a widget pointer in the watch list

3. the class Fl_Widget_Tracker:

• the constructor calls Fl::watch_widget_pointer()
• the destructor calls Fl::release_widget_pointer()
• the access methods can be used to test, if a widget has been deleted

See also:

Fl_Widget_Tracker.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

284 Module Documentation

29.9.2 Function Documentation

29.9.2.1 void Fl::clear_widget_pointer (Fl_Widget const ∗ w) [static, inherited]

Clears a widget pointer in the watch list.

This is called when a widget is destroyed (by its destructor). You should never call this directly.

Note:

Internal use only !

This method searches the widget watch list for pointers to the widget and clears each pointer that points to
it. Widget pointers can be added to the widget watch list by calling Fl::watch_widget_pointer() or by using
the helper class Fl_Widget_Tracker (recommended).

See also:

Fl::watch_widget_pointer()
class Fl_Widget_Tracker

29.9.2.2 void Fl::delete_widget (Fl_Widget ∗ wi) [static, inherited]

Schedules a widget for deletion at the next call to the event loop.

Use this method to delete a widget inside a callback function.

To avoid early deletion of widgets, this function should be called toward the end of a callback and only
after any call to the event loop (Fl::wait(), Fl::flush(), Fl::check(), fl_ask(), etc.).

When deleting groups or windows, you must only delete the group or window widget and not the individual
child widgets.

Since:

FLTK 1.3 it is not necessary to remove widgets from their parent groups or windows before calling
this, because it will be done in the widget’s destructor, but it is not a failure to do this nevertheless.

Note:

In FLTK 1.1 you must remove widgets from their parent group (or window) before deleting them.

See also:

Fl_Widget::∼Fl_Widget()

29.9.2.3 void Fl::do_widget_deletion () [static, inherited]

Deletes widgets previously scheduled for deletion.

This is for internal use only. You should never call this directly.

Fl::do_widget_deletion() is called from the FLTK event loop or whenever you call Fl::wait(). The previ-
ously scheduled widgets are deleted in the same order they were scheduled by calling Fl::delete_widget().

See also:

Fl::delete_widget(Fl_Widget ∗wi)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.9 Safe widget deletion support functions 285

29.9.2.4 void Fl::release_widget_pointer (Fl_Widget ∗& w) [static, inherited]

Releases a widget pointer from the watch list.

This is used to remove a widget pointer that has been added to the watch list with Fl::watch_widget_-
pointer(), when it is not needed anymore.

Note:

Internal use only, please use class Fl_Widget_Tracker instead.

See also:

Fl::watch_widget_pointer()

29.9.2.5 void Fl::watch_widget_pointer (Fl_Widget ∗& w) [static, inherited]

Adds a widget pointer to the widget watch list.

Note:

Internal use only, please use class Fl_Widget_Tracker instead.

This can be used, if it is possible that a widget might be deleted during a callback or similar function. The
widget pointer must be added to the watch list before calling the callback. After the callback the widget
pointer can be queried, if it is NULL. If it is NULL, then the widget has been deleted during the callback
and must not be accessed anymore. If the widget pointer is not NULL, then the widget has not been deleted
and can be accessed safely.

After accessing the widget, the widget pointer must be released from the watch list by calling Fl::release_-
widget_pointer().

Example for a button that is clicked (from its handle() method):

Fl_Widget *wp = this; // save ’this’ in a pointer variable
Fl::watch_widget_pointer(wp); // add the pointer to the watch list
set_changed(); // set the changed flag
do_callback(); // call the callback
if (!wp) { // the widget has been deleted

// DO NOT ACCESS THE DELETED WIDGET !

} else { // the widget still exists
clear_changed(); // reset the changed flag

}

Fl::release_widget_pointer(wp); // remove the pointer from the watch list

This works, because all widgets call Fl::clear_widget_pointer() in their destructors.

See also:

Fl::release_widget_pointer()
Fl::clear_widget_pointer()

An easier and more convenient method to control widget deletion during callbacks is to use the class Fl_-
Widget_Tracker with a local (automatic) variable.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

286 Module Documentation

See also:

class Fl_Widget_Tracker

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.10 Cairo support functions and classes 287

29.10 Cairo support functions and classes

Classes

• class Fl_Cairo_State

Contains all the necessary info on the current cairo context.

• class Fl_Cairo_Window

This defines a pre-configured cairo fltk window.

Functions

• static bool Fl::cairo_autolink_context ()

Gets the current autolink mode for cairo support.

• static void Fl::cairo_autolink_context (bool alink)

when HAVE_CAIRO is defined and cairo_autolink_context() is true, any current window dc is linked to a
current context.

• static void Fl::cairo_cc (cairo_t ∗c, bool own=false)

Sets the current cairo context to c.

• static cairo_t ∗ Fl::cairo_cc ()

Gets the current cairo context linked with a fltk window.

• static cairo_t ∗ Fl::cairo_make_current (Fl_Window ∗w)

29.10.1 Function Documentation

29.10.1.1 static bool Fl::cairo_autolink_context () [inline, static, inherited]

Gets the current autolink mode for cairo support.

Return values:

false if no cairo context autolink is made for each window.

true if any fltk window is attached a cairo context when it is current.

See also:

void cairo_autolink_context(bool alink)

Note:

Only available when configure has the –enable-cairo option

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

288 Module Documentation

29.10.1.2 static void Fl::cairo_autolink_context (bool alink) [inline, static,
inherited]

when HAVE_CAIRO is defined and cairo_autolink_context() is true, any current window dc is linked to a
current context.

This is not the default, because it may not be necessary to add cairo support to all fltk supported windows.
When you wish to associate a cairo context in this mode, you need to call explicitly in your draw() over-
ridden method, FL::cairo_make_current(Fl_Window∗). This will create a cairo context but only for this
Window. Still in custom cairo application it is possible to handle completely this process automatically by
setting alink to true. In this last case, you don’t need anymore to call Fl::cairo_make_current(). You can
use Fl::cairo_cc() to get the current cairo context anytime.

Note:

Only available when configure has the –enable-cairo option

29.10.1.3 static void Fl::cairo_cc (cairo_t ∗ c, bool own = false) [inline, static,
inherited]

Sets the current cairo context to c.

Set own to true if you want fltk to handle this cc deletion.

Note:

Only available when configure has the –enable-cairo option

29.10.1.4 static cairo_t∗ Fl::cairo_cc () [inline, static, inherited]

Gets the current cairo context linked with a fltk window.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.11 Unicode and UTF-8 functions 289

29.11 Unicode and UTF-8 functions

fl global Unicode and UTF-8 handling functions declared in <FL/fl_utf8.h>

Defines

• #define ERRORS_TO_CP1252 1
• #define ERRORS_TO_ISO8859_1 1
• #define NBC 0xFFFF + 1
• #define STRICT_RFC3629 0

Functions

• FL_EXPORT int fl_access (const char ∗f, int mode)
• FL_EXPORT int fl_chmod (const char ∗f, int mode)
• FL_EXPORT int fl_execvp (const char ∗file, char ∗const ∗argv)
• FL_EXPORT FILE ∗ fl_fopen (const char ∗f, const char ∗mode)
• FL_EXPORT char ∗ fl_getcwd (char ∗buf, int maxlen)
• FL_EXPORT char ∗ fl_getenv (const char ∗name)
• FL_EXPORT char fl_make_path (const char ∗path)
• FL_EXPORT void fl_make_path_for_file (const char ∗path)
• FL_EXPORT int fl_mkdir (const char ∗f, int mode)
• FL_EXPORT unsigned int fl_nonspacing (unsigned int ucs)

returns true if the character is non-spacing.

• FL_EXPORT int fl_open (const char ∗f, int o,...)
• FL_EXPORT int fl_rename (const char ∗f, const char ∗t)
• FL_EXPORT int fl_rmdir (const char ∗f)
• FL_EXPORT int fl_stat (const char ∗path, struct stat ∗buffer)
• FL_EXPORT int fl_system (const char ∗f)
• FL_EXPORT int fl_tolower (unsigned int ucs)

return the Unicode lower case value of ucs

• FL_EXPORT int fl_toupper (unsigned int ucs)

return the Unicode upper case value of ucs

• FL_EXPORT int fl_unlink (const char ∗f)
• FL_EXPORT char ∗ fl_utf2mbcs (const char ∗s)

converts UTF8 to a local multi-byte character string.

• FL_EXPORT const char ∗ fl_utf8back (const char ∗p, const char ∗start, const char ∗end)
• FL_EXPORT int fl_utf8bytes (unsigned ucs)

Return the number of bytes needed to encode the given UCS4 character in UTF8.

• FL_EXPORT unsigned fl_utf8decode (const char ∗p, const char ∗end, int ∗len)
• FL_EXPORT int fl_utf8encode (unsigned ucs, char ∗buf)
• FL_EXPORT unsigned fl_utf8from_mb (char ∗dst, unsigned dstlen, const char ∗src, unsigned srclen)
• FL_EXPORT unsigned fl_utf8froma (char ∗dst, unsigned dstlen, const char ∗src, unsigned srclen)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

290 Module Documentation

• FL_EXPORT unsigned fl_utf8fromwc (char ∗dst, unsigned dstlen, const wchar_t ∗src, unsigned
srclen)

• FL_EXPORT const char ∗ fl_utf8fwd (const char ∗p, const char ∗start, const char ∗end)

• FL_EXPORT int fl_utf8len (char c)

return the byte length of the UTF-8 sequence with first byte c, or -1 if c is not valid.

• FL_EXPORT int fl_utf8len1 (char c)

Return the byte length of the UTF-8 sequence with first byte c, or 1 if c is not valid.

• FL_EXPORT int fl_utf8locale ()

• FL_EXPORT int fl_utf8test (const char ∗src, unsigned len)

• FL_EXPORT unsigned fl_utf8to_mb (const char ∗src, unsigned srclen, char ∗dst, unsigned dstlen)

• FL_EXPORT unsigned fl_utf8toa (const char ∗src, unsigned srclen, char ∗dst, unsigned dstlen)

• FL_EXPORT unsigned fl_utf8toUtf16 (const char ∗src, unsigned srclen, unsigned short ∗dst, un-
signed dstlen)

• FL_EXPORT unsigned fl_utf8towc (const char ∗src, unsigned srclen, wchar_t ∗dst, unsigned
dstlen)

Converts a UTF-8 string into a wide character string.

• FL_EXPORT int fl_utf_nb_char (const unsigned char ∗buf, int len)

returns the number of Unicode chars in the UTF-8 string

• FL_EXPORT int fl_utf_strcasecmp (const char ∗s1, const char ∗s2)

UTF-8 aware strcasecmp - converts to Unicode and tests.

• FL_EXPORT int fl_utf_strncasecmp (const char ∗s1, const char ∗s2, int n)

UTF-8 aware strncasecmp - converts to lower case Unicode and tests.

• FL_EXPORT int fl_utf_tolower (const unsigned char ∗str, int len, char ∗buf)

converts the str string to the lower case equivalent into buf.

• FL_EXPORT int fl_utf_toupper (const unsigned char ∗str, int len, char ∗buf)

converts the str string to the upper case equivalent into buf.

• FL_EXPORT int fl_wcwidth (const char ∗src)

extended wrapper around fl_wcwidth_(unsigned int ucs) function.

• FL_EXPORT int fl_wcwidth_ (unsigned int ucs)

wrapper to adapt Markus Kuhn’s implementation of wcwidth() for FLTK

29.11.1 Detailed Description

fl global Unicode and UTF-8 handling functions declared in <FL/fl_utf8.h>

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.11 Unicode and UTF-8 functions 291

29.11.2 Define Documentation

29.11.2.1 #define ERRORS_TO_CP1252 1

Set to 1 to turn bad UTF8 bytes in the 0x80-0x9f range into the Unicode index for Microsoft’s CP1252
character set. You should also set ERRORS_TO_ISO8859_1. With this a huge amount of more available
text (such as all web pages) are correctly converted to Unicode.

29.11.2.2 #define ERRORS_TO_ISO8859_1 1

Set to 1 to turn bad UTF8 bytes into ISO-8859-1. If this is to zero they are instead turned into the Unicode
REPLACEMENT CHARACTER, of value 0xfffd. If this is on fl_utf8decode() will correctly map most
(perhaps all) human-readable text that is in ISO-8859-1. This may allow you to completely ignore character
sets in your code because virtually everything is either ISO-8859-1 or UTF-8.

29.11.2.3 #define STRICT_RFC3629 0

A number of Unicode code points are in fact illegal and should not be produced by a UTF-8 converter.
Turn this on will replace the bytes in those encodings with errors. If you do this then converting arbitrary
16-bit data to UTF-8 and then back is not an identity, which will probably break a lot of software.

29.11.3 Function Documentation

29.11.3.1 unsigned int fl_nonspacing (unsigned int ucs)

returns true if the character is non-spacing.

Todo

explain what non-spacing means.

29.11.3.2 const char ∗ fl_utf8back (const char ∗ p, const char ∗ start, const char ∗ end)

Move p backward until it points to the start of a UTF-8 character. If it already points at the start of one then
it is returned unchanged. Any UTF-8 errors are treated as though each byte of the error is an individual
character.

start is the start of the string and is used to limit the backwards search for the start of a UTF-8 character.

end is the end of the string and is assumed to be a break between characters. It is assumed to be greater
than p.

If you wish to decrement a UTF-8 pointer, pass p-1 to this.

29.11.3.3 int fl_utf8bytes (unsigned ucs)

Return the number of bytes needed to encode the given UCS4 character in UTF8.

Parameters:

← ucs UCS4 encoded character

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

292 Module Documentation

Returns:

number of bytes required

Returns number of bytes that utf8encode() will use to encode the character ucs.

29.11.3.4 unsigned fl_utf8decode (const char ∗ p, const char ∗ end, int ∗ len)

Decode a single UTF-8 encoded character starting at p. The resulting Unicode value (in the range 0-
0x10ffff) is returned, and len is set to the number of bytes in the UTF-8 encoding (adding len to p will
point at the next character).

If p points at an illegal UTF-8 encoding, including one that would go past end, or where a code is uses
more bytes than necessary, then ∗(unsigned char∗)p is translated as though it is in the Microsoft CP1252
character set and len is set to 1. Treating errors this way allows this to decode almost any ISO-8859-1 or
CP1252 text that has been mistakenly placed where UTF-8 is expected, and has proven very useful.

If you want errors to be converted to error characters (as the standards recommend), adding a test to see if
the length is unexpectedly 1 will work:

if (*p & 0x80) { // what should be a multibyte encoding
code = fl_utf8decode(p,end,&len);
if (len<2) code = 0xFFFD; // Turn errors into REPLACEMENT CHARACTER

} else { // handle the 1-byte utf8 encoding:
code = *p;
len = 1;

}

Direct testing for the 1-byte case (as shown above) will also speed up the scanning of strings where the
majority of characters are ASCII.

29.11.3.5 int fl_utf8encode (unsigned ucs, char ∗ buf)

Write the UTF-8 encoding of ucs into buf and return the number of bytes written. Up to 4 bytes may be
written. If you know that ucs is less than 0x10000 then at most 3 bytes will be written. If you wish to
speed this up, remember that anything less than 0x80 is written as a single byte.

If ucs is greater than 0x10ffff this is an illegal character according to RFC 3629. These are converted as
though they are 0xFFFD (REPLACEMENT CHARACTER).

RFC 3629 also says many other values for ucs are illegal (in the range 0xd800 to 0xdfff, or ending with
0xfffe or 0xffff). However I encode these as though they are legal, so that utf8encode/fl_utf8decode will be
the identity for all codes between 0 and 0x10ffff.

29.11.3.6 unsigned fl_utf8from_mb (char ∗ dst, unsigned dstlen, const char ∗ src, unsigned srclen)

Convert a filename from the locale-specific multibyte encoding used by Windows to UTF-8 as used by
FLTK.

Up to dstlen bytes are written to dst, including a null terminator. The return value is the number of
bytes that would be written, not counting the null terminator. If greater or equal to dstlen then if you
malloc a new array of size n+1 you will have the space needed for the entire string. If dstlen is zero then
nothing is written and this call just measures the storage space needed.

On Unix or on Windows when a UTF-8 locale is in effect, this does not change the data. It is copied
and truncated as necessary to the destination buffer and srclen is always returned. You may also want

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.11 Unicode and UTF-8 functions 293

to check if fl_utf8test() returns non-zero, so that the filesystem can store filenames in UTF-8 encoding
regardless of the locale.

29.11.3.7 unsigned fl_utf8froma (char ∗ dst, unsigned dstlen, const char ∗ src, unsigned srclen)

Convert an ISO-8859-1 (ie normal c-string) byte stream to UTF-8.

It is possible this should convert Microsoft’s CP1252 to UTF-8 instead. This would translate the codes in
the range 0x80-0x9f to different characters. Currently it does not do this.

Up to dstlen bytes are written to dst, including a null terminator. The return value is the number of
bytes that would be written, not counting the null terminator. If greater or equal to dstlen then if you
malloc a new array of size n+1 you will have the space needed for the entire string. If dstlen is zero then
nothing is written and this call just measures the storage space needed.

srclen is the number of bytes in src to convert.

If the return value equals srclen then this indicates that no conversion is necessary, as only ASCII
characters are in the string.

29.11.3.8 unsigned fl_utf8fromwc (char ∗ dst, unsigned dstlen, const wchar_t ∗ src, unsigned
srclen)

Turn "wide characters" as returned by some system calls (especially on Windows) into UTF-8.

Up to dstlen bytes are written to dst, including a null terminator. The return value is the number of
bytes that would be written, not counting the null terminator. If greater or equal to dstlen then if you
malloc a new array of size n+1 you will have the space needed for the entire string. If dstlen is zero then
nothing is written and this call just measures the storage space needed.

srclen is the number of words in src to convert. On Windows this is not necessairly the number of
characters, due to there possibly being "surrogate pairs" in the UTF-16 encoding used. On Unix wchar_t is
32 bits and each location is a character.

On Unix if a src word is greater than 0x10ffff then this is an illegal character according to RFC 3629.
These are converted as though they are 0xFFFD (REPLACEMENT CHARACTER). Characters in the
range 0xd800 to 0xdfff, or ending with 0xfffe or 0xffff are also illegal according to RFC 3629. However I
encode these as though they are legal, so that fl_utf8towc will return the original data.

On Windows "surrogate pairs" are converted to a single character and UTF-8 encoded (as 4 bytes). Mis-
matched halves of surrogate pairs are converted as though they are individual characters.

29.11.3.9 const char ∗ fl_utf8fwd (const char ∗ p, const char ∗ start, const char ∗ end)

Move p forward until it points to the start of a UTF-8 character. If it already points at the start of one then
it is returned unchanged. Any UTF-8 errors are treated as though each byte of the error is an individual
character.

start is the start of the string and is used to limit the backwards search for the start of a utf8 character.

end is the end of the string and is assumed to be a break between characters. It is assumed to be greater
than p.

This function is for moving a pointer that was jumped to the middle of a string, such as when doing a
binary search for a position. You should use either this or fl_utf8back() depending on which direction your
algorithim can handle the pointer moving. Do not use this to scan strings, use fl_utf8decode() instead.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

294 Module Documentation

29.11.3.10 int fl_utf8len (char c)

return the byte length of the UTF-8 sequence with first byte c, or -1 if c is not valid.

This function is helpful for finding faulty UTF8 sequences.

See also:

fl_utf8len1

29.11.3.11 int fl_utf8len1 (char c)

Return the byte length of the UTF-8 sequence with first byte c, or 1 if c is not valid.

This function can be used to scan faulty UTF8 sequence, albeit ignoring invalid codes.

See also:

fl_utf8len

29.11.3.12 int fl_utf8locale (void)

Return true if the "locale" seems to indicate that UTF-8 encoding is used. If true the fl_utf8to_mb and
fl_utf8from_mb don’t do anything useful.

It is highly recommended that you change your system so this does return true. On Windows this is done by
setting the "codepage" to CP_UTF8. On Unix this is done by setting $LC_CTYPE to a string containing
the letters "utf" or "UTF" in it, or by deleting all $LC∗ and $LANG environment variables. In the future it is
likely that all non-Asian Unix systems will return true, due to the compatibility of UTF-8 with ISO-8859-1.

29.11.3.13 int fl_utf8test (const char ∗ src, unsigned srclen)

Examines the first srclen bytes in src and returns a verdict on whether it is UTF-8 or not.

• Returns 0 if there is any illegal UTF-8 sequences, using the same rules as fl_utf8decode(). Note that
some UCS values considered illegal by RFC 3629, such as 0xffff, are considered legal by this.

• Returns 1 if there are only single-byte characters (ie no bytes have the high bit set). This is legal
UTF-8, but also indicates plain ASCII. It also returns 1 if srclen is zero.

• Returns 2 if there are only characters less than 0x800.

• Returns 3 if there are only characters less than 0x10000.

• Returns 4 if there are characters in the 0x10000 to 0x10ffff range.

Because there are many illegal sequences in UTF-8, it is almost impossible for a string in another encoding
to be confused with UTF-8. This is very useful for transitioning Unix to UTF-8 filenames, you can simply
test each filename with this to decide if it is UTF-8 or in the locale encoding. My hope is that if this is done
we will be able to cleanly transition to a locale-less encoding.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.11 Unicode and UTF-8 functions 295

29.11.3.14 unsigned fl_utf8to_mb (const char ∗ src, unsigned srclen, char ∗ dst, unsigned dstlen)

Convert the UTF-8 used by FLTK to the locale-specific encoding used for filenames (and sometimes used
for data in files). Unfortunately due to stupid design you will have to do this as needed for filenames. This
is a bug on both Unix and Windows.

Up to dstlen bytes are written to dst, including a null terminator. The return value is the number of
bytes that would be written, not counting the null terminator. If greater or equal to dstlen then if you
malloc a new array of size n+1 you will have the space needed for the entire string. If dstlen is zero then
nothing is written and this call just measures the storage space needed.

If fl_utf8locale() returns true then this does not change the data. It is copied and truncated as necessary to
the destination buffer and srclen is always returned.

29.11.3.15 unsigned fl_utf8toa (const char ∗ src, unsigned srclen, char ∗ dst, unsigned dstlen)

Convert a UTF-8 sequence into an array of 1-byte characters.

If the UTF-8 decodes to a character greater than 0xff then it is replaced with ’?’.

Errors in the UTF-8 are converted as individual bytes, same as fl_utf8decode() does. This allows ISO-
8859-1 text mistakenly identified as UTF-8 to be printed correctly (and possibly CP1512 on Windows).

src points at the UTF-8, and srclen is the number of bytes to convert.

Up to dstlen bytes are written to dst, including a null terminator. The return value is the number of
bytes that would be written, not counting the null terminator. If greater or equal to dstlen then if you
malloc a new array of size n+1 you will have the space needed for the entire string. If dstlen is zero then
nothing is written and this call just measures the storage space needed.

29.11.3.16 unsigned fl_utf8toUtf16 (const char ∗ src, unsigned srclen, unsigned short ∗ dst,
unsigned dstlen)

Convert a UTF-8 sequence into an array of wchar_t. These are used by some system calls, especially on
Windows.

src points at the UTF-8, and srclen is the number of bytes to convert.

dst points at an array to write, and dstlen is the number of locations in this array. At most dstlen-1
words will be written there, plus a 0 terminating word. Thus this function will never overwrite the buffer
and will always return a zero-terminated string. If dstlen is zero then dst can be null and no data is
written, but the length is returned.

The return value is the number of words that would be written to dst if it were long enough, not counting
the terminating zero. If the return value is greater or equal to dstlen it indicates truncation, you can then
allocate a new array of size return+1 and call this again.

Errors in the UTF-8 are converted as though each byte in the erroneous string is in the Microsoft CP1252
encoding. This allows ISO-8859-1 text mistakenly identified as UTF-8 to be printed correctly.

Notice that sizeof(wchar_t) is 2 on Windows and is 4 on Linux and most other systems. Where wchar_t is
16 bits, Unicode characters in the range 0x10000 to 0x10ffff are converted to "surrogate pairs" which take
two words each (this is called UTF-16 encoding). If wchar_t is 32 bits this rather nasty problem is avoided.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

296 Module Documentation

29.11.3.17 unsigned fl_utf8towc (const char ∗ src, unsigned srclen, wchar_t ∗ dst, unsigned dstlen)

Converts a UTF-8 string into a wide character string.

This function generates 32-bit wchar_t (e.g. "ucs4" as it were) except on win32 where it returns Utf16 with
surrogate pairs where required.

29.11.3.18 int fl_utf_strcasecmp (const char ∗ s1, const char ∗ s2)

UTF-8 aware strcasecmp - converts to Unicode and tests.

Todo

Correct the incorrect logic where length of strings tested

29.11.3.19 int fl_utf_strncasecmp (const char ∗ s1, const char ∗ s2, int n)

UTF-8 aware strncasecmp - converts to lower case Unicode and tests.

Todo

Correct the incorrect logic where length of strings tested

Todo

Clarify whether n means number of bytes, or characters.

29.11.3.20 int fl_utf_tolower (const unsigned char ∗ str, int len, char ∗ buf)

converts the str string to the lower case equivalent into buf.

Warning: to be safe buf length must be at least 3 ∗ len [for 16-bit Unicode]

29.11.3.21 int fl_utf_toupper (const unsigned char ∗ str, int len, char ∗ buf)

converts the str string to the upper case equivalent into buf.

Warning: to be safe buf length must be at least 3 ∗ len [for 16-bit Unicode]

29.11.3.22 int fl_wcwidth (const char ∗ src)

extended wrapper around fl_wcwidth_(unsigned int ucs) function.

Parameters:

← src pointer to start of UTF-8 byte sequence

Returns:

width of character in columns

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.11 Unicode and UTF-8 functions 297

Depending on build options, this function may map C1 control characters (0x80 to 0x9f) to CP1252, and
return the width of that character instead. This is not the same behaviour as fl_wcwidth_(unsigned int ucs)
.

Note that other control characters and DEL will still return -1, so if you want different behaviour, you need
to test for those characters before calling fl_wcwidth(), and handle them separately.

29.11.3.23 int fl_wcwidth_ (unsigned int ucs)

wrapper to adapt Markus Kuhn’s implementation of wcwidth() for FLTK

Parameters:

← ucs Unicode character value

Returns:

width of character in columns

See http://www.cl.cam.ac.uk/∼mgk25/ucs/wcwidth.c for Markus Kuhn’s original imple-
mentation of wcwidth() and wcswidth() (defined in IEEE Std 1002.1-2001) for Unicode.

WARNING: this function returns widths for "raw" Unicode characters. It does not even try to map C1
control characters (0x80 to 0x9F) to CP1252, and C0/C1 control characters and DEL will return -1. You
are advised to use fl_width(const char∗ src) instead.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c

298 Module Documentation

29.12 Mac OS X-specific functions

Mac OS X-specific functions declared in <FL/x.H> or <FL/gl.h>.

Functions

• void fl_mac_set_about (Fl_Callback ∗cb, void ∗user_data, int shortcut=0)

Attaches a callback to the "About myprog" item of the system application menu.

• void fl_open_callback (void(∗cb)(const char ∗))
Register a function called for each file dropped onto an application icon.

• void gl_texture_pile_height (int max)

Changes the height of the pile of pre-computed string textures.

• int gl_texture_pile_height (void)

Returns the current height of the pile of pre-computed string textures.

Variables

• int fl_mac_os_version

The version number of the running Mac OS X (e.g., 0x1064 for 10.6.4).

29.12.1 Detailed Description

Mac OS X-specific functions declared in <FL/x.H> or <FL/gl.h>.

29.12.2 Function Documentation

29.12.2.1 void fl_mac_set_about (Fl_Callback ∗ cb, void ∗ user_data, int shortcut = 0)

Attaches a callback to the "About myprog" item of the system application menu.

Parameters:

cb a callback that will be called by "About myprog" menu item with NULL 1st argument.

user_data a pointer transmitted as 2nd argument to the callback.

shortcut optional shortcut to attach to the "About myprog" menu item (e.g., FL_META+’a’)

29.12.2.2 void gl_texture_pile_height (int max)

Changes the height of the pile of pre-computed string textures.

Strings that are often re-displayed can be processed much faster if this pile is set high enough to hold all of
them.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.12 Mac OS X-specific functions 299

Parameters:

max Height of the texture pile

29.12.2.3 int gl_texture_pile_height (void)

Returns the current height of the pile of pre-computed string textures.

The default value is 100

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

300 Module Documentation

29.13 Common Dialogs classes and functions

Classes

• class Fl_Color_Chooser
The Fl_Color_Chooser widget provides a standard RGB color chooser.

• class Fl_File_Chooser
The Fl_File_Chooser widget displays a standard file selection dialog that supports various selection modes.

Functions

• void fl_alert (const char ∗fmt,...)
Shows an alert message dialog box.

• int fl_ask (const char ∗fmt,...)
Shows a dialog displaying the fmt message, this dialog features 2 yes/no buttons.

• void fl_beep (int type)
Emits a system beep message.

• int fl_choice (const char ∗fmt, const char ∗b0, const char ∗b1, const char ∗b2,...)
Shows a dialog displaying the fmt message, this dialog features up to 3 customizable choice buttons.

• int Fl_Color_Chooser::fl_color_chooser (const char ∗name, uchar &r, uchar &g, uchar &b, int
cmode)

Pops up a window to let the user pick an arbitrary RGB color.

• int Fl_Color_Chooser::fl_color_chooser (const char ∗name, double &r, double &g, double &b, int
cmode)

Pops up a window to let the user pick an arbitrary RGB color.

• char ∗ Fl_File_Chooser::fl_dir_chooser (const char ∗message, const char ∗fname, int relative)
• char ∗ Fl_File_Chooser::fl_file_chooser (const char ∗message, const char ∗pat, const char ∗fname,

int relative)
• void Fl_File_Chooser::fl_file_chooser_callback (void(∗cb)(const char ∗))
• void Fl_File_Chooser::fl_file_chooser_ok_label (const char ∗l)
• const char ∗ fl_input (const char ∗fmt, const char ∗defstr,...)

Shows an input dialog displaying the fmt message.

• void fl_message (const char ∗fmt,...)
Shows an information message dialog box.

• Fl_Widget ∗ fl_message_icon ()
Gets the Fl_Box icon container of the current default dialog used in many common dialogs like fl_message(),
fl_alert(), fl_ask(), fl_choice(), fl_input(), fl_password().

• const char ∗ fl_password (const char ∗fmt, const char ∗defstr,...)
Shows an input dialog displaying the fmt message.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.13 Common Dialogs classes and functions 301

Variables

• static void(∗ Fl::error)(const char ∗,...) = ::error
FLTK calls Fl::error() to output a normal error message.

• static void(∗ Fl::fatal)(const char ∗,...) = ::fatal
FLTK calls Fl::fatal() to output a fatal error message.

• const char ∗ fl_cancel = "Cancel"
string pointer used in common dialogs, you can change it to a foreign language

• const char ∗ fl_close = "Close"
string pointer used in common dialogs, you can change it to a foreign language

• const char ∗ fl_no = "No"
string pointer used in common dialogs, you can change it to a foreign language

• const char ∗ fl_ok = "OK"
string pointer used in common dialogs, you can change it to a foreign language

• const char ∗ fl_yes = "Yes"
string pointer used in common dialogs, you can change it to a foreign language

• static void(∗ Fl::warning)(const char ∗,...) = ::warning
FLTK calls Fl::warning() to output a warning message.

29.13.1 Function Documentation

29.13.1.1 void fl_alert (const char ∗ fmt, ...)

Shows an alert message dialog box.

Note:

Common dialog boxes are application modal. No more than one common dialog box can be open at
any time. Requests for additional dialog boxes are ignored.
#include <FL/fl_ask.H>

Parameters:

← fmt can be used as an sprintf-like format and variables for the message text

29.13.1.2 int fl_ask (const char ∗ fmt, ...)

Shows a dialog displaying the fmt message, this dialog features 2 yes/no buttons.

Note:

Common dialog boxes are application modal. No more than one common dialog box can be open at
any time. Requests for additional dialog boxes are ignored.
#include <FL/fl_ask.H>

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

302 Module Documentation

Parameters:

← fmt can be used as an sprintf-like format and variables for the message text

Return values:

0 if the no button is selected or another dialog box is still open

1 if yes is selected

29.13.1.3 void fl_beep (int type)

Emits a system beep message.

Note:

#include <FL/fl_ask.H>

29.13.1.4 int fl_choice (const char ∗ fmt, const char ∗ b0, const char ∗ b1, const char ∗ b2, ...)

Shows a dialog displaying the fmt message, this dialog features up to 3 customizable choice buttons.

Note:

Common dialog boxes are application modal. No more than one common dialog box can be open at
any time. Requests for additional dialog boxes are ignored.
#include <FL/fl_ask.H>

Parameters:

← fmt can be used as an sprintf-like format and variables for the message text

← b0 text label of button 0

← b1 text label of button 1

← b2 text label of button 2

Return values:

0 if the first button with b0 text is selected or another dialog box is still open

1 if the second button with b1 text is selected

2 if the third button with b2 text is selected

29.13.1.5 int fl_color_chooser (const char ∗ name, uchar & r, uchar & g, uchar & b, int cmode)
[related, inherited]

Pops up a window to let the user pick an arbitrary RGB color.

Note:

#include <FL/Fl_Color_Chooser.H>

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.13 Common Dialogs classes and functions 303

Figure 29.2: fl_color_chooser

Parameters:

← name Title label for the window

↔ r,g,b Color components in the range 0 to 255.

← cmode Optional mode for color chooser. See mode(int). Default -1 if none (rgb mode).

Return values:

1 if user confirms the selection

0 if user cancels the dialog

29.13.1.6 int fl_color_chooser (const char ∗ name, double & r, double & g, double & b, int
cmode) [related, inherited]

Pops up a window to let the user pick an arbitrary RGB color.

Note:

#include <FL/Fl_Color_Chooser.H>

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

304 Module Documentation

Figure 29.3: fl_color_chooser

Parameters:

← name Title label for the window

↔ r,g,b Color components in the range 0.0 to 1.0.

← cmode Optional mode for color chooser. See mode(int). Default -1 if none (rgb mode).

Return values:

1 if user confirms the selection

0 if user cancels the dialog

29.13.1.7 char ∗ fl_dir_chooser (const char ∗ message, const char ∗ fname, int relative)
[related, inherited]

Shows a file chooser dialog and gets a directory.

Note:

#include <FL/Fl_File_Chooser.H>

Parameters:

← message title bar text

← fname initial/default directory name

← relative 0 for absolute path return, relative otherwise

Returns:

the directory path string chosen by the user or NULL if user cancels

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.13 Common Dialogs classes and functions 305

29.13.1.8 char ∗ fl_file_chooser (const char ∗ message, const char ∗ pat, const char ∗ fname, int
relative) [related, inherited]

Shows a file chooser dialog and gets a filename.

Note:

#include <FL/Fl_File_Chooser.H>

Figure 29.4: Fl_File_Chooser

Parameters:

← message text in title bar
← pat filename pattern filter
← fname initial/default filename selection
← relative 0 for absolute path name, relative path name otherwise

Returns:

the user selected filename, in absolute or relative format or NULL if user cancels

29.13.1.9 void fl_file_chooser_callback (void(∗)(const char ∗) cb) [related, inherited]

Set the file chooser callback

Note:

#include <FL/Fl_File_Chooser.H>

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

306 Module Documentation

29.13.1.10 void fl_file_chooser_ok_label (const char ∗ l) [related, inherited]

Set the "OK" button label

Note:

#include <FL/Fl_File_Chooser.H>

29.13.1.11 const char∗ fl_input (const char ∗ fmt, const char ∗ defstr, ...)

Shows an input dialog displaying the fmt message.

Note:

Common dialog boxes are application modal. No more than one common dialog box can be open at
any time. Requests for additional dialog boxes are ignored.
#include <FL/fl_ask.H>

Parameters:

← fmt can be used as an sprintf-like format and variables for the message text

← defstr defines the default returned string if no text is entered

Returns:

the user string input if OK was pushed, NULL if Cancel was pushed or another dialog box was still
open

29.13.1.12 void fl_message (const char ∗ fmt, ...)

Shows an information message dialog box.

Note:

Common dialog boxes are application modal. No more than one common dialog box can be open at
any time. Requests for additional dialog boxes are ignored.
#include <FL/fl_ask.H>

Parameters:

← fmt can be used as an sprintf-like format and variables for the message text

29.13.1.13 Fl_Widget∗ fl_message_icon ()

Gets the Fl_Box icon container of the current default dialog used in many common dialogs like fl_-
message(), fl_alert(), fl_ask(), fl_choice(), fl_input(), fl_password().

Note:

#include <FL/fl_ask.H>

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.13 Common Dialogs classes and functions 307

29.13.1.14 const char∗ fl_password (const char ∗ fmt, const char ∗ defstr, ...)

Shows an input dialog displaying the fmt message.

Like fl_input() except the input text is not shown, ’∗’ characters are displayed instead.

Note:

Common dialog boxes are application modal. No more than one common dialog box can be open at
any time. Requests for additional dialog boxes are ignored.
#include <FL/fl_ask.H>

Parameters:

← fmt can be used as an sprintf-like format and variables for the message text
← defstr defines the default returned string if no text is entered

Returns:

the user string input if OK was pushed, NULL if Cancel was pushed or aother dialog box was still
open

29.13.2 Variable Documentation

29.13.2.1 void(∗ Fl::error)(const char ∗format,...) (const char ∗, ...) = ::error [static,
inherited]

FLTK calls Fl::error() to output a normal error message.

The default version on Windows displays the error message in a MessageBox window.

The default version on all other platforms prints the error message to stderr.

You can override the behavior by setting the function pointer to your own routine.

Fl::error() means there is a recoverable error such as the inability to read an image file. The default imple-
mentation returns after displaying the message.

Note:

#include <FL/Fl.H>

29.13.2.2 void(∗ Fl::fatal)(const char ∗format,...) (const char ∗, ...) = ::fatal [static,
inherited]

FLTK calls Fl::fatal() to output a fatal error message.

The default version on Windows displays the error message in a MessageBox window.

The default version on all other platforms prints the error message to stderr.

You can override the behavior by setting the function pointer to your own routine.

Fl::fatal() must not return, as FLTK is in an unusable state, however your version may be able to use
longjmp or an exception to continue, as long as it does not call FLTK again. The default implementation
exits with status 1 after displaying the message.

Note:

#include <FL/Fl.H>

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

308 Module Documentation

29.13.2.3 void(∗ Fl::warning)(const char ∗format,...) (const char ∗, ...) = ::warning [static,
inherited]

FLTK calls Fl::warning() to output a warning message.

The default version on Windows returns without printing a warning message, because Windows programs
normally don’t have stderr (a console window) enabled.

The default version on all other platforms prints the warning message to stderr.

You can override the behavior by setting the function pointer to your own routine.

Fl::warning() means that there was a recoverable problem, the display may be messed up, but the user can
probably keep working - all X protocol errors call this, for example. The default implementation returns
after displaying the message.

Note:

#include <FL/Fl.H>

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.14 File names and URI utility functions 309

29.14 File names and URI utility functions

File names and URI functions defined in <FL/filename.H>.

Defines

• #define fl_dirent_h_cyclic_include
• #define FL_PATH_MAX 2048

all path buffers should use this length

Typedefs

• typedef int(Fl_File_Sort_F)(struct dirent ∗∗, struct dirent ∗∗)
File sorting function.

Functions

• FL_EXPORT int fl_filename_absolute (char ∗to, int tolen, const char ∗from)

Makes a filename absolute from a relative filename.

• FL_EXPORT int fl_filename_expand (char ∗to, int tolen, const char ∗from)

Expands a filename containing shell variables and tilde (∼).

• FL_EXPORT const char ∗ fl_filename_ext (const char ∗buf)

Gets the extensions of a filename.

• FL_EXPORT int fl_filename_isdir (const char ∗name)

Determines if a file exists and is a directory from its filename.

• FL_EXPORT int fl_filename_match (const char ∗name, const char ∗pattern)

Checks if a string s matches a pattern p.

• FL_EXPORT const char ∗ fl_filename_name (const char ∗filename)

Gets the file name from a path.

• FL_EXPORT int fl_filename_relative (char ∗to, int tolen, const char ∗from)

Makes a filename relative to the current working directory.

• FL_EXPORT char ∗ fl_filename_setext (char ∗to, int tolen, const char ∗ext)

Replaces the extension in buf of max.

• int fl_open_uri (const char ∗uri, char ∗msg, int msglen)

Opens the specified Uniform Resource Identifier (URI).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

310 Module Documentation

29.14.1 Detailed Description

File names and URI functions defined in <FL/filename.H>.

29.14.2 Typedef Documentation

29.14.2.1 typedef int(Fl_File_Sort_F)(struct dirent ∗∗, struct dirent ∗∗)

File sorting function.

See also:

fl_filename_list()

29.14.3 Function Documentation

29.14.3.1 FL_EXPORT int fl_filename_absolute (char ∗ to, int tolen, const char ∗ from)

Makes a filename absolute from a relative filename.

#include <FL/filename.H>
[..]
chdir("/var/tmp");
fl_filename_absolute(out, sizeof(out), "foo.txt"); // out="/var/tmp/foo.txt"
fl_filename_absolute(out, sizeof(out), "./foo.txt"); // out="/var/tmp/foo.txt"
fl_filename_absolute(out, sizeof(out), "../log/messages"); // out="/var/log/messages"

Parameters:

→ to resulting absolute filename

← tolen size of the absolute filename buffer

← from relative filename

Returns:

0 if no change, non zero otherwise

29.14.3.2 FL_EXPORT int fl_filename_expand (char ∗ to, int tolen, const char ∗ from)

Expands a filename containing shell variables and tilde (∼).

Currently handles these variants:

"~username" // if ’username’ does not exist, result will be unchanged
"~/file"
"$VARNAME" // does NOT handle ${VARNAME}

Examples:

#include <FL/filename.H>
[..]
putenv("TMPDIR=/var/tmp");
fl_filename_expand(out, sizeof(out), "~fred/.cshrc"); // out="/usr/fred/.cshrc"
fl_filename_expand(out, sizeof(out), "~/.cshrc"); // out="/usr/<yourname>/.cshrc"
fl_filename_expand(out, sizeof(out), "$TMPDIR/foo.txt"); // out="/var/tmp/foo.txt"

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.14 File names and URI utility functions 311

Parameters:

→ to resulting expanded filename

← tolen size of the expanded filename buffer

← from filename containing shell variables

Returns:

0 if no change, non zero otherwise

29.14.3.3 FL_EXPORT const char∗ fl_filename_ext (const char ∗ buf)

Gets the extensions of a filename.

#include <FL/filename.H>
[..]
const char *out;
out = fl_filename_ext("/some/path/foo.txt"); // result: ".txt"
out = fl_filename_ext("/some/path/foo"); // result: NULL

Parameters:

← buf the filename to be parsed

Returns:

a pointer to the extension (including ’.’) if any or NULL otherwise

29.14.3.4 FL_EXPORT int fl_filename_isdir (const char ∗ n)

Determines if a file exists and is a directory from its filename.

#include <FL/filename.H>
[..]
fl_filename_isdir("/etc"); // returns non-zero
fl_filename_isdir("/etc/hosts"); // returns 0

Parameters:

← n the filename to parse

Returns:

non zero if file exists and is a directory, zero otherwise

29.14.3.5 FL_EXPORT int fl_filename_match (const char ∗ s, const char ∗ p)

Checks if a string s matches a pattern p.

The following syntax is used for the pattern:

• ∗ matches any sequence of 0 or more characters.

• ? matches any single character.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

312 Module Documentation

• [set] matches any character in the set. Set can contain any single characters, or a-z to represent a
range. To match] or - they must be the first characters. To match ∧ or ! they must not be the first
characters.

• [∧set] or [!set] matches any character not in the set.

• {X|Y|Z} or {X,Y,Z} matches any one of the subexpressions literally.

• \x quotes the character x so it has no special meaning.

• x all other characters must be matched exactly.

Include:

#include <FL/filename.H>

Parameters:

← s the string to check for a match
← p the string pattern

Returns:

non zero if the string matches the pattern

29.14.3.6 FL_EXPORT const char∗ fl_filename_name (const char ∗ filename)

Gets the file name from a path.

Similar to basename(3), exceptions shown below.

#include <FL/filename.H>
[..]
const char *out;
out = fl_filename_name("/usr/lib"); // out="lib"
out = fl_filename_name("/usr/"); // out="" (basename(3) returns "usr" instead)
out = fl_filename_name("/usr"); // out="usr"
out = fl_filename_name("/"); // out="" (basename(3) returns "/" instead)
out = fl_filename_name("."); // out="."
out = fl_filename_name(".."); // out=".."

Returns:

a pointer to the char after the last slash, or to filename if there is none.

29.14.3.7 FL_EXPORT int fl_filename_relative (char ∗ to, int tolen, const char ∗ from)

Makes a filename relative to the current working directory.

#include <FL/filename.H>
[..]
chdir("/var/tmp/somedir"); // set cwd to /var/tmp/somedir
[..]
char out[FL_PATH_MAX];
fl_filename_relative(out, sizeof(out), "/var/tmp/somedir/foo.txt"); // out="foo.txt", return=1
fl_filename_relative(out, sizeof(out), "/var/tmp/foo.txt"); // out="../foo.txt", return=1
fl_filename_relative(out, sizeof(out), "foo.txt"); // out="foo.txt", return=0 (no change)
fl_filename_relative(out, sizeof(out), "./foo.txt"); // out="./foo.txt", return=0 (no change)
fl_filename_relative(out, sizeof(out), "../foo.txt"); // out="../foo.txt", return=0 (no change)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

29.14 File names and URI utility functions 313

Parameters:

→ to resulting relative filename

← tolen size of the relative filename buffer

← from absolute filename

Returns:

0 if no change, non zero otherwise

29.14.3.8 FL_EXPORT char∗ fl_filename_setext (char ∗ buf, int buflen, const char ∗ ext)

Replaces the extension in buf of max.

size buflen with the extension in ext.

If there’s no ’.’ in buf, ext is appended.

If ext is NULL, behaves as if it were an empty string ("").

Example

#include <FL/filename.H>
[..]
char buf[FL_PATH_MAX] = "/path/myfile.cxx";
fl_filename_setext(buf, sizeof(buf), ".txt"); // buf[] becomes "/path/myfile.txt"

Returns:

buf itself for calling convenience.

29.14.3.9 int fl_open_uri (const char ∗ uri, char ∗ msg, int msglen)

Opens the specified Uniform Resource Identifier (URI).

Uses an operating-system dependent program or interface. For URIs using the "ftp", "http", or "https"
schemes, the system default web browser is used to open the URI, while "mailto" and "news" URIs are
typically opened using the system default mail reader and "file" URIs are opened using the file system
navigator.

On success, the (optional) msg buffer is filled with the command that was run to open the URI; on Windows,
this will always be "open uri".

On failure, the msg buffer is filled with an English error message.

Example

#include <FL/filename.H>
[..]
char errmsg[512];
if (!fl_open_uri("http://google.com/", errmsg, sizeof(errmsg))) {

char warnmsg[768];
sprintf(warnmsg, "Error: %s", errmsg);
fl_alert(warnmsg);

}

Parameters:

uri The URI to open

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

314 Module Documentation

msg Optional buffer which contains the command or error message

msglen Length of optional buffer

Returns:

1 on success, 0 on failure

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 30

Class Documentation

30.1 Fl Class Reference

The Fl is the FLTK global (static) containing state information and global methods for the current applica-
tion.

#include <Fl.H>

Public Types

• enum Fl_Option {

OPTION_ARROW_FOCUS = 0, OPTION_VISIBLE_FOCUS, OPTION_DND_TEXT, OPTION_-
SHOW_TOOLTIPS,

OPTION_LAST }

Static Public Member Functions

• static int add_awake_handler_ (Fl_Awake_Handler, void ∗)
Adds an awake handler for use in awake().

• static void add_check (Fl_Timeout_Handler, void ∗=0)

FLTK will call this callback just before it flushes the display and waits for events.

• static void add_fd (int fd, Fl_FD_Handler cb, void ∗=0)

See void add_fd(int fd, int when, Fl_FD_Handler cb, void∗ = 0).

• static void add_fd (int fd, int when, Fl_FD_Handler cb, void ∗=0)

Adds file descriptor fd to listen to.

• static void add_handler (Fl_Event_Handler h)

Install a function to parse unrecognized events.

• static void add_idle (Fl_Idle_Handler cb, void ∗data=0)

316 Class Documentation

Adds a callback function that is called every time by Fl::wait() and also makes it act as though the timeout
is zero (this makes Fl::wait() return immediately, so if it is in a loop it is called repeatedly, and thus the idle
fucntion is called repeatedly).

• static void add_timeout (double t, Fl_Timeout_Handler, void ∗=0)
Adds a one-shot timeout callback.

• static int arg (int argc, char ∗∗argv, int &i)
Parse a single switch from argv, starting at word i.

• static void args (int argc, char ∗∗argv)
Parse all command line switches matching standard FLTK options only.

• static int args (int argc, char ∗∗argv, int &i, Fl_Args_Handler cb=0)
Parse command line switches using the cb argument handler.

• static int awake (Fl_Awake_Handler cb, void ∗message=0)
See void awake(void∗ message=0).

• static void awake (void ∗message=0)
The awake() method sends a message pointer to the main thread, causing any pending Fl::wait() call to
terminate so that the main thread can retrieve the message and any pending redraws can be processed.

• static void background (uchar, uchar, uchar)
Changes fl_color(FL_BACKGROUND_COLOR) to the given color, and changes the gray ramp from 32 to
56 to black to white.

• static void background2 (uchar, uchar, uchar)
Changes the alternative background color.

• static void belowmouse (Fl_Widget ∗)
Sets the widget that is below the mouse.

• static Fl_Widget ∗ belowmouse ()
Gets the widget that is below the mouse.

• static int box_dh (Fl_Boxtype)
Returns the height offset for the given boxtype.

• static int box_dw (Fl_Boxtype)
Returns the width offset for the given boxtype.

• static int box_dx (Fl_Boxtype)
Returns the X offset for the given boxtype.

• static int box_dy (Fl_Boxtype)
Returns the Y offset for the given boxtype.

• static bool cairo_autolink_context ()
Gets the current autolink mode for cairo support.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.1 Fl Class Reference 317

• static void cairo_autolink_context (bool alink)
when HAVE_CAIRO is defined and cairo_autolink_context() is true, any current window dc is linked to a
current context.

• static void cairo_cc (cairo_t ∗c, bool own=false)
Sets the current cairo context to c.

• static cairo_t ∗ cairo_cc ()
Gets the current cairo context linked with a fltk window.

• static cairo_t ∗ cairo_make_current (Fl_Window ∗w)
• static int check ()

Same as Fl::wait(0).

• static void clear_widget_pointer (Fl_Widget const ∗w)
Clears a widget pointer in the watch list.

• static int compose (int &del)
Any text editing widget should call this for each FL_KEYBOARD event.

• static void compose_reset ()
If the user moves the cursor, be sure to call Fl::compose_reset().

• static void copy (const char ∗stuff, int len, int destination=0)
Copies the data pointed to by stuff to the selection buffer (destination is 0) or the clipboard
(destination is 1); len is the number of relevant bytes in stuff.

• static int damage ()
If true then flush() will do something.

• static void damage (int d)
If true then flush() will do something.

• static void default_atclose (Fl_Window ∗, void ∗)
Default callback for window widgets.

• static void delete_widget (Fl_Widget ∗w)
Schedules a widget for deletion at the next call to the event loop.

• static void display (const char ∗)
Sets the X display to use for all windows.

• static int dnd ()
Initiate a Drag And Drop operation.

• static int dnd_text_ops ()
Gets or sets whether drag and drop text operations are supported.

• static void dnd_text_ops (int v)
Gets or sets whether drag and drop text operations are supported.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

318 Class Documentation

• static void do_widget_deletion ()
Deletes widgets previously scheduled for deletion.

• static int draw_box_active ()
Determines if the current draw box is active or inactive.

• static int event ()
Returns the last event that was processed.

• static int event_alt ()
Returns non-zero if the Alt key is pressed.

• static int event_button ()
Gets which particular mouse button caused the current event.

• static int event_button1 ()
Returns non-zero if mouse button 1 is currently held down.

• static int event_button2 ()
Returns non-zero if button 2 is currently held down.

• static int event_button3 ()
Returns non-zero if button 3 is currently held down.

• static int event_buttons ()
Returns the mouse buttons state bits; if non-zero, then at least one button is pressed now.

• static void event_clicks (int i)
Manually sets the number returned by Fl::event_clicks().

• static int event_clicks ()
Returns non zero if we had a double click event.

• static int event_command ()
Returns non-zero if the FL_COMMAND key is pressed, either FL_CTRL or on OSX FL_META.

• static int event_ctrl ()
Returns non-zero if the Control key is pressed.

• static int event_dx ()
Returns the current horizontal mouse scrolling associated with the FL_MOUSEWHEEL event.

• static int event_dy ()
Returns the current vertical mouse scrolling associated with the FL_MOUSEWHEEL event.

• static int event_inside (const Fl_Widget ∗)
Returns whether or not the mouse event is inside the given widget.

• static int event_inside (int, int, int, int)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.1 Fl Class Reference 319

Returns whether or not the mouse event is inside the given rectangle.

• static void event_is_click (int i)

Only i=0 works! See int event_is_click().

• static int event_is_click ()

The first form returns non-zero if the mouse has not moved far enough and not enough time has passed since
the last FL_PUSH or FL_KEYBOARD event for it to be considered a "drag" rather than a "click".

• static int event_key (int key)

Returns true if the given key was held down (or pressed) during the last event.

• static int event_key ()

Gets which key on the keyboard was last pushed.

• static int event_length ()

Returns the length of the text in Fl::event_text().

• static int event_original_key ()

Returns the keycode of the last key event, regardless of the NumLock state.

• static int event_shift ()

Returns non-zero if the Shift key is pressed.

• static int event_state (int i)

See int event_state().

• static int event_state ()

This is a bitfield of what shift states were on and what mouse buttons were held down during the most recent
event.

• static const char ∗ event_text ()

Returns the text associated with the current event, including FL_PASTE or FL_DND_RELEASE events.

• static int event_x ()

Returns the mouse position of the event relative to the Fl_Window it was passed to.

• static int event_x_root ()

Returns the mouse position on the screen of the event.

• static int event_y ()

Returns the mouse position of the event relative to the Fl_Window it was passed to.

• static int event_y_root ()

Returns the mouse position on the screen of the event.

• static void first_window (Fl_Window ∗)
See Fl_Window∗ first_window().

• static Fl_Window ∗ first_window ()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

320 Class Documentation

Returns the first top-level window in the list of shown() windows.

• static void flush ()
Causes all the windows that need it to be redrawn and graphics forced out through the pipes.

• static void focus (Fl_Widget ∗)
Sets the widget that will receive FL_KEYBOARD events.

• static Fl_Widget ∗ focus ()
Gets the current Fl::focus() widget.

• static void foreground (uchar, uchar, uchar)
Changes fl_color(FL_FOREGROUND_COLOR).

• static void free_color (Fl_Color i, int overlay=0)
Frees the specified color from the colormap, if applicable.

• static int get_awake_handler_ (Fl_Awake_Handler &, void ∗&)
Gets the last stored awake handler for use in awake().

• static Fl_Box_Draw_F ∗ get_boxtype (Fl_Boxtype)
Gets the current box drawing function for the specified box type.

• static void get_color (Fl_Color i, uchar &red, uchar &green, uchar &blue)
Returns the RGB value(s) for the given FLTK color index.

• static unsigned get_color (Fl_Color i)
Returns the RGB value(s) for the given FLTK color index.

• static const char ∗ get_font (Fl_Font)
Gets the string for this face.

• static const char ∗ get_font_name (Fl_Font, int ∗attributes=0)
Get a human-readable string describing the family of this face.

• static int get_font_sizes (Fl_Font, int ∗&sizep)
Return an array of sizes in sizep.

• static int get_key (int key)
Returns true if the given key is held down now.

• static void get_mouse (int &, int &)
Return where the mouse is on the screen by doing a round-trip query to the server.

• static void get_system_colors ()
Read the user preference colors from the system and use them to call Fl::foreground(), Fl::background(),
and Fl::background2().

• static int gl_visual (int, int ∗alist=0)
This does the same thing as Fl::visual(int) but also requires OpenGL drawing to work.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.1 Fl Class Reference 321

• static void grab (Fl_Window &win)
See Fl_Window∗ grab().

• static void grab (Fl_Window ∗)
Selects the window to grab.

• static Fl_Window ∗ grab ()
This is used when pop-up menu systems are active.

• static int h ()
Returns the height of the screen in pixels.

• static int handle (int, Fl_Window ∗)
Sends the event to a window for processing.

• static int has_check (Fl_Timeout_Handler, void ∗=0)
Returns 1 if the check exists and has not been called yet, 0 otherwise.

• static int has_idle (Fl_Idle_Handler cb, void ∗data=0)
Returns true if the specified idle callback is currently installed.

• static int has_timeout (Fl_Timeout_Handler, void ∗=0)
Returns true if the timeout exists and has not been called yet.

• static void lock ()
The lock() method blocks the current thread until it can safely access FLTK widgets and data.

• static Fl_Window ∗ modal ()
Returns the top-most modal() window currently shown.

• static Fl_Window ∗ next_window (const Fl_Window ∗)
Returns the next top-level window in the list of shown() windows.

• static void option (Fl_Option opt, bool val)
Override an option while the application is running.

• static bool option (Fl_Option opt)
FLTK library options management.

• static void own_colormap ()
Makes FLTK use its own colormap.

• static void paste (Fl_Widget &receiver)
Backward compatibility only:.

• static void paste (Fl_Widget &receiver, int source)
Pastes the data from the selection buffer (source is 0) or the clipboard (source is 1) into receiver.

• static void pushed (Fl_Widget ∗)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

322 Class Documentation

Sets the widget that is being pushed.

• static Fl_Widget ∗ pushed ()

Gets the widget that is being pushed.

• static Fl_Widget ∗ readqueue ()

All Fl_Widgets that don’t have a callback defined use a default callback that puts a pointer to the widget in
this queue, and this method reads the oldest widget out of this queue.

• static int ready ()

This is similar to Fl::check() except this does not call Fl::flush() or any callbacks, which is useful if your
program is in a state where such callbacks are illegal.

• static void redraw ()

Redraws all widgets.

• static void release ()

Releases the current grabbed window, equals grab(0).

• static void release_widget_pointer (Fl_Widget ∗&w)

Releases a widget pointer from the watch list.

• static int reload_scheme ()

Called by scheme according to scheme name.

• static void remove_check (Fl_Timeout_Handler, void ∗=0)

Removes a check callback.

• static void remove_fd (int)

Removes a file descriptor handler.

• static void remove_fd (int, int when)

Removes a file descriptor handler.

• static void remove_handler (Fl_Event_Handler h)

Removes a previously added event handler.

• static void remove_idle (Fl_Idle_Handler cb, void ∗data=0)

Removes the specified idle callback, if it is installed.

• static void remove_timeout (Fl_Timeout_Handler, void ∗=0)

Removes a timeout callback.

• static void repeat_timeout (double t, Fl_Timeout_Handler, void ∗=0)

Repeats a timeout callback from the expiration of the previous timeout, allowing for more accurate timing.

• static int run ()

As long as any windows are displayed this calls Fl::wait() repeatedly.

• static const char ∗ scheme ()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.1 Fl Class Reference 323

See void scheme(const char ∗name).

• static int scheme (const char ∗)
Gets or sets the current widget scheme.

• static int screen_count ()

Gets the number of available screens.

• static void screen_xywh (int &X, int &Y, int &W, int &H, int n)

Gets the screen bounding rect for the given screen.

• static void screen_xywh (int &X, int &Y, int &W, int &H, int mx, int my)

Gets the bounding box of a screen that contains the specified screen position mx, my.

• static void screen_xywh (int &X, int &Y, int &W, int &H)

Gets the bounding box of a screen that contains the mouse pointer.

• static void scrollbar_size (int W)

Sets the default scrollbar size that is used by the Fl_Browser_, Fl_Help_View, Fl_Scroll, and Fl_Text_-
Display widgets.

• static int scrollbar_size ()

Gets the default scrollbar size used by Fl_Browser_, Fl_Help_View, Fl_Scroll, and Fl_Text_Display wid-
gets.

• static void selection (Fl_Widget &owner, const char ∗, int len)

Changes the current selection.

• static void selection_owner (Fl_Widget ∗)
Back-compatibility only: The single-argument call can be used to move the selection to another widget or
to set the owner to NULL, without changing the actual text of the selection.

• static Fl_Widget ∗ selection_owner ()

back-compatibility only: Gets the widget owning the current selection

• static void set_abort (Fl_Abort_Handler f)

For back compatibility, sets the void Fl::fatal handler callback.

• static void set_atclose (Fl_Atclose_Handler f)

For back compatibility, sets the Fl::atclose handler callback.

• static void set_boxtype (Fl_Boxtype, Fl_Boxtype from)

Copies the from boxtype.

• static void set_boxtype (Fl_Boxtype, Fl_Box_Draw_F ∗, uchar, uchar, uchar, uchar)

Sets the function to call to draw a specific boxtype.

• static void set_color (Fl_Color i, unsigned c)

Sets an entry in the fl_color index table.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

324 Class Documentation

• static void set_color (Fl_Color, uchar, uchar, uchar)
Sets an entry in the fl_color index table.

• static void set_font (Fl_Font, Fl_Font)
Copies one face to another.

• static void set_font (Fl_Font, const char ∗)
Changes a face.

• static Fl_Font set_fonts (const char ∗=0)
FLTK will open the display, and add every fonts on the server to the face table.

• static void set_idle (Fl_Old_Idle_Handler cb)
Sets an idle callback.

• static void set_labeltype (Fl_Labeltype, Fl_Labeltype from)
Sets the functions to call to draw and measure a specific labeltype.

• static void set_labeltype (Fl_Labeltype, Fl_Label_Draw_F ∗, Fl_Label_Measure_F ∗)
Sets the functions to call to draw and measure a specific labeltype.

• static int test_shortcut (Fl_Shortcut)
Test the current event, which must be an FL_KEYBOARD or FL_SHORTCUT, against a shortcut value
(described in Fl_Button).

• static void ∗ thread_message ()
The thread_message() method returns the last message that was sent from a child by the awake() method.

• static void unlock ()
The unlock() method releases the lock that was set using the lock() method.

• static double version ()
Returns the compiled-in value of the FL_VERSION constant.

• static int visible_focus ()
Gets or sets the visible keyboard focus on buttons and other non-text widgets.

• static void visible_focus (int v)
Gets or sets the visible keyboard focus on buttons and other non-text widgets.

• static int visual (int)
Selects a visual so that your graphics are drawn correctly.

• static int w ()
Returns the width of the screen in pixels.

• static double wait (double time)
See int wait().

• static int wait ()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.1 Fl Class Reference 325

Waits until "something happens" and then returns.

• static void watch_widget_pointer (Fl_Widget ∗&w)

Adds a widget pointer to the widget watch list.

• static int x ()

Returns the origin of the current screen, where 0 indicates the left side of the screen.

• static int y ()

Returns the origin of the current screen, where 0 indicates the top edge of the screen.

Static Public Attributes

• static void(∗ atclose)(Fl_Window ∗, void ∗) = default_atclose

Back compatibility: default window callback handler.

• static void(∗ error)(const char ∗,...) = ::error

FLTK calls Fl::error() to output a normal error message.

• static void(∗ fatal)(const char ∗,...) = ::fatal

FLTK calls Fl::fatal() to output a fatal error message.

• static const char ∗const help = helpmsg+13

Usage string displayed if Fl::args() detects an invalid argument.

• static void(∗ idle)()

The currently executing idle callback function: DO NOT USE THIS DIRECTLY!

• static void(∗ warning)(const char ∗,...) = ::warning

FLTK calls Fl::warning() to output a warning message.

30.1.1 Detailed Description

The Fl is the FLTK global (static) containing state information and global methods for the current applica-
tion.

30.1.2 Member Enumeration Documentation

30.1.2.1 enum Fl::Fl_Option

Enumerator:

OPTION_ARROW_FOCUS When switched on, moving the text cursor beyond the start or end of a
text in a text widget will change focus to the next text widgt.
When switched off, the cursor will stop at the end of the text. Pressing Tab or Ctrl-Tab will
advance the keyboard focus.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

326 Class Documentation

OPTION_VISIBLE_FOCUS If visible focus is switched on, FLTK will draw a dotted rectangle
inside the widget that will receive the next keystroke.
If switched off, no such indicator will be drawn and keyboard navigation is disabled.

OPTION_DND_TEXT If text drag-and-drop is enabled, the user can select and drag text from any
text widget.
If disabled, no dragging is possible, however dropping text from other applications still works.

OPTION_SHOW_TOOLTIPS If tooltips are enabled, hovering the mouse over a widget with a
tooltip text will open a little tootip window until the mouse leaves the widget.
If disabled, no tooltip is shown.

30.1.3 Member Function Documentation

30.1.3.1 int Fl::add_awake_handler_ (Fl_Awake_Handler func, void ∗ data) [static]

Adds an awake handler for use in awake().

30.1.3.2 void Fl::add_check (Fl_Timeout_Handler cb, void ∗ argp = 0) [static]

FLTK will call this callback just before it flushes the display and waits for events.

This is different than an idle callback because it is only called once, then FLTK calls the system and tells it
not to return until an event happens.

This can be used by code that wants to monitor the application’s state, such as to keep a display up to date.
The advantage of using a check callback is that it is called only when no events are pending. If events
are coming in quickly, whole blocks of them will be processed before this is called once. This can save
significant time and avoid the application falling behind the events.

Sample code:

bool state_changed; // anything that changes the display turns this on

void callback(void*) {
if (!state_changed) return;
state_changed = false;
do_expensive_calculation();
widget->redraw();

}

main() {
Fl::add_check(callback);
return Fl::run();

}

30.1.3.3 static void Fl::add_fd (int fd, int when, Fl_FD_Handler cb, void ∗ = 0) [static]

Adds file descriptor fd to listen to.

When the fd becomes ready for reading Fl::wait() will call the callback and then return. The callback is
passed the fd and the arbitrary void∗ argument.

The second version takes a when bitfield, with the bits FL_READ, FL_WRITE, and FL_EXCEPT defined,
to indicate when the callback should be done.

There can only be one callback of each type for a file descriptor. Fl::remove_fd() gets rid of all the callbacks
for a given file descriptor.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.1 Fl Class Reference 327

Under UNIX any file descriptor can be monitored (files, devices, pipes, sockets, etc.). Due to limitations
in Microsoft Windows, WIN32 applications can only monitor sockets.

30.1.3.4 void Fl::add_idle (Fl_Idle_Handler cb, void ∗ data = 0) [static]

Adds a callback function that is called every time by Fl::wait() and also makes it act as though the timeout
is zero (this makes Fl::wait() return immediately, so if it is in a loop it is called repeatedly, and thus the idle
fucntion is called repeatedly).

The idle function can be used to get background processing done.

You can have multiple idle callbacks. To remove an idle callback use Fl::remove_idle().

Fl::wait() and Fl::check() call idle callbacks, but Fl::ready() does not.

The idle callback can call any FLTK functions, including Fl::wait(), Fl::check(), and Fl::ready().

FLTK will not recursively call the idle callback.

30.1.3.5 void Fl::add_timeout (double t, Fl_Timeout_Handler cb, void ∗ argp = 0) [static]

Adds a one-shot timeout callback.

The function will be called by Fl::wait() at t seconds after this function is called. The optional void∗
argument is passed to the callback.

You can have multiple timeout callbacks. To remove a timeout callback use Fl::remove_timeout().

If you need more accurate, repeated timeouts, use Fl::repeat_timeout() to reschedule the subsequent time-
outs.

The following code will print "TICK" each second on stdout with a fair degree of accuracy:

void callback(void*) {
puts("TICK");
Fl::repeat_timeout(1.0, callback);

}

int main() {
Fl::add_timeout(1.0, callback);
return Fl::run();

}

30.1.3.6 int Fl::arg (int argc, char ∗∗ argv, int & i) [static]

Parse a single switch from argv, starting at word i.

Returns the number of words eaten (1 or 2, or 0 if it is not recognized) and adds the same value to i.

This is the default argument handler used internally by Fl::args(...), but you can use this function if you
prefer to step through the standard FLTK switches yourself.

All standard FLTK switches except -bg2 may be abbreviated to just one letter and case is ignored:

• -bg color or -background color

Sets the background color using Fl::background().

• -bg2 color or -background2 color

Sets the secondary background color using Fl::background2().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

328 Class Documentation

• -display host:n.n

Sets the X display to use; this option is silently ignored under WIN32 and MacOS.

• -dnd and -nodnd

Enables or disables drag and drop text operations using Fl::dnd_text_ops().

• -fg color or -foreground color

Sets the foreground color using Fl::foreground().

• -geometry WxH+X+Y

Sets the initial window position and size according to the standard X geometry string.

• -iconic

Iconifies the window using Fl_Window::iconize().

• -kbd and -nokbd

Enables or disables visible keyboard focus for non-text widgets using Fl::visible_focus().

• -name string

Sets the window class using Fl_Window::xclass().

• -scheme string

Sets the widget scheme using Fl::scheme().

• -title string

Sets the window title using Fl_Window::label().

• -tooltips and -notooltips

Enables or disables tooltips using Fl_Tooltip::enable().

If your program requires other switches in addition to the standard FLTK options, you will need to pass
your own argument handler to Fl::args(int,char∗∗,int&,Fl_Args_Handler) explicitly.

30.1.3.7 void Fl::args (int argc, char ∗∗ argv) [static]

Parse all command line switches matching standard FLTK options only.

It parses all the switches, and if any are not recognized it calls Fl::abort(Fl::help), i.e. unlike the long form,
an unrecognized switch generates an error message and causes the program to exit.

30.1.3.8 int Fl::args (int argc, char ∗∗ argv, int & i, Fl_Args_Handler cb = 0) [static]

Parse command line switches using the cb argument handler.

Returns 0 on error, or the number of words processed.

FLTK provides this as an entirely optional command line switch parser. You don’t have to call it if you
don’t want to. Everything it can do can be done with other calls to FLTK.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.1 Fl Class Reference 329

To use the switch parser, call Fl::args(...) near the start of your program. This does not open the display,
instead switches that need the display open are stashed into static variables. Then you must display your
first window by calling window->show(argc,argv), which will do anything stored in the static
variables.

Providing an argument handler callback cb lets you define your own switches. It is called with the same
argc and argv, and with i set to the index of the switch to be processed. The cb handler should return
zero if the switch is unrecognized, and not change i. It should return non-zero to indicate the number of
words processed if the switch is recognized, i.e. 1 for just the switch, and more than 1 for the switch plus
associated parameters. i should be incremented by the same amount.

The cb handler is called before any other tests, so you can also override any standard FLTK switch (this
is why FLTK can use very short switches instead of the long ones all other toolkits force you to use). See
Fl::arg() for descriptions of the standard switches.

On return i is set to the index of the first non-switch. This is either:

• The first word that does not start with ’-’.

• The word ’-’ (used by many programs to name stdin as a file)

• The first unrecognized switch (return value is 0).

• argc

The return value is i unless an unrecognized switch is found, in which case it is zero. If your program
takes no arguments other than switches you should produce an error if the return value is less than argc.

A usage string is displayed if Fl::args() detects an invalid argument on the command-line. You can change
the message by setting the Fl::help pointer.

A very simple command line parser can be found in examples/howto-parse-args.cxx

The simpler Fl::args(int argc, char ∗∗argv) form is useful if your program does not have command line
switches of its own.

30.1.3.9 void Fl::background (uchar r, uchar g, uchar b) [static]

Changes fl_color(FL_BACKGROUND_COLOR) to the given color, and changes the gray ramp from 32
to 56 to black to white.

These are the colors used as backgrounds by almost all widgets and used to draw the edges of all the
boxtypes.

30.1.3.10 void Fl::background2 (uchar r, uchar g, uchar b) [static]

Changes the alternative background color.

This color is used as a background by Fl_Input and other text widgets.

This call may change fl_color(FL_FOREGROUND_COLOR) if it does not provide sufficient contrast to
FL_BACKGROUND2_COLOR.

30.1.3.11 int Fl::box_dh (Fl_Boxtype t) [static]

Returns the height offset for the given boxtype.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

330 Class Documentation

See also:

box_dy().

30.1.3.12 int Fl::box_dw (Fl_Boxtype t) [static]

Returns the width offset for the given boxtype.

See also:

box_dy().

30.1.3.13 int Fl::box_dx (Fl_Boxtype t) [static]

Returns the X offset for the given boxtype.

See also:

box_dy()

30.1.3.14 int Fl::box_dy (Fl_Boxtype t) [static]

Returns the Y offset for the given boxtype.

These functions return the offset values necessary for a given boxtype, useful for computing the area inside
a box’s borders, to prevent overdrawing the borders.

For instance, in the case of a boxtype like FL_DOWN_BOX where the border width might be 2 pixels
all around, the above functions would return 2, 2, 4, and 4 for box_dx, box_dy, box_dw, and box_dh
respectively.

An example to compute the area inside a widget’s box():

int X = yourwidget->x() + Fl::box_dx(yourwidget->box());
int Y = yourwidget->y() + Fl::box_dy(yourwidget->box());
int W = yourwidget->w() - Fl::box_dw(yourwidget->box());
int H = yourwidget->h() - Fl::box_dh(yourwidget->box());

These functions are mainly useful in the draw() code for deriving custom widgets, where one wants to
avoid drawing over the widget’s own border box().

30.1.3.15 int Fl::check () [static]

Same as Fl::wait(0).

Calling this during a big calculation will keep the screen up to date and the interface responsive:

while (!calculation_done()) {
calculate();
Fl::check();
if (user_hit_abort_button()) break;
}

The returns non-zero if any windows are displayed, and 0 if no windows are displayed (this is likely to
change in future versions of FLTK).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.1 Fl Class Reference 331

30.1.3.16 static int Fl::damage () [inline, static]

If true then flush() will do something.

30.1.3.17 void Fl::display (const char ∗ d) [static]

Sets the X display to use for all windows.

Actually this just sets the environment variable $DISPLAY to the passed string, so this only works before
you show() the first window or otherwise open the display, and does nothing useful under WIN32.

30.1.3.18 static int Fl::dnd_text_ops () [inline, static]

Gets or sets whether drag and drop text operations are supported.

This specifically affects whether selected text can be dragged from text fields or dragged within a text field
as a cut/paste shortcut.

30.1.3.19 static void Fl::dnd_text_ops (int v) [inline, static]

Gets or sets whether drag and drop text operations are supported.

This specifically affects whether selected text can be dragged from text fields or dragged within a text field
as a cut/paste shortcut.

30.1.3.20 int Fl::draw_box_active () [static]

Determines if the current draw box is active or inactive.

If inactive, the box color is changed by the inactive color.

30.1.3.21 void Fl::flush () [static]

Causes all the windows that need it to be redrawn and graphics forced out through the pipes.

This is what wait() does before looking for events.

Note: in multi-threaded applications you should only call Fl::flush() from the main thread. If a child thread
needs to trigger a redraw event, it should instead call Fl::awake() to get the main thread to process the event
queue.

30.1.3.22 void Fl::foreground (uchar r, uchar g, uchar b) [static]

Changes fl_color(FL_FOREGROUND_COLOR).

30.1.3.23 int Fl::get_awake_handler_ (Fl_Awake_Handler & func, void ∗& data) [static]

Gets the last stored awake handler for use in awake().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

332 Class Documentation

30.1.3.24 Fl_Box_Draw_F ∗ Fl::get_boxtype (Fl_Boxtype t) [static]

Gets the current box drawing function for the specified box type.

30.1.3.25 void Fl::get_system_colors () [static]

Read the user preference colors from the system and use them to call Fl::foreground(), Fl::background(),
and Fl::background2().

This is done by Fl_Window::show(argc,argv) before applying the -fg and -bg switches.

On X this reads some common values from the Xdefaults database. KDE users can set these values by
running the "krdb" program, and newer versions of KDE set this automatically if you check the "apply
style to other X programs" switch in their control panel.

30.1.3.26 int Fl::gl_visual (int mode, int ∗ alist = 0) [static]

This does the same thing as Fl::visual(int) but also requires OpenGL drawing to work.

This must be done if you want to draw in normal windows with OpenGL with gl_start() and gl_end(). It
may be useful to call this so your X windows use the same visual as an Fl_Gl_Window, which on some
servers will reduce colormap flashing.

See Fl_Gl_Window for a list of additional values for the argument.

30.1.3.27 void Fl::option (Fl_Option opt, bool val) [static]

Override an option while the application is running.

This function does not change any system or user settings.

Parameters:

opt which option

val set to true or false

See also:

Fl_Option

30.1.3.28 bool Fl::option (Fl_Option opt) [static]

FLTK library options management.

This function needs to be documented in more detail. It can be used for more optional settings, such
as using a native file chooser instead of the FLTK one wherever possible, disabeling tooltips, disabeling
visible focus, disabeling FLTK file chooser preview, etc. .

There should be a command line option interface.

There should be an application that manages options system wide, per user, and per application.

Parameters:

opt which option

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.1 Fl Class Reference 333

Returns:

true or false

See also:

Fl_Option

30.1.3.29 void Fl::own_colormap () [static]

Makes FLTK use its own colormap.

This may make FLTK display better and will reduce conflicts with other programs that want lots of colors.
However the colors may flash as you move the cursor between windows.

This does nothing if the current visual is not colormapped.

30.1.3.30 int Fl::ready () [static]

This is similar to Fl::check() except this does not call Fl::flush() or any callbacks, which is useful if your
program is in a state where such callbacks are illegal.

This returns true if Fl::check() would do anything (it will continue to return true until you call Fl::check()
or Fl::wait()).

while (!calculation_done()) {
calculate();
if (Fl::ready()) {

do_expensive_cleanup();
Fl::check();
if (user_hit_abort_button()) break;

}
}

30.1.3.31 static void Fl::release () [inline, static]

Releases the current grabbed window, equals grab(0).

Deprecated

Use Fl::grab(0) instead.

See also:

Fl_Window∗ grab()

30.1.3.32 int Fl::reload_scheme () [static]

Called by scheme according to scheme name.

Loads or reloads the current scheme selection. See void scheme(const char ∗name)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

334 Class Documentation

30.1.3.33 void Fl::remove_check (Fl_Timeout_Handler cb, void ∗ argp = 0) [static]

Removes a check callback.

It is harmless to remove a check callback that no longer exists.

30.1.3.34 static void Fl::remove_fd (int) [static]

Removes a file descriptor handler.

30.1.3.35 static void Fl::remove_fd (int, int when) [static]

Removes a file descriptor handler.

30.1.3.36 void Fl::remove_timeout (Fl_Timeout_Handler cb, void ∗ argp = 0) [static]

Removes a timeout callback.

It is harmless to remove a timeout callback that no longer exists.

30.1.3.37 void Fl::repeat_timeout (double t, Fl_Timeout_Handler cb, void ∗ argp = 0)
[static]

Repeats a timeout callback from the expiration of the previous timeout, allowing for more accurate timing.

You may only call this method inside a timeout callback.

The following code will print "TICK" each second on stdout with a fair degree of accuracy:

void callback(void*) {
puts("TICK");
Fl::repeat_timeout(1.0, callback);

}

int main() {
Fl::add_timeout(1.0, callback);
return Fl::run();

}

30.1.3.38 int Fl::run () [static]

As long as any windows are displayed this calls Fl::wait() repeatedly.

When all the windows are closed it returns zero (supposedly it would return non-zero on any errors, but
FLTK calls exit directly for these). A normal program will end main() with return Fl::run();.

30.1.3.39 int Fl::scheme (const char ∗ s) [static]

Gets or sets the current widget scheme.

NULL will use the scheme defined in the FLTK_SCHEME environment variable or the scheme resource
under X11. Otherwise, any of the following schemes can be used:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.1 Fl Class Reference 335

• "none" - This is the default look-n-feel which resembles old Windows (95/98/Me/NT/2000) and old
GTK/KDE

• "plastic" - This scheme is inspired by the Aqua user interface on Mac OS X

• "gtk+" - This scheme is inspired by the Red Hat Bluecurve theme

30.1.3.40 void Fl::scrollbar_size (int W) [static]

Sets the default scrollbar size that is used by the Fl_Browser_, Fl_Help_View, Fl_Scroll, and Fl_Text_-
Display widgets.

Parameters:

←W The new default size for widget scrollbars, in pixels.

30.1.3.41 int Fl::scrollbar_size () [static]

Gets the default scrollbar size used by Fl_Browser_, Fl_Help_View, Fl_Scroll, and Fl_Text_Display wid-
gets.

Returns:

The default size for widget scrollbars, in pixels.

30.1.3.42 void Fl::set_boxtype (Fl_Boxtype to, Fl_Boxtype from) [static]

Copies the from boxtype.

30.1.3.43 void Fl::set_boxtype (Fl_Boxtype t, Fl_Box_Draw_F ∗ f, uchar a, uchar b, uchar c,
uchar d) [static]

Sets the function to call to draw a specific boxtype.

30.1.3.44 static void Fl::set_idle (Fl_Old_Idle_Handler cb) [inline, static]

Sets an idle callback.

Deprecated

This method is obsolete - use the add_idle() method instead.

30.1.3.45 static void Fl::set_labeltype (Fl_Labeltype, Fl_Labeltype from) [static]

Sets the functions to call to draw and measure a specific labeltype.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

336 Class Documentation

30.1.3.46 void Fl::set_labeltype (Fl_Labeltype t, Fl_Label_Draw_F ∗ f, Fl_Label_Measure_F ∗
m) [static]

Sets the functions to call to draw and measure a specific labeltype.

30.1.3.47 double Fl::version () [static]

Returns the compiled-in value of the FL_VERSION constant.

This is useful for checking the version of a shared library.

30.1.3.48 static int Fl::visible_focus () [inline, static]

Gets or sets the visible keyboard focus on buttons and other non-text widgets.

The default mode is to enable keyboard focus for all widgets.

30.1.3.49 static void Fl::visible_focus (int v) [inline, static]

Gets or sets the visible keyboard focus on buttons and other non-text widgets.

The default mode is to enable keyboard focus for all widgets.

30.1.3.50 int Fl::visual (int flags) [static]

Selects a visual so that your graphics are drawn correctly.

This is only allowed before you call show() on any windows. This does nothing if the default visual
satisfies the capabilities, or if no visual satisfies the capabilities, or on systems that don’t have such brain-
dead notions.

Only the following combinations do anything useful:

• Fl::visual(FL_RGB)

Full/true color (if there are several depths FLTK chooses the largest). Do this if you use fl_draw_-
image for much better (non-dithered) output.

• Fl::visual(FL_RGB8)

Full color with at least 24 bits of color. FL_RGB will always pick this if available, but if not it will
happily return a less-than-24 bit deep visual. This call fails if 24 bits are not available.

• Fl::visual(FL_DOUBLE|FL_INDEX)

Hardware double buffering. Call this if you are going to use Fl_Double_Window.

• Fl::visual(FL_DOUBLE|FL_RGB)

• Fl::visual(FL_DOUBLE|FL_RGB8)

Hardware double buffering and full color.

This returns true if the system has the capabilities by default or FLTK suceeded in turing them on. Your
program will still work even if this returns false (it just won’t look as good).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.1 Fl Class Reference 337

30.1.3.51 int Fl::wait () [static]

Waits until "something happens" and then returns.

Call this repeatedly to "run" your program. You can also check what happened each time after this returns,
which is quite useful for managing program state.

What this really does is call all idle callbacks, all elapsed timeouts, call Fl::flush() to get the screen to
update, and then wait some time (zero if there are idle callbacks, the shortest of all pending timeouts, or
infinity), for any events from the user or any Fl::add_fd() callbacks. It then handles the events and calls the
callbacks and then returns.

The return value of the first form is non-zero if there are any visible windows - this may change in future
versions of FLTK.

The second form waits a maximum of time seconds. It can return much sooner if something happens.

The return value is positive if an event or fd happens before the time elapsed. It is zero if nothing happens
(on Win32 this will only return zero if time is zero). It is negative if an error occurs (this will happen on
UNIX if a signal happens).

30.1.4 Member Data Documentation

30.1.4.1 const char ∗const Fl::help = helpmsg+13 [static]

Usage string displayed if Fl::args() detects an invalid argument.

This may be changed to point to customized text at run-time.

30.1.4.2 void(∗ Fl::idle)() () [static]

The currently executing idle callback function: DO NOT USE THIS DIRECTLY!

This is now used as part of a higher level system allowing multiple idle callback functions to be called.

See also:

add_idle(), remove_idle()

The documentation for this class was generated from the following files:

• Fl.H
• Fl.cxx
• Fl_abort.cxx
• Fl_add_idle.cxx
• Fl_arg.cxx
• fl_boxtype.cxx
• fl_color.cxx
• fl_color_mac.cxx
• fl_color_win32.cxx
• Fl_compose.cxx
• Fl_display.cxx
• fl_dnd_win32.cxx
• fl_dnd_x.cxx
• Fl_get_key.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

338 Class Documentation

• Fl_get_key_mac.cxx
• Fl_get_key_win32.cxx
• Fl_get_system_colors.cxx
• Fl_grab.cxx
• fl_labeltype.cxx
• Fl_lock.cxx
• Fl_own_colormap.cxx
• fl_set_font.cxx
• fl_set_fonts_mac.cxx
• fl_set_fonts_win32.cxx
• fl_set_fonts_x.cxx
• fl_set_fonts_xft.cxx
• fl_shortcut.cxx
• Fl_visual.cxx
• Fl_Widget.cxx
• Fl_Window.cxx
• gl_start.cxx
• screen_xywh.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.2 Fl_Adjuster Class Reference 339

30.2 Fl_Adjuster Class Reference

The Fl_Adjuster widget was stolen from Prisms, and has proven to be very useful for values that need a
large dynamic range.

#include <Fl_Adjuster.H>

Inheritance diagram for Fl_Adjuster::

Fl_Adjuster

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Adjuster (int X, int Y, int W, int H, const char ∗l=0)

Creates a new Fl_Adjuster widget using the given position, size, and label string.

• int soft () const

If "soft" is turned on, the user is allowed to drag the value outside the range.

• void soft (int s)

If "soft" is turned on, the user is allowed to drag the value outside the range.

Protected Member Functions

• void draw ()

Draws the widget.

• int handle (int)

Handles the specified event.

• void value_damage ()

Asks for partial redraw.

30.2.1 Detailed Description

The Fl_Adjuster widget was stolen from Prisms, and has proven to be very useful for values that need a
large dynamic range.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

340 Class Documentation

Figure 30.1: Fl_Adjuster

When you press a button and drag to the right the value increases. When you drag to the left it decreases.
The largest button adjusts by 100 ∗ step(), the next by 10 ∗ step() and that smallest button by step(). Clicking
on the buttons increments by 10 times the amount dragging by a pixel does. Shift + click decrements by 10
times the amount.

30.2.2 Constructor & Destructor Documentation

30.2.2.1 Fl_Adjuster::Fl_Adjuster (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Adjuster widget using the given position, size, and label string.

It looks best if one of the dimensions is 3 times the other.

Inherited destructor destroys the Valuator.

30.2.3 Member Function Documentation

30.2.3.1 void Fl_Adjuster::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.2.3.2 int Fl_Adjuster::handle (int event) [protected, virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.2 Fl_Adjuster Class Reference 341

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

30.2.3.3 int Fl_Adjuster::soft () const [inline]

If "soft" is turned on, the user is allowed to drag the value outside the range.

If they drag the value to one of the ends, let go, then grab again and continue to drag, they can get to any
value. Default is one.

30.2.3.4 void Fl_Adjuster::soft (int s) [inline]

If "soft" is turned on, the user is allowed to drag the value outside the range.

If they drag the value to one of the ends, let go, then grab again and continue to drag, they can get to any
value. Default is one.

The documentation for this class was generated from the following files:

• Fl_Adjuster.H
• Fl_Adjuster.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

342 Class Documentation

30.3 Fl_Bitmap Class Reference

The Fl_Bitmap class supports caching and drawing of mono-color (bitmap) images.

#include <Fl_Bitmap.H>

Inheritance diagram for Fl_Bitmap::

Fl_Bitmap

Fl_Image

Fl_XBM_Image

Public Member Functions

• Fl_Image ∗ copy ()

The copy() method creates a copy of the specified image.

• virtual Fl_Image ∗ copy (int W, int H)

The copy() method creates a copy of the specified image.

• void draw (int X, int Y)

The draw() methods draw the image.

• virtual void draw (int X, int Y, int W, int H, int cx=0, int cy=0)

The draw() methods draw the image.

• Fl_Bitmap (const char ∗bits, int W, int H)

The constructors create a new bitmap from the specified bitmap data.

• Fl_Bitmap (const uchar ∗bits, int W, int H)

The constructors create a new bitmap from the specified bitmap data.

• virtual void label (Fl_Menu_Item ∗m)

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• virtual void label (Fl_Widget ∗w)

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• virtual void uncache ()

If the image has been cached for display, delete the cache data.

• virtual ∼Fl_Bitmap ()

The destructor free all memory and server resources that are used by the bitmap.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.3 Fl_Bitmap Class Reference 343

Public Attributes

• int alloc_array

Non-zero if array points to bitmap data allocated internally.

• const uchar ∗ array

pointer to raw bitmap data

Friends

• class Fl_GDI_Graphics_Driver
• class Fl_Quartz_Graphics_Driver
• class Fl_Xlib_Graphics_Driver

30.3.1 Detailed Description

The Fl_Bitmap class supports caching and drawing of mono-color (bitmap) images.

Images are drawn using the current color.

30.3.2 Constructor & Destructor Documentation

30.3.2.1 Fl_Bitmap::Fl_Bitmap (const uchar ∗ bits, int W, int H) [inline]

The constructors create a new bitmap from the specified bitmap data.

30.3.2.2 Fl_Bitmap::Fl_Bitmap (const char ∗ array, int W, int H) [inline]

The constructors create a new bitmap from the specified bitmap data.

30.3.3 Member Function Documentation

30.3.3.1 Fl_Image∗ Fl_Bitmap::copy () [inline]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.3.3.2 Fl_Image ∗ Fl_Bitmap::copy (int W, int H) [virtual]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

344 Class Documentation

30.3.3.3 void Fl_Bitmap::draw (int X, int Y) [inline]

The draw() methods draw the image.

This form specifies the upper-lefthand corner of the image

Reimplemented from Fl_Image.

30.3.3.4 void Fl_Bitmap::draw (int X, int Y, int W, int H, int cx = 0, int cy = 0) [virtual]

The draw() methods draw the image.

This form specifies a bounding box for the image, with the origin (upper-lefthand corner) of the image
offset by the cx and cy arguments.

Reimplemented from Fl_Image.

30.3.3.5 void Fl_Bitmap::label (Fl_Menu_Item ∗ m) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented from Fl_Image.

30.3.3.6 void Fl_Bitmap::label (Fl_Widget ∗ widget) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented from Fl_Image.

30.3.3.7 void Fl_Bitmap::uncache () [virtual]

If the image has been cached for display, delete the cache data.

This allows you to change the data used for the image and then redraw it without recreating an image
object.

Reimplemented from Fl_Image.

The documentation for this class was generated from the following files:

• Fl_Bitmap.H
• Fl_Bitmap.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.4 Fl_BMP_Image Class Reference 345

30.4 Fl_BMP_Image Class Reference

The Fl_BMP_Image class supports loading, caching, and drawing of Windows Bitmap (BMP) image files.

#include <Fl_BMP_Image.H>

Inheritance diagram for Fl_BMP_Image::

Fl_BMP_Image

Fl_RGB_Image

Fl_Image

Public Member Functions

• Fl_BMP_Image (const char ∗filename)
The constructor loads the named BMP image from the given bmp filename.

30.4.1 Detailed Description

The Fl_BMP_Image class supports loading, caching, and drawing of Windows Bitmap (BMP) image files.

30.4.2 Constructor & Destructor Documentation

30.4.2.1 Fl_BMP_Image::Fl_BMP_Image (const char ∗ bmp)

The constructor loads the named BMP image from the given bmp filename.

The inherited destructor free all memory and server resources that are used by the image.

The destructor free all memory and server resources that are used by the image

The documentation for this class was generated from the following files:

• Fl_BMP_Image.H
• Fl_BMP_Image.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

346 Class Documentation

30.5 Fl_Box Class Reference

This widget simply draws its box, and possibly it’s label.

#include <Fl_Box.H>

Inheritance diagram for Fl_Box::

Fl_Box

Fl_Widget

Public Member Functions

• Fl_Box (Fl_Boxtype b, int X, int Y, int W, int H, const char ∗l)
See Fl_Box::Fl_Box(int x, int y, int w, int h, const char ∗ = 0).

• Fl_Box (int X, int Y, int W, int H, const char ∗l=0)
– The first constructor sets box() to FL_NO_BOX, which means it is invisible.

• virtual int handle (int)
Handles the specified event.

Protected Member Functions

• void draw ()
Draws the widget.

30.5.1 Detailed Description

This widget simply draws its box, and possibly it’s label.

Putting it before some other widgets and making it big enough to surround them will let you draw a frame
around them.

30.5.2 Constructor & Destructor Documentation

30.5.2.1 Fl_Box::Fl_Box (int X, int Y, int W, int H, const char ∗ l = 0) [inline]

• The first constructor sets box() to FL_NO_BOX, which means it is invisible.

However such widgets are useful as placeholders or Fl_Group::resizable() values. To change the box to
something visible, use box(n).

• The second form of the constructor sets the box to the specified box type.

The destructor removes the box.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.5 Fl_Box Class Reference 347

30.5.3 Member Function Documentation

30.5.3.1 void Fl_Box::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.5.3.2 int Fl_Box::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

The documentation for this class was generated from the following files:

• Fl_Box.H
• Fl_Box.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

348 Class Documentation

30.6 Fl_Browser Class Reference

The Fl_Browser widget displays a scrolling list of text lines, and manages all the storage for the text.

#include <Fl_Browser.H>

Inheritance diagram for Fl_Browser::

Fl_Browser

Fl_Browser_

Fl_Group

Fl_Widget

Fl_File_Browser Fl_Hold_Browser Fl_Multi_Browser Fl_Select_Browser

Public Types

• enum Fl_Line_Position { TOP, BOTTOM, MIDDLE }

For internal use only?

Public Member Functions

• void add (const char ∗newtext, void ∗d=0)

Adds a new line to the end of the browser.

• void bottomline (int line)

Scrolls the browser so the bottom item in the browser is showing the specified line.

• void clear ()

Removes all the lines in the browser.

• void column_char (char c)

Sets the column separator to c.

• char column_char () const

Gets the current column separator character.

• void column_widths (const int ∗arr)

Sets the current array to arr.

• const int ∗ column_widths () const

Gets the current column width array.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.6 Fl_Browser Class Reference 349

• void data (int line, void ∗d)
Sets the user data for specified line to d.

• void ∗ data (int line) const
Returns the user data() for specified line.

• void display (int line, int val=1)
For back compatibility.

• int displayed (int line) const
Returns non-zero if line has been scrolled to a position where it is being displayed.

• Fl_Browser (int X, int Y, int W, int H, const char ∗L=0)
The constructor makes an empty browser.

• void format_char (char c)
Sets the current format code prefix character to c.

• char format_char () const
Gets the current format code prefix character, which by default is ’@’.

• void hide ()
Hides the entire Fl_Browser widget – opposite of show().

• void hide (int line)
Makes line invisible, preventing selection by the user.

• Fl_Image ∗ icon (int line) const
Returns the icon currently defined for line.

• void icon (int line, Fl_Image ∗icon)
Set the image icon for line to the value icon.

• void insert (int line, const char ∗newtext, void ∗d=0)
Insert a new entry whose label is newtext above given line, optional data d.

• void lineposition (int line, Fl_Line_Position pos)
Updates the browser so that line is shown at position pos.

• int load (const char ∗filename)
Clears the browser and reads the file, adding each line from the file to the browser.

• void make_visible (int line)
Make the item at the specified line visible().

• void middleline (int line)
Scrolls the browser so the middle item in the browser is showing the specified line.

• void move (int to, int from)
Line from is removed and reinserted at to.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

350 Class Documentation

• void remove (int line)
Remove entry for given line number, making the browser one line shorter.

• void remove_icon (int line)
Removes the icon for line.

• void replace (int a, const char ∗b)
For back compatibility only.

• int select (int line, int val=1)
Sets the selection state of the item at line to the value val.

• int selected (int line) const
Returns 1 if specified line is selected, 0 if not.

• void show ()
Shows the entire Fl_Browser widget – opposite of hide().

• void show (int line)
Makes line visible, and available for selection by user.

• void size (int W, int H)
Changes the size of the widget.

• int size () const
Returns how many lines are in the browser.

• void swap (int a, int b)
Swaps two browser lines a and b.

• void text (int line, const char ∗newtext)
Sets the text for the specified line to newtext.

• const char ∗ text (int line) const
Returns the label text for the specified line.

• void topline (int line)
Scrolls the browser so the top item in the browser is showing the specified line.

• int topline () const
Returns the line that is currently visible at the top of the browser.

• void value (int line)
Sets the browser’s value(), which selects the specified line.

• int value () const
Returns the line number of the currently selected line, or 0 if none.

• int visible (int line) const

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.6 Fl_Browser Class Reference 351

Returns non-zero if the specified line is visible, 0 if hidden.

• ∼Fl_Browser ()
The destructor deletes all list items and destroys the browser.

Protected Member Functions

• FL_BLINE ∗ _remove (int line)
Removes the item at the specified line.

• FL_BLINE ∗ find_line (int line) const
Returns the item for specified line.

• int full_height () const
The height of the entire list of all visible() items in pixels.

• int incr_height () const
The default ’average’ item height (including inter-item spacing) in pixels.

• void insert (int line, FL_BLINE ∗item)
Insert specified item above line.

• void ∗ item_at (int line) const
Return the item at specified line.

• void item_draw (void ∗item, int X, int Y, int W, int H) const
Draws item at the position specified by X Y W H.

• void ∗ item_first () const
Returns the very first item in the list.

• int item_height (void ∗item) const
Returns height of item in pixels.

• void ∗ item_last () const
Returns the very last item in the list.

• void ∗ item_next (void ∗item) const
Returns the next item after item.

• void ∗ item_prev (void ∗item) const
Returns the previous item before item.

• void item_select (void ∗item, int val)
Change the selection state of item to the value val.

• int item_selected (void ∗item) const
See if item is selected.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

352 Class Documentation

• void item_swap (void ∗a, void ∗b)
Swap the items a and b.

• const char ∗ item_text (void ∗item) const
Returns the label text for item.

• int item_width (void ∗item) const
Returns width of item in pixels.

• int lineno (void ∗item) const
Returns line number corresponding to item, or zero if not found.

• void swap (FL_BLINE ∗a, FL_BLINE ∗b)
Swap the two items a and b.

30.6.1 Detailed Description

The Fl_Browser widget displays a scrolling list of text lines, and manages all the storage for the text.

This is not a text editor or spreadsheet! But it is useful for showing a vertical list of named objects to the
user.

Each line in the browser is identified by number. The numbers start at one (this is so that zero can be
reserved for "no line" in the selective browsers). Unless otherwise noted, the methods do not check to see
if the passed line number is in range and legal. It must always be greater than zero and <= size().

Each line contains a null-terminated string of text and a void ∗ data pointer. The text string is displayed,
the void ∗ pointer can be used by the callbacks to reference the object the text describes.

The base class does nothing when the user clicks on it. The subclasses Fl_Select_Browser, Fl_Hold_-
Browser, and Fl_Multi_Browser react to user clicks to select lines in the browser and do callbacks.

The base class Fl_Browser_ provides the scrolling and selection mechanisms of this and all the subclasses,
but the dimensions and appearance of each item are determined by the subclass. You can use Fl_Browser_
to display information other than text, or text that is dynamically produced from your own data structures.
If you find that loading the browser is a lot of work or is inefficient, you may want to make a subclass of
Fl_Browser_.

Some common coding patterns used for working with Fl_Browser:

// How to loop through all the items in the browser
for (int t=1; t<=browser->size(); t++) { // index 1 based..!

printf("item #%d, label=’%s’\n", t, browser->text(t));
}

Note: If you are subclassing Fl_Browser, it’s more efficient to use the protected methods item_first() and
item_next(), since Fl_Browser internally uses linked lists to manage the browser’s items. For more info,
see find_item(int).

30.6.2 Constructor & Destructor Documentation

30.6.2.1 Fl_Browser::Fl_Browser (int X, int Y, int W, int H, const char ∗ L = 0)

The constructor makes an empty browser.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.6 Fl_Browser Class Reference 353

Parameters:

← X,Y,W,H position and size.

← L label string, may be NULL.

30.6.3 Member Function Documentation

30.6.3.1 FL_BLINE ∗ Fl_Browser::_remove (int line) [protected]

Removes the item at the specified line.

Caveat: See efficiency note in find_line(). You must call redraw() to make any changes visible.

Parameters:

← line The line number to be removed. (1 based) Must be in range!

Returns:

Pointer to browser item that was removed (and is no longer valid).

See also:

add(), insert(), remove(), swap(int,int), clear()

30.6.3.2 void Fl_Browser::add (const char ∗ newtext, void ∗ d = 0)

Adds a new line to the end of the browser.

The text string newtextmay contain format characters; see format_char() for details. newtext is copied
using the strdup() function, and can be NULL to make a blank line.

The optional void∗ argument d will be the data() for the new item.

Parameters:

← newtext The label text used for the added item

← d Optional user data() for the item (0 if unspecified)

See also:

add(), insert(), remove(), swap(int,int), clear()

30.6.3.3 void Fl_Browser::bottomline (int line) [inline]

Scrolls the browser so the bottom item in the browser is showing the specified line.

Parameters:

← line The line to be displayed at the bottom.

See also:

topline(), middleline(), bottomline(), displayed(), lineposition()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

354 Class Documentation

30.6.3.4 void Fl_Browser::clear ()

Removes all the lines in the browser.

See also:

add(), insert(), remove(), swap(int,int), clear()

Reimplemented from Fl_Group.

30.6.3.5 void Fl_Browser::column_char (char c) [inline]

Sets the column separator to c.

This will only have an effect if you also set column_widths(). The default is ’\t’ (tab).

See also:

column_char(), column_widths()

30.6.3.6 char Fl_Browser::column_char () const [inline]

Gets the current column separator character.

The default is ’\t’ (tab).

See also:

column_char(), column_widths()

30.6.3.7 void Fl_Browser::column_widths (const int ∗ arr) [inline]

Sets the current array to arr.

Make sure the last entry is zero.

See also:

column_char(), column_widths()

30.6.3.8 const int∗ Fl_Browser::column_widths () const [inline]

Gets the current column width array.

This array is zero-terminated and specifies the widths in pixels of each column. The text is split at each
column_char() and each part is formatted into it’s own column. After the last column any remaining text is
formatted into the space between the last column and the right edge of the browser, even if the text contains
instances of column_char() . The default value is a one-element array of just a zero, which means there are
no columns.

Example:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.6 Fl_Browser Class Reference 355

Fl_Browser *b = new Fl_Browser(..);
int widths[] = { 50, 50, 50, 70, 70, 40, 40, 70, 70, 50, 0 }; // widths for each column
b->column_widths(widths); // assign array to widget
b->column_char(’\t’); // use tab as the column character
b->add("USER\tPID\tCPU\tMEM\tVSZ\tRSS\tTTY\tSTAT\tSTART\tTIME\tCOMMAND");
b->add("root\t2888\t0.0\t0.0\t1352\t0\ttty3\tSW\tAug15\t0:00\t@b@f/sbin/mingetty tty3");
b->add("root\t13115\t0.0\t0.0\t1352\t0\ttty2\tSW\tAug30\t0:00\t@b@f/sbin/mingetty tty2");
[..]

See also:

column_char(), column_widths()

30.6.3.9 void Fl_Browser::data (int line, void ∗ d)

Sets the user data for specified line to d.

Does nothing if line is out of range.

Parameters:

← line The line of the item whose data() is to be changed. (1 based)
← d The new data to be assigned to the item. (can be NULL)

30.6.3.10 void ∗ Fl_Browser::data (int line) const

Returns the user data() for specified line.

Return value can be NULL if line is out of range or no user data() was defined. The parameter line is
1 based (1 will be the first item in the list).

Parameters:

← line The line number of the item whose data() is returned. (1 based)

Returns:

The user data pointer (can be NULL)

30.6.3.11 void Fl_Browser::display (int line, int val = 1)

For back compatibility.

This calls show(line) if val is true, and hide(line) otherwise. If val is not specified, the default is 1
(makes the line visible).

See also:

show(int), hide(int), display(), visible(), make_visible()

30.6.3.12 int Fl_Browser::displayed (int line) const [inline]

Returns non-zero if line has been scrolled to a position where it is being displayed.

Checks to see if the item’s vertical position is within the top and bottom edges of the display window. This
does NOT take into account the hide()/show() status of the widget or item.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

356 Class Documentation

Parameters:

← line The line to be checked

Returns:

1 if visible, 0 if not visible.

See also:

topline(), middleline(), bottomline(), displayed(), lineposition()

30.6.3.13 FL_BLINE ∗ Fl_Browser::find_line (int line) const [protected]

Returns the item for specified line.

Note: This call is slow. It’s fine for e.g. responding to user clicks, but slow if called often, such as in a tight
sorting loop. Finding an item ’by line’ involves a linear lookup on the internal linked list. The performance
hit can be significant if the browser’s contents is large, and the method is called often (e.g. during a sort).
If you’re writing a subclass, use the protected methods item_first(), item_next(), etc. to access the internal
linked list more efficiently.

Parameters:

← line The line number of the item to return. (1 based)

Return values:

item that was found.

NULL if line is out of range.

See also:

item_at(), find_line(), lineno()

30.6.3.14 void Fl_Browser::format_char (char c) [inline]

Sets the current format code prefix character to c.

The default prefix is ’@’. Set the prefix to 0 to disable formatting.

See also:

format_char() for list of ’@’ codes

30.6.3.15 char Fl_Browser::format_char () const [inline]

Gets the current format code prefix character, which by default is ’@’.

A string of formatting codes at the start of each column are stripped off and used to modify how the rest of
the line is printed:

• ’@.’ Print rest of line, don’t look for more ’@’ signs

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.6 Fl_Browser Class Reference 357

• ’@@’ Print rest of line starting with ’@’

• ’@l’ Use a LARGE (24 point) font

• ’@m’ Use a medium large (18 point) font

• ’@s’ Use a small (11 point) font

• ’@b’ Use a bold font (adds FL_BOLD to font)

• ’@i’ Use an italic font (adds FL_ITALIC to font)

• ’@f’ or ’@t’ Use a fixed-pitch font (sets font to FL_COURIER)

• ’@c’ Center the line horizontally

• ’@r’ Right-justify the text

• ’@B0’, ’@B1’, ... ’@B255’ Fill the backgound with fl_color(n)

• ’@C0’, ’@C1’, ... ’@C255’ Use fl_color(n) to draw the text

• ’@F0’, ’@F1’, ... Use fl_font(n) to draw the text

• ’@S1’, ’@S2’, ... Use point size n to draw the text

• ’@u’ or ’@_’ Underline the text.

• ’@-’ draw an engraved line through the middle.

Notice that the ’@.’ command can be used to reliably terminate the parsing. To print a random string in
a random color, use sprintf("@C%d@.%s", color, string) and it will work even if the string
starts with a digit or has the format character in it.

30.6.3.16 int Fl_Browser::full_height () const [protected, virtual]

The height of the entire list of all visible() items in pixels.

This returns the accumulated height of ∗all∗ the items in the browser that are not hidden with hide(),
including items scrolled off screen.

Returns:

The accumulated size of all the visible items in pixels.

See also:

item_height(), item_width(),
incr_height(), full_height()

Reimplemented from Fl_Browser_.

30.6.3.17 void Fl_Browser::hide () [inline, virtual]

Hides the entire Fl_Browser widget – opposite of show().

Reimplemented from Fl_Widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

358 Class Documentation

30.6.3.18 void Fl_Browser::hide (int line)

Makes line invisible, preventing selection by the user.

The line can still be selected under program control. This changes the full_height() if the state was changed.
When a line is made invisible, lines below it are moved up in the display. redraw() is called automatically
if a change occurred.

Parameters:

← line The line to be hidden. (1 based)

See also:

show(int), hide(int), display(), visible(), make_visible()

30.6.3.19 Fl_Image ∗ Fl_Browser::icon (int line) const

Returns the icon currently defined for line.

If no icon is defined, NULL is returned.

Parameters:

← line The line whose icon is returned.

Returns:

The icon defined, or NULL if none.

30.6.3.20 void Fl_Browser::icon (int line, Fl_Image ∗ icon)

Set the image icon for line to the value icon.

Caller is responsible for keeping the icon allocated. The line is automatically redrawn.

Parameters:

← line The line to be modified. If out of range, nothing is done.
← icon The image icon to be assigned to the line. If NULL, any previous icon is removed.

30.6.3.21 int Fl_Browser::incr_height () const [protected, virtual]

The default ’average’ item height (including inter-item spacing) in pixels.

This currently returns textsize() + 2.

Returns:

The value in pixels.

See also:

item_height(), item_width(),
incr_height(), full_height()

Reimplemented from Fl_Browser_.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.6 Fl_Browser Class Reference 359

30.6.3.22 void Fl_Browser::insert (int line, const char ∗ newtext, void ∗ d = 0)

Insert a new entry whose label is newtext above given line, optional data d.

Text may contain format characters; see format_char() for details. newtext is copied using the strdup()
function, and can be NULL to make a blank line.

The optional void ∗ argument d will be the data() of the new item.

Parameters:

← line Line position for insert. (1 based)
If line > size(), the entry will be added at the end.

← newtext The label text for the new line.

← d Optional pointer to user data to be associated with the new line.

30.6.3.23 void Fl_Browser::insert (int line, FL_BLINE ∗ item) [protected]

Insert specified item above line.

If line > size() then the line is added to the end.

Caveat: See efficiency note in find_line().

Parameters:

← line The new line will be inserted above this line (1 based).

← item The item to be added.

30.6.3.24 void∗ Fl_Browser::item_at (int line) const [inline, protected, virtual]

Return the item at specified line.

Parameters:

← line The line of the item to return. (1 based)

Returns:

The item, or NULL if line out of range.

See also:

item_at(), find_line(), lineno()

Reimplemented from Fl_Browser_.

30.6.3.25 void Fl_Browser::item_draw (void ∗ item, int X, int Y, int W, int H) const
[protected, virtual]

Draws item at the position specified by X Y W H.

The W and H values are used for clipping. Should only be called within the context of an FLTK draw().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

360 Class Documentation

Parameters:

← item The item to be drawn

← X,Y,W,H position and size.

Implements Fl_Browser_.

30.6.3.26 void ∗ Fl_Browser::item_first () const [protected, virtual]

Returns the very first item in the list.

Example of use:

// Walk the browser from beginning to end
for (void *i=item_first(); i; i=item_next(i)) {

printf("item label=’%s’\n", item_text(i));
}

Returns:

The first item, or NULL if list is empty.

See also:

item_first(), item_last(), item_next(), item_prev()

Implements Fl_Browser_.

30.6.3.27 int Fl_Browser::item_height (void ∗ item) const [protected, virtual]

Returns height of item in pixels.

This takes into account embedded @ codes within the text() label.

Parameters:

← item The item whose height is returned.

Returns:

The height of the item in pixels.

See also:

item_height(), item_width(),
incr_height(), full_height()

Implements Fl_Browser_.

30.6.3.28 void ∗ Fl_Browser::item_last () const [protected, virtual]

Returns the very last item in the list.

Example of use:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.6 Fl_Browser Class Reference 361

// Walk the browser in reverse, from end to start
for (void *i=item_last(); i; i=item_prev(i)) {

printf("item label=’%s’\n", item_text(i));
}

Returns:

The last item, or NULL if list is empty.

See also:

item_first(), item_last(), item_next(), item_prev()

Reimplemented from Fl_Browser_.

30.6.3.29 void ∗ Fl_Browser::item_next (void ∗ item) const [protected, virtual]

Returns the next item after item.

Parameters:

← item The ’current’ item

Returns:

The next item after item, or NULL if there are none after this one.

See also:

item_first(), item_last(), item_next(), item_prev()

Implements Fl_Browser_.

30.6.3.30 void ∗ Fl_Browser::item_prev (void ∗ item) const [protected, virtual]

Returns the previous item before item.

Parameters:

← item The ’current’ item

Returns:

The previous item before item, or NULL if there none before this one.

See also:

item_first(), item_last(), item_next(), item_prev()

Implements Fl_Browser_.

30.6.3.31 void Fl_Browser::item_select (void ∗ item, int val) [protected, virtual]

Change the selection state of item to the value val.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

362 Class Documentation

Parameters:

← item The item to be changed.
← val The new selection state: 1 selects, 0 de-selects.

See also:

select(), selected(), value(), item_select(), item_selected()

Reimplemented from Fl_Browser_.

30.6.3.32 int Fl_Browser::item_selected (void ∗ item) const [protected, virtual]

See if item is selected.

Parameters:

← item The item whose selection state is to be checked.

Returns:

1 if selected, 0 if not.

See also:

select(), selected(), value(), item_select(), item_selected()

Reimplemented from Fl_Browser_.

30.6.3.33 void Fl_Browser::item_swap (void ∗ a, void ∗ b) [inline, protected,
virtual]

Swap the items a and b.

You must call redraw() to make any changes visible.

Parameters:

← a,b the items to be swapped.

See also:

swap(int,int), item_swap()

Reimplemented from Fl_Browser_.

30.6.3.34 const char ∗ Fl_Browser::item_text (void ∗ item) const [protected, virtual]

Returns the label text for item.

Parameters:

← item The item whose label text is returned.

Returns:

The item’s text string. (Can be NULL)

Reimplemented from Fl_Browser_.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.6 Fl_Browser Class Reference 363

30.6.3.35 int Fl_Browser::item_width (void ∗ item) const [protected, virtual]

Returns width of item in pixels.

This takes into account embedded @ codes within the text() label.

Parameters:

← item The item whose width is returned.

Returns:

The width of the item in pixels.

See also:

item_height(), item_width(),
incr_height(), full_height()

Implements Fl_Browser_.

30.6.3.36 int Fl_Browser::lineno (void ∗ item) const [protected]

Returns line number corresponding to item, or zero if not found.

Caveat: See efficiency note in find_line().

Parameters:

← item The item to be found

Returns:

The line number of the item, or 0 if not found.

See also:

item_at(), find_line(), lineno()

30.6.3.37 void Fl_Browser::lineposition (int line, Fl_Line_Position pos)

Updates the browser so that line is shown at position pos.

Parameters:

← line line number. (1 based)

← pos position.

See also:

topline(), middleline(), bottomline()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

364 Class Documentation

30.6.3.38 int Fl_Browser::load (const char ∗ filename)

Clears the browser and reads the file, adding each line from the file to the browser.

If the filename is NULL or a zero-length string then this just clears the browser. This returns zero if there
was any error in opening or reading the file, in which case errno is set to the system error. The data() of
each line is set to NULL.

Parameters:

← filename The filename to load

Returns:

1 if OK, 0 on error (errno has reason)

See also:

add()

30.6.3.39 void Fl_Browser::make_visible (int line) [inline]

Make the item at the specified line visible().

Functionally similar to show(int line). If line is out of range, redisplay top or bottom of list as appropri-
ate.

Parameters:

← line The line to be made visible.

See also:

show(int), hide(int), display(), visible(), make_visible()

30.6.3.40 void Fl_Browser::middleline (int line) [inline]

Scrolls the browser so the middle item in the browser is showing the specified line.

Parameters:

← line The line to be displayed in the middle.

See also:

topline(), middleline(), bottomline(), displayed(), lineposition()

30.6.3.41 void Fl_Browser::move (int to, int from)

Line from is removed and reinserted at to.

Note: to is calculated after line from gets removed.

Parameters:

← to Destination line number (calculated after line from is removed)
← from Line number of item to be moved

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.6 Fl_Browser Class Reference 365

30.6.3.42 void Fl_Browser::remove (int line)

Remove entry for given line number, making the browser one line shorter.

You must call redraw() to make any changes visible.

Parameters:

← line Line to be removed. (1 based)

If line is out of range, no action is taken.

See also:

add(), insert(), remove(), swap(int,int), clear()

Reimplemented from Fl_Group.

30.6.3.43 void Fl_Browser::remove_icon (int line)

Removes the icon for line.

It’s ok to remove an icon if none has been defined.

Parameters:

← line The line whose icon is to be removed.

30.6.3.44 void Fl_Browser::replace (int a, const char ∗ b) [inline]

For back compatibility only.

30.6.3.45 int Fl_Browser::select (int line, int val = 1)

Sets the selection state of the item at line to the value val.

If val is not specified, the default is 1 (selects the item).

Parameters:

← line The line number of the item to be changed. (1 based)

← val The new selection state (1=select, 0=de-select).

Returns:

1 if the state changed, 0 if not.

See also:

select(), selected(), value(), item_select(), item_selected()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

366 Class Documentation

30.6.3.46 int Fl_Browser::selected (int line) const

Returns 1 if specified line is selected, 0 if not.

Parameters:

← line The line being checked (1 based)

Returns:

1 if item selected, 0 if not.

See also:

select(), selected(), value(), item_select(), item_selected()

30.6.3.47 void Fl_Browser::show () [inline, virtual]

Shows the entire Fl_Browser widget – opposite of hide().

Reimplemented from Fl_Widget.

30.6.3.48 void Fl_Browser::show (int line)

Makes line visible, and available for selection by user.

Opposite of hide(int). This changes the full_height() if the state was changed. redraw() is called automati-
cally if a change occurred.

Parameters:

← line The line to be shown. (1 based)

See also:

show(int), hide(int), display(), visible(), make_visible()

30.6.3.49 void Fl_Browser::size (int W, int H) [inline]

Changes the size of the widget.

size(W, H) is a shortcut for resize(x(), y(), W, H).

Parameters:

←W,H new size

See also:

position(int,int), resize(int,int,int,int)

Reimplemented from Fl_Widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.6 Fl_Browser Class Reference 367

30.6.3.50 int Fl_Browser::size () const [inline]

Returns how many lines are in the browser.

The last line number is equal to this. Returns 0 if browser is empty.

30.6.3.51 void Fl_Browser::swap (int a, int b)

Swaps two browser lines a and b.

You must call redraw() to make any changes visible.

Parameters:

← a,b The two lines to be swapped. (both 1 based)

See also:

swap(int,int), item_swap()

30.6.3.52 void Fl_Browser::swap (FL_BLINE ∗ a, FL_BLINE ∗ b) [protected]

Swap the two items a and b.

Uses swapping() to ensure list updates correctly.

Parameters:

← a,b The two items to be swapped.

See also:

swap(int,int), item_swap()

30.6.3.53 void Fl_Browser::text (int line, const char ∗ newtext)

Sets the text for the specified line to newtext.

Text may contain format characters; see format_char() for details. newtext is copied using the strdup()
function, and can be NULL to make a blank line.

Does nothing if line is out of range.

Parameters:

← line The line of the item whose text will be changed. (1 based)

← newtext The new string to be assigned to the item.

30.6.3.54 const char ∗ Fl_Browser::text (int line) const

Returns the label text for the specified line.

Return value can be NULL if line is out of range or unset. The parameter line is 1 based.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

368 Class Documentation

Parameters:

← line The line number of the item whose text is returned. (1 based)

Returns:

The text string (can be NULL)

30.6.3.55 void Fl_Browser::topline (int line) [inline]

Scrolls the browser so the top item in the browser is showing the specified line.

Parameters:

← line The line to be displayed at the top.

See also:

topline(), middleline(), bottomline(), displayed(), lineposition()

30.6.3.56 int Fl_Browser::topline () const

Returns the line that is currently visible at the top of the browser.

If there is no vertical scrollbar then this will always return 1.

Returns:

The lineno() of the top() of the browser.

30.6.3.57 void Fl_Browser::value (int line) [inline]

Sets the browser’s value(), which selects the specified line.

This is the same as calling select(line).

See also:

select(), selected(), value(), item_select(), item_selected()

30.6.3.58 int Fl_Browser::value () const

Returns the line number of the currently selected line, or 0 if none.

Returns:

The line number of current selection, or 0 if none selected.

See also:

select(), selected(), value(), item_select(), item_selected()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.6 Fl_Browser Class Reference 369

30.6.3.59 int Fl_Browser::visible (int line) const

Returns non-zero if the specified line is visible, 0 if hidden.

Use show(int), hide(int), or make_visible(int) to change an item’s visible state.

Parameters:

← line The line in the browser to be tested. (1 based)

See also:

show(int), hide(int), display(), visible(), make_visible()

The documentation for this class was generated from the following files:

• Fl_Browser.H
• Fl_Browser.cxx
• Fl_Browser_load.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

370 Class Documentation

30.7 Fl_Browser_ Class Reference

This is the base class for browsers.

#include <Fl_Browser_.H>

Inheritance diagram for Fl_Browser_::

Fl_Browser_

Fl_Group

Fl_Widget

Fl_Browser Fl_Check_Browser

Fl_File_Browser Fl_Hold_Browser Fl_Multi_Browser Fl_Select_Browser

Public Types

• enum {

HORIZONTAL = 1, VERTICAL = 2, BOTH = 3, ALWAYS_ON = 4,

HORIZONTAL_ALWAYS = 5, VERTICAL_ALWAYS = 6, BOTH_ALWAYS = 7 }
Values for has_scrollbar().

Public Member Functions

• int deselect (int docallbacks=0)
Deselects all items in the list and returns 1 if the state changed or 0 if it did not.

• void display (void ∗item)
Displays the item, scrolling the list as necessary.

• int handle (int event)
Handles the event within the normal widget bounding box.

• void has_scrollbar (uchar mode)
Sets whether the widget should have scrollbars or not (default Fl_Browser_::BOTH).

• uchar has_scrollbar () const
Returns the current scrollbar mode, see Fl_Browser_::has_scrollbar(uchar).

• void hposition (int)
Sets the horizontal scroll position of the list to pixel position pos.

• int hposition () const

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.7 Fl_Browser_ Class Reference 371

Gets the horizontal scroll position of the list as a pixel position pos.

• void position (int pos)
Sets the vertical scroll position of the list to pixel position pos.

• int position () const
Gets the vertical scroll position of the list as a pixel position pos.

• void resize (int X, int Y, int W, int H)
Repositions and/or resizes the browser.

• void scrollbar_left ()
Moves the vertical scrollbar to the lefthand side of the list.

• void scrollbar_right ()
Moves the vertical scrollbar to the righthand side of the list.

• void scrollbar_size (int size)
Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

• int scrollbar_size () const
Gets the current size of the scrollbars’ troughs, in pixels.

• void scrollbar_width (int width)
This method has been deprecated, existing for backwards compatibility only.

• int scrollbar_width () const
This method has been deprecated, existing for backwards compatibility only.

• int select (void ∗item, int val=1, int docallbacks=0)
Sets the selection state of item to val, and returns 1 if the state changed or 0 if it did not.

• int select_only (void ∗item, int docallbacks=0)
Selects item and returns 1 if the state changed or 0 if it did not.

• void sort (int flags=0)
Sort the items in the browser based on flags.

• void textcolor (Fl_Color col)
Sets the default text color for the lines in the browser to color col.

• Fl_Color textcolor () const
Gets the default text color for the lines in the browser.

• void textfont (Fl_Font font)
Sets the default text font for the lines in the browser to font.

• Fl_Font textfont () const
Gets the default text font for the lines in the browser.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

372 Class Documentation

• void textsize (Fl_Fontsize size)
Sets the default text size (in pixels) for the lines in the browser to size.

• Fl_Fontsize textsize () const
Gets the default text size (in pixels) for the lines in the browser.

Public Attributes

• Fl_Scrollbar hscrollbar
Horizontal scrollbar.

• Fl_Scrollbar scrollbar
Vertical scrollbar.

Protected Member Functions

• void bbox (int &X, int &Y, int &W, int &H) const
Returns the bounding box for the interior of the list’s display window, inside the scrollbars.

• void deleting (void ∗item)
This method should be used when item is being deleted from the list.

• int displayed (void ∗item) const
Returns non-zero if item has been scrolled to a position where it is being displayed.

• void draw ()
Draws the list within the normal widget bounding box.

• void ∗ find_item (int ypos)
This method returns the item under mouse y position ypos.

• Fl_Browser_ (int X, int Y, int W, int H, const char ∗L=0)
The constructor makes an empty browser.

• virtual int full_height () const
This method may be provided by the subclass to indicate the full height of the item list, in pixels.

• virtual int full_width () const
This method may be provided by the subclass to indicate the full width of the item list, in pixels.

• virtual int incr_height () const
This method may be provided to return the average height of all items to be used for scrolling.

• void inserting (void ∗a, void ∗b)
This method should be used when an item is in the process of being inserted into the list.

• virtual void ∗ item_at (int index) const

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.7 Fl_Browser_ Class Reference 373

This method must be provided by the subclass to return the item for the specified index.

• virtual void item_draw (void ∗item, int X, int Y, int W, int H) const =0
This method must be provided by the subclass to draw the item in the area indicated by X, Y, W, H.

• virtual void ∗ item_first () const =0
This method must be provided by the subclass to return the first item in the list.

• virtual int item_height (void ∗item) const =0
This method must be provided by the subclass to return the height of item in pixels.

• virtual void ∗ item_last () const
This method must be provided by the subclass to return the last item in the list.

• virtual void ∗ item_next (void ∗item) const =0
This method must be provided by the subclass to return the item in the list after item.

• virtual void ∗ item_prev (void ∗item) const =0
This method must be provided by the subclass to return the item in the list before item.

• virtual int item_quick_height (void ∗item) const
This method may be provided by the subclass to return the height of the item, in pixels.

• virtual void item_select (void ∗item, int val=1)
This method must be implemented by the subclass if it supports multiple selections; sets the selection state
to val for the item.

• virtual int item_selected (void ∗item) const
This method must be implemented by the subclass if it supports multiple selections; returns the selection
state for item.

• virtual void item_swap (void ∗a, void ∗b)
This optional method should be provided by the subclass to efficiently swap browser items a and b, such as
for sorting.

• virtual const char ∗ item_text (void ∗item) const
This optional method returns a string (label) that may be used for sorting.

• virtual int item_width (void ∗item) const =0
This method must be provided by the subclass to return the width of the item in pixels.

• int leftedge () const
This method returns the X position of the left edge of the list area after adjusting for the scrollbar and border,
if any.

• void new_list ()
This method should be called when the list data is completely replaced or cleared.

• void redraw_line (void ∗item)
This method should be called when the contents of item has changed, but not its height.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

374 Class Documentation

• void redraw_lines ()
This method will cause the entire list to be redrawn.

• void replacing (void ∗a, void ∗b)
This method should be used when item a is being replaced by item b.

• void ∗ selection () const
Returns the item currently selected, or NULL if there is no selection.

• void swapping (void ∗a, void ∗b)
This method should be used when two items a and b are being swapped.

• void ∗ top () const
Returns the item that appears at the top of the list.

30.7.1 Detailed Description

This is the base class for browsers.

To be useful it must be subclassed and several virtual functions defined. The Forms-compatible browser
and the file chooser’s browser are subclassed off of this.

This has been designed so that the subclass has complete control over the storage of the data, although
because next() and prev() functions are used to index, it works best as a linked list or as a large block of
characters in which the line breaks must be searched for.

A great deal of work has been done so that the "height" of a data object does not need to be determined
until it is drawn. This is useful if actually figuring out the size of an object requires accessing image data
or doing stat() on a file or doing some other slow operation.

30.7.2 Member Enumeration Documentation

30.7.2.1 anonymous enum

Values for has_scrollbar().

Anonymous enum bit flags for has_scrollbar().

• bit 0: horizontal

• bit 1: vertical

• bit 2: ’always’ (to be combined with bits 0 and 1)

• bit 3-31: reserved for future use

Enumerator:

HORIZONTAL Only show horizontal scrollbar.

VERTICAL Only show vertical scrollbar.

BOTH Show both scrollbars. (default).

ALWAYS_ON Specified scrollbar(s) should ’always’ be shown (to be used with HORIZON-
TAL/VERTICAL).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.7 Fl_Browser_ Class Reference 375

HORIZONTAL_ALWAYS Horizontal scrollbar always on.

VERTICAL_ALWAYS Vertical scrollbar always on.

BOTH_ALWAYS Both scrollbars always on.

30.7.3 Constructor & Destructor Documentation

30.7.3.1 Fl_Browser_::Fl_Browser_ (int X, int Y, int W, int H, const char ∗ L = 0)
[protected]

The constructor makes an empty browser.

Parameters:

← X,Y,W,H position and size.

← L The label string, may be NULL.

30.7.4 Member Function Documentation

30.7.4.1 void Fl_Browser_::bbox (int & X, int & Y, int & W, int & H) const [protected]

Returns the bounding box for the interior of the list’s display window, inside the scrollbars.

Parameters:

→ X,Y,W,H The returned bounding box.
(The original contents of these parameters are overwritten)

30.7.4.2 void Fl_Browser_::deleting (void ∗ item) [protected]

This method should be used when item is being deleted from the list.

It allows the Fl_Browser_ to discard any cached data it has on the item. This method does not actually
delete the item, but handles the follow up bookkeeping after the item has just been deleted.

Parameters:

← item The item being deleted.

30.7.4.3 int Fl_Browser_::deselect (int docallbacks = 0)

Deselects all items in the list and returns 1 if the state changed or 0 if it did not.

If the optional docallbacks parameter is non-zero, deselect tries to call the callback function for the
widget.

Parameters:

← docallbacks If 1, invokes widget callback if item changed.
If 0, doesn’t do callback (default).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

376 Class Documentation

30.7.4.4 void Fl_Browser_::display (void ∗ item)

Displays the item, scrolling the list as necessary.

Parameters:

← item The item to be displayed.

See also:

display(), displayed()

30.7.4.5 int Fl_Browser_::displayed (void ∗ item) const [protected]

Returns non-zero if item has been scrolled to a position where it is being displayed.

Checks to see if the item’s vertical position is within the top and bottom edges of the display window. This
does NOT take into account the hide()/show() status of the widget or item.

Parameters:

← item The item to check

Returns:

1 if visible, 0 if not visible.

See also:

display(), displayed()

30.7.4.6 void ∗ Fl_Browser_::find_item (int ypos) [protected]

This method returns the item under mouse y position ypos.

NULL is returned if no item is displayed at that position.

Parameters:

← ypos The y position (eg. Fl::event_y()) to find an item under.

Returns:

The item, or NULL if not found

30.7.4.7 int Fl_Browser_::full_height () const [protected, virtual]

This method may be provided by the subclass to indicate the full height of the item list, in pixels.

The default implementation computes the full height from the item heights. Includes the items that are
scrolled off screen.

Returns:

The height of the entire list, in pixels.

Reimplemented in Fl_Browser.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.7 Fl_Browser_ Class Reference 377

30.7.4.8 int Fl_Browser_::full_width () const [protected, virtual]

This method may be provided by the subclass to indicate the full width of the item list, in pixels.

The default implementation computes the full width from the item widths.

Returns:

The maximum width of all the items, in pixels.

30.7.4.9 int Fl_Browser_::handle (int event) [virtual]

Handles the event within the normal widget bounding box.

Parameters:

← event The event to process.

Returns:

1 if event was processed, 0 if not.

Reimplemented from Fl_Group.

Reimplemented in Fl_Check_Browser.

30.7.4.10 void Fl_Browser_::has_scrollbar (uchar mode) [inline]

Sets whether the widget should have scrollbars or not (default Fl_Browser_::BOTH).

By default you can scroll in both directions, and the scrollbars disappear if the data will fit in the widget.
has_scrollbar() changes this based on the value of mode:

• 0 - No scrollbars.

• Fl_Browser_::HORIZONTAL - Only a horizontal scrollbar.

• Fl_Browser_::VERTICAL - Only a vertical scrollbar.

• Fl_Browser_::BOTH - The default is both scrollbars.

• Fl_Browser_::HORIZONTAL_ALWAYS - Horizontal scrollbar always on, vertical always off.

• Fl_Browser_::VERTICAL_ALWAYS - Vertical scrollbar always on, horizontal always off.

• Fl_Browser_::BOTH_ALWAYS - Both always on.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

378 Class Documentation

30.7.4.11 void Fl_Browser_::hposition (int pos)

Sets the horizontal scroll position of the list to pixel position pos.

The position is how many pixels of the list are scrolled off the left edge of the screen. Example: A position
of ’18’ scrolls the left 18 pixels of the list off the left edge of the screen.

Parameters:

← pos The horizontal position (in pixels) to scroll the browser to.

See also:

position(), hposition()

30.7.4.12 int Fl_Browser_::hposition () const [inline]

Gets the horizontal scroll position of the list as a pixel position pos.

The position returned is how many pixels of the list are scrolled off the left edge of the screen. Example:
A position of ’18’ indicates the left 18 pixels of the list are scrolled off the left edge of the screen.

See also:

position(), hposition()

30.7.4.13 int Fl_Browser_::incr_height () const [protected, virtual]

This method may be provided to return the average height of all items to be used for scrolling.

The default implementation uses the height of the first item.

Returns:

The average height of items, in pixels.

Reimplemented in Fl_Browser.

30.7.4.14 void Fl_Browser_::inserting (void ∗ a, void ∗ b) [protected]

This method should be used when an item is in the process of being inserted into the list.

It allows the Fl_Browser_ to update its cache data as needed, scheduling a redraw for the affected lines.
This method does not actually insert items, but handles the follow up bookkeeping after items have been
inserted.

Parameters:

← a The starting item position

← b The new item being inserted

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.7 Fl_Browser_ Class Reference 379

30.7.4.15 virtual void∗ Fl_Browser_::item_at (int index) const [inline, protected,
virtual]

This method must be provided by the subclass to return the item for the specified index.

Parameters:

← index The index of the item to be returned

Returns:

The item at the specified index.

Reimplemented in Fl_Browser.

30.7.4.16 virtual void∗ Fl_Browser_::item_first () const [protected, pure virtual]

This method must be provided by the subclass to return the first item in the list.

See also:

item_first(), item_next(), item_last(), item_prev()

Implemented in Fl_Browser.

30.7.4.17 virtual int Fl_Browser_::item_height (void ∗ item) const [protected, pure
virtual]

This method must be provided by the subclass to return the height of item in pixels.

Allow for two additional pixels for the list selection box.

Parameters:

← item The item whose height is returned.

Returns:

The height of the specified item in pixels.

See also:

item_height(), item_width(), item_quick_height()

Implemented in Fl_Browser.

30.7.4.18 virtual void∗ Fl_Browser_::item_last () const [inline, protected, virtual]

This method must be provided by the subclass to return the last item in the list.

See also:

item_first(), item_next(), item_last(), item_prev()

Reimplemented in Fl_Browser.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

380 Class Documentation

30.7.4.19 virtual void∗ Fl_Browser_::item_next (void ∗ item) const [protected, pure
virtual]

This method must be provided by the subclass to return the item in the list after item.

See also:

item_first(), item_next(), item_last(), item_prev()

Implemented in Fl_Browser.

30.7.4.20 virtual void∗ Fl_Browser_::item_prev (void ∗ item) const [protected, pure
virtual]

This method must be provided by the subclass to return the item in the list before item.

See also:

item_first(), item_next(), item_last(), item_prev()

Implemented in Fl_Browser.

30.7.4.21 int Fl_Browser_::item_quick_height (void ∗ item) const [protected, virtual]

This method may be provided by the subclass to return the height of the item, in pixels.

Allow for two additional pixels for the list selection box. This method differs from item_height in that it is
only called for selection and scrolling operations. The default implementation calls item_height.

Parameters:

← item The item whose height to return.

Returns:

The height, in pixels.

30.7.4.22 void Fl_Browser_::item_select (void ∗ item, int val = 1) [protected, virtual]

This method must be implemented by the subclass if it supports multiple selections; sets the selection state
to val for the item.

Sets the selection state for item, where optional val is 1 (select, the default) or 0 (de-select).

Parameters:

← item The item to be selected

← val The optional selection state; 1=select, 0=de-select.
The default is to select the item (1).

Reimplemented in Fl_Browser.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.7 Fl_Browser_ Class Reference 381

30.7.4.23 int Fl_Browser_::item_selected (void ∗ item) const [protected, virtual]

This method must be implemented by the subclass if it supports multiple selections; returns the selection
state for item.

The method should return 1 if item is selected, or 0 otherwise.

Parameters:

← item The item to test.

Reimplemented in Fl_Browser.

30.7.4.24 virtual void Fl_Browser_::item_swap (void ∗ a, void ∗ b) [inline, protected,
virtual]

This optional method should be provided by the subclass to efficiently swap browser items a and b, such
as for sorting.

Parameters:

← a,b The two items to be swapped.

Reimplemented in Fl_Browser.

30.7.4.25 virtual const char∗ Fl_Browser_::item_text (void ∗ item) const [inline,
protected, virtual]

This optional method returns a string (label) that may be used for sorting.

Parameters:

← item The item whose label text is returned.

Returns:

The item’s text label. (Can be NULL if blank)

Reimplemented in Fl_Browser.

30.7.4.26 virtual int Fl_Browser_::item_width (void ∗ item) const [protected, pure
virtual]

This method must be provided by the subclass to return the width of the item in pixels.

Allow for two additional pixels for the list selection box.

Parameters:

← item The item whose width is returned.

Returns:

The width of the item in pixels.

Implemented in Fl_Browser.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

382 Class Documentation

30.7.4.27 int Fl_Browser_::leftedge () const [protected]

This method returns the X position of the left edge of the list area after adjusting for the scrollbar and
border, if any.

Returns:

The X position of the left edge of the list, in pixels.

See also:

Fl_Browser_::bbox()

30.7.4.28 void Fl_Browser_::new_list () [protected]

This method should be called when the list data is completely replaced or cleared.

It informs the Fl_Browser_ widget that any cached information it has concerning the items is invalid. This
method does not clear the list, it just handles the follow up bookkeeping after the list has been cleared.

30.7.4.29 void Fl_Browser_::position (int pos)

Sets the vertical scroll position of the list to pixel position pos.

The position is how many pixels of the list are scrolled off the top edge of the screen. Example: A position
of ’3’ scrolls the top three pixels of the list off the top edge of the screen.

Parameters:

← pos The vertical position (in pixels) to scroll the browser to.

See also:

position(), hposition()

30.7.4.30 int Fl_Browser_::position () const [inline]

Gets the vertical scroll position of the list as a pixel position pos.

The position returned is how many pixels of the list are scrolled off the top edge of the screen. Example:
A position of ’3’ indicates the top 3 pixels of the list are scrolled off the top edge of the screen.

See also:

position(), hposition()

30.7.4.31 void Fl_Browser_::redraw_line (void ∗ item) [protected]

This method should be called when the contents of item has changed, but not its height.

Parameters:

← item The item that needs to be redrawn.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.7 Fl_Browser_ Class Reference 383

See also:

redraw_lines(), redraw_line()

30.7.4.32 void Fl_Browser_::redraw_lines () [inline, protected]

This method will cause the entire list to be redrawn.

See also:

redraw_lines(), redraw_line()

30.7.4.33 void Fl_Browser_::replacing (void ∗ a, void ∗ b) [protected]

This method should be used when item a is being replaced by item b.

It allows the Fl_Browser_ to update its cache data as needed, schedules a redraw for the item being changed,
and tries to maintain the selection. This method does not actually replace the item, but handles the follow
up bookkeeping after the item has just been replaced.

Parameters:

← a Item being replaced

← b Item to replace ’a’

30.7.4.34 void Fl_Browser_::resize (int X, int Y, int W, int H) [virtual]

Repositions and/or resizes the browser.

Parameters:

← X,Y,W,H The new position and size for the browser, in pixels.

Reimplemented from Fl_Group.

30.7.4.35 void Fl_Browser_::scrollbar_left () [inline]

Moves the vertical scrollbar to the lefthand side of the list.

For back compatibility.

30.7.4.36 void Fl_Browser_::scrollbar_right () [inline]

Moves the vertical scrollbar to the righthand side of the list.

For back compatibility.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

384 Class Documentation

30.7.4.37 void Fl_Browser_::scrollbar_size (int size) [inline]

Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

Normally you should not need this method, and should use Fl::scrollbar_size(int) instead to manage the
size of ALL your widgets’ scrollbars. This ensures your application has a consistent UI, is the default
behavior, and is normally what you want.

Only use THIS method if you really need to override the global scrollbar size. The need for this should be
rare.

Setting size to the special value of 0 causes the widget to track the global Fl::scrollbar_size(), which is
the default.

Parameters:

← size Sets the scrollbar size in pixels.
If 0 (default), scrollbar size tracks the global Fl::scrollbar_size()

See also:

Fl::scrollbar_size()

30.7.4.38 int Fl_Browser_::scrollbar_size () const [inline]

Gets the current size of the scrollbars’ troughs, in pixels.

If this value is zero (default), this widget will use the Fl::scrollbar_size() value as the scrollbar’s width.

Returns:

Scrollbar size in pixels, or 0 if the global Fl::scrollsize() is being used.

See also:

Fl::scrollbar_size(int)

30.7.4.39 void Fl_Browser_::scrollbar_width (int width) [inline]

This method has been deprecated, existing for backwards compatibility only.

Use scrollbar_size(int) instead. This method sets the global Fl::scrollbar_size(), and forces this instance of
the widget to use it.

Todo

This method should eventually be removed in 1.4+

30.7.4.40 int Fl_Browser_::scrollbar_width () const [inline]

This method has been deprecated, existing for backwards compatibility only.

Use scrollbar_size() instead. This method always returns the global value Fl::scrollbar_size().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.7 Fl_Browser_ Class Reference 385

Returns:

Always returns the global value Fl::scrollbar_size().

Todo

This method should eventually be removed in 1.4+

30.7.4.41 int Fl_Browser_::select (void ∗ item, int val = 1, int docallbacks = 0)

Sets the selection state of item to val, and returns 1 if the state changed or 0 if it did not.

If docallbacks is non-zero, select tries to call the callback function for the widget.

Parameters:

← item The item whose selection state is to be changed

← val The new selection state (1=select, 0=de-select)

← docallbacks If 1, invokes widget callback if item changed.
If 0, doesn’t do callback (default).

Returns:

1 if state was changed, 0 if not.

30.7.4.42 int Fl_Browser_::select_only (void ∗ item, int docallbacks = 0)

Selects item and returns 1 if the state changed or 0 if it did not.

Any other items in the list are deselected.

Parameters:

← item The item to select.

← docallbacks If 1, invokes widget callback if item changed.
If 0, doesn’t do callback (default).

30.7.4.43 void∗ Fl_Browser_::selection () const [inline, protected]

Returns the item currently selected, or NULL if there is no selection.

For multiple selection browsers this call returns the currently focused item, even if it is not selected. To
find all selected items, call Fl_Multi_Browser::selected() for every item in question.

30.7.4.44 void Fl_Browser_::sort (int flags = 0)

Sort the items in the browser based on flags.

item_swap(void∗, void∗) and item_text(void∗) must be implemented for this call.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

386 Class Documentation

Parameters:

← flags FL_SORT_ASCENDING – sort in ascending order
FL_SORT_DESCENDING – sort in descending order
Values other than the above will cause undefined behavior
Other flags may appear in the future.

Todo

Add a flag to ignore case

30.7.4.45 void Fl_Browser_::swapping (void ∗ a, void ∗ b) [protected]

This method should be used when two items a and b are being swapped.

It allows the Fl_Browser_ to update its cache data as needed, schedules a redraw for the two items, and
tries to maintain the current selection. This method does not actually swap items, but handles the follow
up bookkeeping after items have been swapped.

Parameters:

← a,b Items being swapped.

30.7.4.46 Fl_Font Fl_Browser_::textfont () const [inline]

Gets the default text font for the lines in the browser.

See also:

textfont(), textsize(), textcolor()

30.7.5 Member Data Documentation

30.7.5.1 Fl_Scrollbar Fl_Browser_::hscrollbar

Horizontal scrollbar.

Public, so that it can be accessed directly.

30.7.5.2 Fl_Scrollbar Fl_Browser_::scrollbar

Vertical scrollbar.

Public, so that it can be accessed directly.

The documentation for this class was generated from the following files:

• Fl_Browser_.H
• Fl_Browser_.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.8 Fl_Button Class Reference 387

30.8 Fl_Button Class Reference

Buttons generate callbacks when they are clicked by the user.

#include <Fl_Button.H>

Inheritance diagram for Fl_Button::

Fl_Button

Fl_Widget

Fl_Light_Button Fl_Repeat_Button Fl_Return_Button Fl_Toggle_Button

Fl_Check_Button Fl_Round_Button

Public Member Functions

• int clear ()

Same as value(0).

• void down_box (Fl_Boxtype b)

Sets the down box type.

• Fl_Boxtype down_box () const

Returns the current down box type, which is drawn when value() is non-zero.

• void down_color (unsigned c)

(for backwards compatibility)

• Fl_Color down_color () const

(for backwards compatibility)

• Fl_Button (int X, int Y, int W, int H, const char ∗L=0)

The constructor creates the button using the given position, size and label.

• virtual int handle (int)

Handles the specified event.

• int set ()

Same as value(1).

• void setonly ()

Turns on this button and turns off all other radio buttons in the group (calling value(1) or set() does
not do this).

• void shortcut (const char ∗s)

(for backwards compatibility)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

388 Class Documentation

• void shortcut (int s)
Sets the shortcut key to s.

• int shortcut () const
Returns the current shortcut key for the button.

• char value () const
Returns the current value of the button (0 or 1).

• int value (int v)
Sets the current value of the button.

Protected Member Functions

• virtual void draw ()
Draws the widget.

• void simulate_key_action ()

Static Protected Member Functions

• static void key_release_timeout (void ∗)

Static Protected Attributes

• static Fl_Widget_Tracker ∗ key_release_tracker = 0

30.8.1 Detailed Description

Buttons generate callbacks when they are clicked by the user.

You control exactly when and how by changing the values for type() and when(). Buttons can also generate
callbacks in response to FL_SHORTCUT events. The button can either have an explicit shortcut(int s) value
or a letter shortcut can be indicated in the label() with an ’&’ character before it. For the label shortcut it
does not matter if Alt is held down, but if you have an input field in the same window, the user will have to
hold down the Alt key so that the input field does not eat the event first as an FL_KEYBOARD event.

Todo

Refactor the doxygen comments for Fl_Button type() documentation.

For an Fl_Button object, the type() call returns one of:

• FL_NORMAL_BUTTON (0): value() remains unchanged after button press.

• FL_TOGGLE_BUTTON: value() is inverted after button press.

• FL_RADIO_BUTTON: value() is set to 1 after button press, and all other buttons in the current
group with type() == FL_RADIO_BUTTON are set to zero.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.8 Fl_Button Class Reference 389

Todo

Refactor the doxygen comments for Fl_Button when() documentation.

For an Fl_Button object, the following when() values are useful, the default being FL_WHEN_RELEASE:

• 0: The callback is not done, instead changed() is turned on.

• FL_WHEN_RELEASE: The callback is done after the user successfully clicks the button, or when a
shortcut is typed.

• FL_WHEN_CHANGED: The callback is done each time the value() changes (when the user pushes
and releases the button, and as the mouse is dragged around in and out of the button).

30.8.2 Constructor & Destructor Documentation

30.8.2.1 Fl_Button::Fl_Button (int X, int Y, int W, int H, const char ∗ L = 0)

The constructor creates the button using the given position, size and label.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

30.8.3 Member Function Documentation

30.8.3.1 int Fl_Button::clear () [inline]

Same as value(0).

See also:

value(int v)

30.8.3.2 void Fl_Button::down_box (Fl_Boxtype b) [inline]

Sets the down box type.

The default value of 0 causes FLTK to figure out the correct matching down version of box().

Parameters:

← b down box type

30.8.3.3 Fl_Boxtype Fl_Button::down_box () const [inline]

Returns the current down box type, which is drawn when value() is non-zero.

Return values:

Fl_Boxtype

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

390 Class Documentation

30.8.3.4 void Fl_Button::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

Reimplemented in Fl_Light_Button, and Fl_Return_Button.

30.8.3.5 int Fl_Button::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

Reimplemented in Fl_Light_Button, Fl_Repeat_Button, and Fl_Return_Button.

30.8.3.6 int Fl_Button::set () [inline]

Same as value(1).

See also:

value(int v)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.8 Fl_Button Class Reference 391

30.8.3.7 void Fl_Button::shortcut (int s) [inline]

Sets the shortcut key to s.

Setting this overrides the use of ’&’ in the label(). The value is a bitwise OR of a key and a set of shift
flags, for example: FL_ALT | ’a’, or FL_ALT | (FL_F + 10), or just ’a’. A value of 0 disables
the shortcut.

The key can be any value returned by Fl::event_key(), but will usually be an ASCII letter. Use a lower-case
letter unless you require the shift key to be held down.

The shift flags can be any set of values accepted by Fl::event_state(). If the bit is on, that shift key must
be pushed. Meta, Alt, Ctrl, and Shift must be off if they are not in the shift flags (zero for the other bits
indicates a "don’t care" setting).

Parameters:

← s bitwise OR of key and shift flags

30.8.3.8 int Fl_Button::shortcut () const [inline]

Returns the current shortcut key for the button.

Return values:

int

30.8.3.9 int Fl_Button::value (int v)

Sets the current value of the button.

A non-zero value sets the button to 1 (ON), and zero sets it to 0 (OFF).

Parameters:

← v button value.

See also:

set(), clear()

The documentation for this class was generated from the following files:

• Fl_Button.H
• Fl_Button.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

392 Class Documentation

30.9 Fl_Cairo_State Class Reference

Contains all the necessary info on the current cairo context.

#include <Fl_Cairo.H>

Public Member Functions

• void autolink (bool b)
Sets the autolink option, only available with –enable-cairoext.

• bool autolink () const
Gets the autolink option. See Fl::cairo_autolink_context(bool).

• void cc (cairo_t ∗c, bool own=true)
Sets the current cairo context, own indicates cc deletion is handle externally by user.

• cairo_t ∗ cc () const
Gets the current cairo context.

• void ∗ gc () const
Gets the last gc attached to a cc.

• void gc (void ∗c)
Sets the gc c to keep track on.

• void ∗ window () const
Gets the last window attached to a cc.

• void window (void ∗w)
Sets the window w to keep track on.

30.9.1 Detailed Description

Contains all the necessary info on the current cairo context.

A private internal & unique corresponding object is created to permit cairo context state handling while
keeping it opaque. For internal use only.

Note:

Only available when configure has the –enable-cairo option

The documentation for this class was generated from the following file:

• Fl_Cairo.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.10 Fl_Cairo_Window Class Reference 393

30.10 Fl_Cairo_Window Class Reference

This defines a pre-configured cairo fltk window.

#include <Fl_Cairo_Window.H>

Inheritance diagram for Fl_Cairo_Window::

Fl_Cairo_Window

Fl_Double_Window

Fl_Window

Fl_Group

Fl_Widget

Public Types

• typedef void(∗ cairo_draw_cb)(Fl_Cairo_Window ∗self, cairo_t ∗def)
This defines the cairo draw callback prototype that you must further.

Public Member Functions

• Fl_Cairo_Window (int w, int h)
• void set_draw_cb (cairo_draw_cb cb)

You must provide a draw callback which will implement your cairo rendering.

Protected Member Functions

• void draw ()
Overloaded to provide cairo callback support.

30.10.1 Detailed Description

This defines a pre-configured cairo fltk window.

This class overloads the virtual draw() method for you, so that the only thing you have to do is to provide
your cairo code. All cairo context handling is achieved transparently.

Note:

You can alternatively define your custom cairo fltk window, and thus at least override the draw()
method to provide custom cairo support. In this case you will probably use Fl::cairo_make_-

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

394 Class Documentation

current(Fl_Window∗) to attach a context to your window. You should do it only when your window is
the current window.

See also:

Fl_Window::current()

30.10.2 Member Function Documentation

30.10.2.1 void Fl_Cairo_Window::set_draw_cb (cairo_draw_cb cb) [inline]

You must provide a draw callback which will implement your cairo rendering.

This method will permit you to set your cairo callback to cb.

The documentation for this class was generated from the following file:

• Fl_Cairo_Window.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.11 Fl_Chart Class Reference 395

30.11 Fl_Chart Class Reference

Fl_Chart displays simple charts.

#include <Fl_Chart.H>

Inheritance diagram for Fl_Chart::

Fl_Chart

Fl_Widget

Public Member Functions

• void add (double val, const char ∗str=0, unsigned col=0)

Add the data value val with optional label str and color col to the chart.

• void autosize (uchar n)

Set whether the chart will automatically adjust the bounds of the chart.

• uchar autosize () const

Get whether the chart will automatically adjust the bounds of the chart.

• void bounds (double a, double b)

Sets the lower and upper bounds of the chart values.

• void bounds (double ∗a, double ∗b) const

Gets the lower and upper bounds of the chart values.

• void clear ()

Removes all values from the chart.

• Fl_Chart (int X, int Y, int W, int H, const char ∗L=0)

Create a new Fl_Chart widget using the given position, size and label string.

• void insert (int ind, double val, const char ∗str=0, unsigned col=0)

Inserts a data value val at the given position ind.

• void maxsize (int m)

Set the maximum number of data values for a chart.

• int maxsize () const

Gets the maximum number of data values for a chart.

• void replace (int ind, double val, const char ∗str=0, unsigned col=0)

Replace a data value val at the given position ind.

• void size (int W, int H)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

396 Class Documentation

Changes the size of the widget.

• int size () const
Returns the number of data values in the chart.

• void textcolor (Fl_Color n)
gets the chart’s text color to n.

• Fl_Color textcolor () const
Gets the chart’s text color.

• void textfont (Fl_Font s)
Sets the chart’s text font to s.

• Fl_Font textfont () const
Gets the chart’s text font.

• void textsize (Fl_Fontsize s)
gets the chart’s text size to s.

• Fl_Fontsize textsize () const
Gets the chart’s text size.

• ∼Fl_Chart ()
Destroys the Fl_Chart widget and all of its data.

Protected Member Functions

• void draw ()
Draws the widget.

30.11.1 Detailed Description

Fl_Chart displays simple charts.

It is provided for Forms compatibility.

Figure 30.2: Fl_Chart

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.11 Fl_Chart Class Reference 397

Todo

Refactor Fl_Chart::type() information.

The type of an Fl_Chart object can be set using type(uchar t) to:

• FL_BAR_CHART: Each sample value is drawn as a vertical bar.

• FL_FILLED_CHART: The chart is filled from the bottom of the graph to the sample values.

• FL_HORBAR_CHART: Each sample value is drawn as a horizontal bar.

• FL_LINE_CHART: The chart is drawn as a polyline with vertices at each sample value.

• FL_PIE_CHART: A pie chart is drawn with each sample value being drawn as a proportionate slice
in the circle.

• FL_SPECIALPIE_CHART: Like FL_PIE_CHART, but the first slice is separated from the pie.

• FL_SPIKE_CHART: Each sample value is drawn as a vertical line.

30.11.2 Constructor & Destructor Documentation

30.11.2.1 Fl_Chart::Fl_Chart (int X, int Y, int W, int H, const char ∗ L = 0)

Create a new Fl_Chart widget using the given position, size and label string.

The default boxstyle is FL_NO_BOX.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

30.11.3 Member Function Documentation

30.11.3.1 void Fl_Chart::add (double val, const char ∗ str = 0, unsigned col = 0)

Add the data value val with optional label str and color col to the chart.

Parameters:

← val data value

← str optional data label

← col optional data color

30.11.3.2 void Fl_Chart::autosize (uchar n) [inline]

Set whether the chart will automatically adjust the bounds of the chart.

Parameters:

← n non-zero to enable automatic resizing, zero to disable.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

398 Class Documentation

30.11.3.3 uchar Fl_Chart::autosize () const [inline]

Get whether the chart will automatically adjust the bounds of the chart.

Returns:

non-zero if auto-sizing is enabled and zero if disabled.

30.11.3.4 void Fl_Chart::bounds (double a, double b)

Sets the lower and upper bounds of the chart values.

Parameters:

← a,b are used to set lower, upper

30.11.3.5 void Fl_Chart::bounds (double ∗ a, double ∗ b) const [inline]

Gets the lower and upper bounds of the chart values.

Parameters:

→ a,b are set to lower, upper

30.11.3.6 void Fl_Chart::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.11.3.7 void Fl_Chart::insert (int ind, double val, const char ∗ str = 0, unsigned col = 0)

Inserts a data value val at the given position ind.

Position 1 is the first data value.

Parameters:

← ind insertion position
← val data value
← str optional data label
← col optional data color

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.11 Fl_Chart Class Reference 399

30.11.3.8 void Fl_Chart::maxsize (int m)

Set the maximum number of data values for a chart.

If you do not call this method then the chart will be allowed to grow to any size depending on available
memory.

Parameters:

← m maximum number of data values allowed.

30.11.3.9 void Fl_Chart::replace (int ind, double val, const char ∗ str = 0, unsigned col = 0)

Replace a data value val at the given position ind.

Position 1 is the first data value.

Parameters:

← ind insertion position

← val data value

← str optional data label

← col optional data color

30.11.3.10 void Fl_Chart::size (int W, int H) [inline]

Changes the size of the widget.

size(W, H) is a shortcut for resize(x(), y(), W, H).

Parameters:

←W,H new size

See also:

position(int,int), resize(int,int,int,int)

Reimplemented from Fl_Widget.

30.11.3.11 void Fl_Chart::textcolor (Fl_Color n) [inline]

gets the chart’s text color to n.

30.11.3.12 void Fl_Chart::textfont (Fl_Font s) [inline]

Sets the chart’s text font to s.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

400 Class Documentation

30.11.3.13 void Fl_Chart::textsize (Fl_Fontsize s) [inline]

gets the chart’s text size to s.

The documentation for this class was generated from the following files:

• Fl_Chart.H
• Fl_Chart.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.12 FL_CHART_ENTRY Struct Reference 401

30.12 FL_CHART_ENTRY Struct Reference

For internal use only.

#include <Fl_Chart.H>

Public Attributes

• unsigned col
For internal use only.

• char str [FL_CHART_LABEL_MAX+1]
For internal use only.

• float val
For internal use only.

30.12.1 Detailed Description

For internal use only.

30.12.2 Member Data Documentation

30.12.2.1 unsigned FL_CHART_ENTRY::col

For internal use only.

30.12.2.2 char FL_CHART_ENTRY::str[FL_CHART_LABEL_MAX+1]

For internal use only.

30.12.2.3 float FL_CHART_ENTRY::val

For internal use only.

The documentation for this struct was generated from the following file:

• Fl_Chart.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

402 Class Documentation

30.13 Fl_Check_Browser Class Reference

The Fl_Check_Browser widget displays a scrolling list of text lines that may be selected and/or checked
by the user.

#include <Fl_Check_Browser.H>

Inheritance diagram for Fl_Check_Browser::

Fl_Check_Browser

Fl_Browser_

Fl_Group

Fl_Widget

Public Member Functions

• int add (const char ∗s, int b)
See int Fl_Check_Browser::add(char ∗s).

• int add (const char ∗s)
See int Fl_Check_Browser::add(char ∗s).

• int add (char ∗s, int b)
See int Fl_Check_Browser::add(char ∗s).

• int add (char ∗s)
Add a new unchecked line to the end of the browser.

• void check_all ()
Sets all the items checked.

• void check_none ()
Sets all the items unchecked.

• void checked (int item, int b)
Sets the check status of item item to b.

• int checked (int item) const
Gets the current status of item item.

• void clear ()
Remove every item from the browser.

• Fl_Check_Browser (int x, int y, int w, int h, const char ∗l=0)
The constructor makes an empty browser.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.13 Fl_Check_Browser Class Reference 403

• int nchecked () const

Returns how many items are currently checked.

• int nitems () const

Returns how many lines are in the browser.

• int remove (int item)

Remove line n and make the browser one line shorter.

• void set_checked (int item)

Equivalent to Fl_Check_Browser::checked(item, 1).

• char ∗ text (int item) const

Return a pointer to an internal buffer holding item item’s text.

• int value () const

Returns the index of the currently selected item.

• ∼Fl_Check_Browser ()

The destructor deletes all list items and destroys the browser.

Protected Member Functions

• int handle (int)

Handles the event within the normal widget bounding box.

30.13.1 Detailed Description

The Fl_Check_Browser widget displays a scrolling list of text lines that may be selected and/or checked
by the user.

30.13.2 Constructor & Destructor Documentation

30.13.2.1 Fl_Check_Browser::Fl_Check_Browser (int X, int Y, int W, int H, const char ∗ l = 0)

The constructor makes an empty browser.

30.13.2.2 Fl_Check_Browser::∼Fl_Check_Browser () [inline]

The destructor deletes all list items and destroys the browser.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

404 Class Documentation

30.13.3 Member Function Documentation

30.13.3.1 int Fl_Check_Browser::add (char ∗ s)

Add a new unchecked line to the end of the browser.

The text is copied using the strdup() function. It may also be NULL to make a blank line. The second form
can set the item checked.

30.13.3.2 void Fl_Check_Browser::check_all ()

Sets all the items checked.

30.13.3.3 void Fl_Check_Browser::check_none ()

Sets all the items unchecked.

30.13.3.4 void Fl_Check_Browser::checked (int i, int b)

Sets the check status of item item to b.

30.13.3.5 int Fl_Check_Browser::checked (int i) const

Gets the current status of item item.

30.13.3.6 void Fl_Check_Browser::clear ()

Remove every item from the browser.

Reimplemented from Fl_Group.

30.13.3.7 int Fl_Check_Browser::handle (int event) [protected, virtual]

Handles the event within the normal widget bounding box.

Parameters:

← event The event to process.

Returns:

1 if event was processed, 0 if not.

Reimplemented from Fl_Browser_.

30.13.3.8 int Fl_Check_Browser::nchecked () const [inline]

Returns how many items are currently checked.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.13 Fl_Check_Browser Class Reference 405

30.13.3.9 int Fl_Check_Browser::nitems () const [inline]

Returns how many lines are in the browser.

The last line number is equal to this.

30.13.3.10 int Fl_Check_Browser::remove (int item)

Remove line n and make the browser one line shorter.

Returns the number of lines left in the browser.

Reimplemented from Fl_Group.

30.13.3.11 void Fl_Check_Browser::set_checked (int item) [inline]

Equivalent to Fl_Check_Browser::checked(item, 1).

30.13.3.12 char ∗ Fl_Check_Browser::text (int i) const

Return a pointer to an internal buffer holding item item’s text.

30.13.3.13 int Fl_Check_Browser::value () const

Returns the index of the currently selected item.

The documentation for this class was generated from the following files:

• Fl_Check_Browser.H
• Fl_Check_Browser.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

406 Class Documentation

30.14 Fl_Check_Button Class Reference

A button with an "checkmark" to show its status.

#include <Fl_Check_Button.H>

Inheritance diagram for Fl_Check_Button::

Fl_Check_Button

Fl_Light_Button

Fl_Button

Fl_Widget

Public Member Functions

• Fl_Check_Button (int X, int Y, int W, int H, const char ∗L=0)
Creates a new Fl_Check_Button widget using the given position, size and label string.

30.14.1 Detailed Description

A button with an "checkmark" to show its status.

Figure 30.3: Fl_Check_Button

Buttons generate callbacks when they are clicked by the user. You control exactly when and how by
changing the values for type() and when().

The Fl_Check_Button subclass displays its "ON" state by showing a "checkmark" rather than drawing
itself pushed in.

Todo

Refactor Fl_Check_Button doxygen comments (add color() info etc?)

Todo

Generate Fl_Check_Button.gif with visible checkmark.

30.14.2 Constructor & Destructor Documentation

30.14.2.1 Fl_Check_Button::Fl_Check_Button (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Check_Button widget using the given position, size and label string.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.14 Fl_Check_Button Class Reference 407

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

The documentation for this class was generated from the following files:

• Fl_Check_Button.H
• Fl_Check_Button.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

408 Class Documentation

30.15 Fl_Choice Class Reference

A button that is used to pop up a menu.

#include <Fl_Choice.H>

Inheritance diagram for Fl_Choice::

Fl_Choice

Fl_Menu_

Fl_Widget

Public Member Functions

• Fl_Choice (int X, int Y, int W, int H, const char ∗L=0)
Create a new Fl_Choice widget using the given position, size and label string.

• int handle (int)
Handles the specified event.

• int value (const Fl_Menu_Item ∗v)
Sets the currently selected value using a pointer to menu item.

• int value (int v)
Sets the currently selected value using the index into the menu item array.

• int value () const
Gets the index of the last item chosen by the user.

Protected Member Functions

• void draw ()
Draws the widget.

30.15.1 Detailed Description

A button that is used to pop up a menu.

This is a button that, when pushed, pops up a menu (or hierarchy of menus) defined by an array of Fl_-
Menu_Item objects. Motif calls this an OptionButton.

The only difference between this and a Fl_Menu_Button is that the name of the most recent chosen menu
item is displayed inside the box, while the label is displayed outside the box. However, since the use of this
is most often to control a single variable rather than do individual callbacks, some of the Fl_Menu_Button
methods are redescribed here in those terms.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.15 Fl_Choice Class Reference 409

When the user picks an item off the menu the value() is set to that item and then the item’s callback
is done with the menu_button as the Fl_Widget∗ argument. If the item does not have a callback the
menu_button’s callback is done instead.

All three mouse buttons pop up the menu. The Forms behavior of the first two buttons to incre-
ment/decrement the choice is not implemented. This could be added with a subclass, however.

The menu will also pop up in response to shortcuts indicated by putting a ’&’ character in the label(). See
Fl_Button::shortcut(int s) for a description of this.

Typing the shortcut() of any of the items will do exactly the same as when you pick the item with the
mouse. The ’&’ character in item names are only looked at when the menu is popped up, however.

Figure 30.4: Fl_Choice

Todo

Refactor the doxygen comments for Fl_Choice changed() documentation.

• int Fl_Widget::changed() const This value is true the user picks a different value. It is
turned off by value() and just before doing a callback (the callback can turn it back on if desired).

• void Fl_Widget::set_changed() This method sets the changed() flag.

• void Fl_Widget::clear_changed() This method clears the changed() flag.

• Fl_Boxtype Fl_Choice::down_box() const Gets the current down box, which is used
when the menu is popped up. The default down box type is FL_DOWN_BOX.

• void Fl_Choice::down_box(Fl_Boxtype b) Sets the current down box type to b.

30.15.2 Constructor & Destructor Documentation

30.15.2.1 Fl_Choice::Fl_Choice (int X, int Y, int W, int H, const char ∗ L = 0)

Create a new Fl_Choice widget using the given position, size and label string.

The default boxtype is FL_UP_BOX.

The constructor sets menu() to NULL. See Fl_Menu_ for the methods to set or change the menu.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

410 Class Documentation

30.15.3 Member Function Documentation

30.15.3.1 void Fl_Choice::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.15.3.2 int Fl_Choice::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

30.15.3.3 int Fl_Choice::value (const Fl_Menu_Item ∗ v)

Sets the currently selected value using a pointer to menu item.

Changing the selected value causes a redraw().

Parameters:

← v pointer to menu item in the menu item array.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.15 Fl_Choice Class Reference 411

Returns:

non-zero if the new value is different to the old one.

Reimplemented from Fl_Menu_.

30.15.3.4 int Fl_Choice::value (int v)

Sets the currently selected value using the index into the menu item array.

Changing the selected value causes a redraw().

Parameters:

← v index of value in the menu item array.

Returns:

non-zero if the new value is different to the old one.

Reimplemented from Fl_Menu_.

30.15.3.5 int Fl_Choice::value () const [inline]

Gets the index of the last item chosen by the user.

The index is zero initially.

Reimplemented from Fl_Menu_.

The documentation for this class was generated from the following files:

• Fl_Choice.H
• Fl_Choice.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

412 Class Documentation

30.16 Fl_Clock Class Reference

This widget provides a round analog clock display.

#include <Fl_Clock.H>

Inheritance diagram for Fl_Clock::

Fl_Clock

Fl_Clock_Output

Fl_Widget

Fl_Round_Clock

Public Member Functions

• Fl_Clock (uchar t, int X, int Y, int W, int H, const char ∗L)

Create an Fl_Clock widget using the given boxtype, position, size, and label string.

• Fl_Clock (int X, int Y, int W, int H, const char ∗L=0)

Create an Fl_Clock widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

• ∼Fl_Clock ()

The destructor removes the clock.

30.16.1 Detailed Description

This widget provides a round analog clock display.

Fl_Clock is provided for Forms compatibility. It installs a 1-second timeout callback using Fl::add_-
timeout(). You can choose the rounded or square type of the clock with type(), see below.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.16 Fl_Clock Class Reference 413

Figure 30.5: FL_SQUARE_CLOCK type

Figure 30.6: FL_ROUND_CLOCK type

30.16.2 Constructor & Destructor Documentation

30.16.2.1 Fl_Clock::Fl_Clock (int X, int Y, int W, int H, const char ∗ L = 0)

Create an Fl_Clock widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

30.16.2.2 Fl_Clock::Fl_Clock (uchar t, int X, int Y, int W, int H, const char ∗ L)

Create an Fl_Clock widget using the given boxtype, position, size, and label string.

Parameters:

← t boxtype

← X,Y,W,H position and size of the widget

← L widget label, default is no label

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

414 Class Documentation

30.16.3 Member Function Documentation

30.16.3.1 int Fl_Clock::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

The documentation for this class was generated from the following files:

• Fl_Clock.H
• Fl_Clock.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.17 Fl_Clock_Output Class Reference 415

30.17 Fl_Clock_Output Class Reference

This widget can be used to display a program-supplied time.

#include <Fl_Clock.H>

Inheritance diagram for Fl_Clock_Output::

Fl_Clock_Output

Fl_Widget

Fl_Clock

Fl_Round_Clock

Public Member Functions

• Fl_Clock_Output (int X, int Y, int W, int H, const char ∗L=0)
Create a new Fl_Clock_Output widget with the given position, size and label.

• int hour () const
Returns the displayed hour (0 to 23).

• int minute () const
Returns the displayed minute (0 to 59).

• int second () const
Returns the displayed second (0 to 60, 60=leap second).

• ulong value () const
Returns the displayed time.

• void value (int H, int m, int s)
Set the displayed time.

• void value (ulong v)
Set the displayed time.

Protected Member Functions

• void draw (int X, int Y, int W, int H)
Draw clock with the given position and size.

• void draw ()
Draw clock with current position and size.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

416 Class Documentation

30.17.1 Detailed Description

This widget can be used to display a program-supplied time.

The time shown on the clock is not updated. To display the current time, use Fl_Clock instead.

Figure 30.7: FL_SQUARE_CLOCK type

Figure 30.8: FL_ROUND_CLOCK type

30.17.2 Constructor & Destructor Documentation

30.17.2.1 Fl_Clock_Output::Fl_Clock_Output (int X, int Y, int W, int H, const char ∗ L = 0)

Create a new Fl_Clock_Output widget with the given position, size and label.

The default boxtype is FL_NO_BOX.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

30.17.3 Member Function Documentation

30.17.3.1 void Fl_Clock_Output::draw (int X, int Y, int W, int H) [protected]

Draw clock with the given position and size.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.17 Fl_Clock_Output Class Reference 417

Parameters:

← X,Y,W,H position and size

30.17.3.2 int Fl_Clock_Output::hour () const [inline]

Returns the displayed hour (0 to 23).

See also:

value(), minute(), second()

30.17.3.3 int Fl_Clock_Output::minute () const [inline]

Returns the displayed minute (0 to 59).

See also:

value(), hour(), second()

30.17.3.4 int Fl_Clock_Output::second () const [inline]

Returns the displayed second (0 to 60, 60=leap second).

See also:

value(), hour(), minute()

30.17.3.5 ulong Fl_Clock_Output::value () const [inline]

Returns the displayed time.

Returns the time in seconds since the UNIX epoch (January 1, 1970).

See also:

value(ulong)

30.17.3.6 void Fl_Clock_Output::value (int H, int m, int s)

Set the displayed time.

Set the time in hours, minutes, and seconds.

Parameters:

← H,m,s displayed time

See also:

hour(), minute(), second()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

418 Class Documentation

30.17.3.7 void Fl_Clock_Output::value (ulong v)

Set the displayed time.

Set the time in seconds since the UNIX epoch (January 1, 1970).

Parameters:

← v seconds since epoch

See also:

value()

The documentation for this class was generated from the following files:

• Fl_Clock.H
• Fl_Clock.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.18 Fl_Color_Chooser Class Reference 419

30.18 Fl_Color_Chooser Class Reference

The Fl_Color_Chooser widget provides a standard RGB color chooser.

#include <Fl_Color_Chooser.H>

Inheritance diagram for Fl_Color_Chooser::

Fl_Color_Chooser

Fl_Group

Fl_Widget

Public Member Functions

• double b () const
Returns the current blue value.

• Fl_Color_Chooser (int X, int Y, int W, int H, const char ∗L=0)
Creates a new Fl_Color_Chooser widget using the given position, size, and label string.

• double g () const
Returns the current green value.

• int hsv (double H, double S, double V)
Set the hsv values.

• double hue () const
Returns the current hue.

• void mode (int newMode)
Set which Fl_Color_Chooser variant is currently active.

• int mode ()
Returns which Fl_Color_Chooser variant is currently active.

• double r () const
Returns the current red value.

• int rgb (double R, double G, double B)
Sets the current rgb color values.

• double saturation () const
Returns the saturation.

• double value () const
Returns the value/brightness.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

420 Class Documentation

Static Public Member Functions

• static void hsv2rgb (double H, double S, double V, double &R, double &G, double &B)

This static method converts HSV colors to RGB colorspace.

• static void rgb2hsv (double R, double G, double B, double &H, double &S, double &V)

This static method converts RGB colors to HSV colorspace.

Related Functions

(Note that these are not member functions.)

• int fl_color_chooser (const char ∗name, uchar &r, uchar &g, uchar &b, int cmode)

Pops up a window to let the user pick an arbitrary RGB color.

• int fl_color_chooser (const char ∗name, double &r, double &g, double &b, int cmode)

Pops up a window to let the user pick an arbitrary RGB color.

30.18.1 Detailed Description

The Fl_Color_Chooser widget provides a standard RGB color chooser.

Figure 30.9: fl_color_chooser()

You can place any number of the widgets into a panel of your own design. The diagram shows the widget
as part of a color chooser dialog created by the fl_color_chooser() function. The Fl_Color_Chooser widget
contains the hue box, value slider, and rgb input fields from the above diagram (it does not have the color
chips or the Cancel or OK buttons). The callback is done every time the user changes the rgb value. It is
not done if they move the hue control in a way that produces the same rgb value, such as when saturation
or value is zero.

The fl_color_chooser() function pops up a window to let the user pick an arbitrary RGB color. They can
pick the hue and saturation in the "hue box" on the left (hold down CTRL to just change the saturation), and
the brightness using the vertical slider. Or they can type the 8-bit numbers into the RGB Fl_Value_Input
fields, or drag the mouse across them to adjust them. The pull-down menu lets the user set the input fields
to show RGB, HSV, or 8-bit RGB (0 to 255).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.18 Fl_Color_Chooser Class Reference 421

fl_color_chooser() returns non-zero if the user picks ok, and updates the RGB values. If the user picks
cancel or closes the window this returns zero and leaves RGB unchanged.

If you use the color chooser on an 8-bit screen, it will allocate all the available colors, leaving you no space
to exactly represent the color the user picks! You can however use fl_rectf() to fill a region with a simulated
color using dithering.

30.18.2 Constructor & Destructor Documentation

30.18.2.1 Fl_Color_Chooser::Fl_Color_Chooser (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Color_Chooser widget using the given position, size, and label string.

The recommended dimensions are 200x95. The color is initialized to black.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

30.18.3 Member Function Documentation

30.18.3.1 double Fl_Color_Chooser::b () const [inline]

Returns the current blue value.

0 <= b <= 1.

30.18.3.2 double Fl_Color_Chooser::g () const [inline]

Returns the current green value.

0 <= g <= 1.

30.18.3.3 int Fl_Color_Chooser::hsv (double H, double S, double V)

Set the hsv values.

The passed values are clamped (or for hue, modulus 6 is used) to get legal values. Does not do the call-
back.

Parameters:

← H,S,V color components.

Returns:

1 if a new hsv value was set, 0 if the hsv value was the previous one.

30.18.3.4 void Fl_Color_Chooser::hsv2rgb (double H, double S, double V, double & R, double
& G, double & B) [static]

This static method converts HSV colors to RGB colorspace.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

422 Class Documentation

Parameters:

← H,S,V color components

→ R,G,B color components

30.18.3.5 double Fl_Color_Chooser::hue () const [inline]

Returns the current hue.

0 <= hue < 6. Zero is red, one is yellow, two is green, etc. This value is convenient for the internal
calculations - some other systems consider hue to run from zero to one, or from 0 to 360.

30.18.3.6 void Fl_Color_Chooser::mode (int newMode)

Set which Fl_Color_Chooser variant is currently active.

Parameters:

← newMode color modes are rgb(0), byte(1), hex(2), or hsv(3)

30.18.3.7 int Fl_Color_Chooser::mode () [inline]

Returns which Fl_Color_Chooser variant is currently active.

Returns:

color modes are rgb(0), byte(1), hex(2), or hsv(3)

30.18.3.8 double Fl_Color_Chooser::r () const [inline]

Returns the current red value.

0 <= r <= 1.

30.18.3.9 int Fl_Color_Chooser::rgb (double R, double G, double B)

Sets the current rgb color values.

Does not do the callback. Does not clamp (but out of range values will produce psychedelic effects in the
hue selector).

Parameters:

← R,G,B color components.

Returns:

1 if a new rgb value was set, 0 if the rgb value was the previous one.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.18 Fl_Color_Chooser Class Reference 423

30.18.3.10 void Fl_Color_Chooser::rgb2hsv (double R, double G, double B, double & H, double
& S, double & V) [static]

This static method converts RGB colors to HSV colorspace.

Parameters:

← R,G,B color components

→ H,S,V color components

30.18.3.11 double Fl_Color_Chooser::saturation () const [inline]

Returns the saturation.

0 <= saturation <= 1.

30.18.3.12 double Fl_Color_Chooser::value () const [inline]

Returns the value/brightness.

0 <= value <= 1.

The documentation for this class was generated from the following files:

• Fl_Color_Chooser.H
• Fl_Color_Chooser.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

424 Class Documentation

30.19 Fl_Counter Class Reference

Controls a single floating point value with button (or keyboard) arrows.

#include <Fl_Counter.H>

Inheritance diagram for Fl_Counter::

Fl_Counter

Fl_Valuator

Fl_Widget

Fl_Simple_Counter

Public Member Functions

• Fl_Counter (int X, int Y, int W, int H, const char ∗L=0)
Creates a new Fl_Counter widget using the given position, size, and label string.

• int handle (int)
Handles the specified event.

• void lstep (double a)
Sets the increment for the large step buttons.

• double step () const
Returns the increment for normal step buttons.

• void step (double a)
Sets the increment for the normal step buttons.

• void step (double a, double b)
Sets the increments for the normal and large step buttons.

• void textcolor (Fl_Color s)
Sets the font color to s.

• Fl_Color textcolor () const
Gets the font color.

• void textfont (Fl_Font s)
Sets the text font to s.

• Fl_Font textfont () const
Gets the text font.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.19 Fl_Counter Class Reference 425

• void textsize (Fl_Fontsize s)
Sets the font size to s.

• Fl_Fontsize textsize () const
Gets the font size.

• ∼Fl_Counter ()
Destroys the valuator.

Protected Member Functions

• void draw ()
Draws the widget.

30.19.1 Detailed Description

Controls a single floating point value with button (or keyboard) arrows.

Double arrows buttons achieve larger steps than simple arrows.

See also:

Fl_Spinner for value input with vertical step arrows.

Figure 30.10: Fl_Counter

Todo

Refactor the doxygen comments for Fl_Counter type() documentation.

The type of an Fl_Counter object can be set using type(uchar t) to:

• FL_NORMAL_COUNTER: Displays a counter with 4 arrow buttons.

• FL_SIMPLE_COUNTER: Displays a counter with only 2 arrow buttons.

30.19.2 Constructor & Destructor Documentation

30.19.2.1 Fl_Counter::Fl_Counter (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Counter widget using the given position, size, and label string.

The default type is FL_NORMAL_COUNTER.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

426 Class Documentation

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

30.19.3 Member Function Documentation

30.19.3.1 void Fl_Counter::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.19.3.2 int Fl_Counter::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

30.19.3.3 void Fl_Counter::lstep (double a) [inline]

Sets the increment for the large step buttons.

The default value is 1.0.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.19 Fl_Counter Class Reference 427

Parameters:

← a large step increment.

30.19.3.4 void Fl_Counter::step (double a) [inline]

Sets the increment for the normal step buttons.

Parameters:

← a normal step increment.

Reimplemented from Fl_Valuator.

30.19.3.5 void Fl_Counter::step (double a, double b) [inline]

Sets the increments for the normal and large step buttons.

Parameters:

← a,b normal and large step increments.

The documentation for this class was generated from the following files:

• Fl_Counter.H
• Fl_Counter.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

428 Class Documentation

30.20 Fl_Device Class Reference

All graphical output devices and all graphics systems.

#include <Fl_Device.H>

Inheritance diagram for Fl_Device::

Fl_Device

Fl_Graphics_Driver Fl_Surface_Device

Fl_GDI_Graphics_Driver Fl_PostScript_Graphics_Driver Fl_Quartz_Graphics_Driver Fl_Xlib_Graphics_Driver Fl_Display_Device Fl_Paged_Device

Fl_PostScript_File_Device Fl_System_Printer

Fl_PostScript_Printer Fl_Printer

Fl_Printer

Public Member Functions

• const char ∗ type ()

An RTTI emulation of device classes.

Protected Attributes

• const char ∗ type_

The device type.

Static Protected Attributes

• static const char ∗ device_type = "Fl_Device"

A string that identifies each subclass of Fl_Device.

30.20.1 Detailed Description

All graphical output devices and all graphics systems.

30.20.2 Member Function Documentation

30.20.2.1 const char∗ Fl_Device::type () [inline]

An RTTI emulation of device classes.

The type of an instance of an Fl_Device subclass can be checked with code such as:

if (instance->type() == Fl_Printer::device_type) { ... }

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.20 Fl_Device Class Reference 429

30.20.3 Member Data Documentation

30.20.3.1 const char ∗ Fl_Device::device_type = "Fl_Device" [static, protected]

A string that identifies each subclass of Fl_Device.

Function type() applied to a device of this class returns this string.

Reimplemented in Fl_Graphics_Driver, Fl_Quartz_Graphics_Driver, Fl_GDI_Graphics_Driver, Fl_Xlib_-
Graphics_Driver, Fl_Surface_Device, Fl_Display_Device, Fl_Paged_Device, Fl_PostScript_Graphics_-
Driver, Fl_PostScript_File_Device, Fl_System_Printer, Fl_PostScript_Printer, and Fl_Printer.

The documentation for this class was generated from the following files:

• Fl_Device.H
• Fl_Device.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

430 Class Documentation

30.21 Fl_Device_Plugin Class Reference

This plugin socket allows the integration of new device drivers for special window or screen types.

#include <Fl_Device.H>

Inheritance diagram for Fl_Device_Plugin::

Fl_Device_Plugin

Fl_Plugin

Public Member Functions

• Fl_Device_Plugin (const char ∗name)
The constructor.

• virtual const char ∗ klass ()
Returns the class name.

• virtual const char ∗ name ()=0
Returns the plugin name.

• virtual int print (Fl_Widget ∗w, int x, int y, int height)
Prints a widget.

30.21.1 Detailed Description

This plugin socket allows the integration of new device drivers for special window or screen types.

It is currently used to provide an automated printing service for OpenGL windows, if linked with fltk_gl.

30.21.2 Member Function Documentation

30.21.2.1 virtual int Fl_Device_Plugin::print (Fl_Widget ∗ w, int x, int y, int height) [inline,
virtual]

Prints a widget.

Parameters:

w the widget
x,y offsets where to print relatively to coordinates origin
height height of the current drawing area

The documentation for this class was generated from the following file:

• Fl_Device.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.22 Fl_Dial Class Reference 431

30.22 Fl_Dial Class Reference

The Fl_Dial widget provides a circular dial to control a single floating point value.

#include <Fl_Dial.H>

Inheritance diagram for Fl_Dial::

Fl_Dial

Fl_Valuator

Fl_Widget

Fl_Fill_Dial

Public Member Functions

• void angle1 (short a)

See short angle1() const.

• short angle1 () const

Sets Or gets the angles used for the minimum and maximum values.

• void angle2 (short a)

See short angle1() const.

• short angle2 () const

See short angle1() const.

• void angles (short a, short b)

See short angle1() const.

• Fl_Dial (int x, int y, int w, int h, const char ∗l=0)

Creates a new Fl_Dial widget using the given position, size, and label string.

• int handle (int)

Allow subclasses to handle event based on current position and size.

Protected Member Functions

• void draw ()

Draws dial at current position and size.

• void draw (int X, int Y, int W, int H)

Draws dial at given position and size.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

432 Class Documentation

• int handle (int event, int X, int Y, int W, int H)

Allows subclasses to handle event based on given position and size.

30.22.1 Detailed Description

The Fl_Dial widget provides a circular dial to control a single floating point value.

Figure 30.11: Fl_Dial

Use type() to set the type of the dial to:

• FL_NORMAL_DIAL - Draws a normal dial with a knob.

• FL_LINE_DIAL - Draws a dial with a line.

• FL_FILL_DIAL - Draws a dial with a filled arc.

30.22.2 Constructor & Destructor Documentation

30.22.2.1 Fl_Dial::Fl_Dial (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Dial widget using the given position, size, and label string.

Creates a new Fl_Dial widget using the given position, size, and label string.

The default type is FL_NORMAL_DIAL.

30.22.3 Member Function Documentation

30.22.3.1 short Fl_Dial::angle1 () const [inline]

Sets Or gets the angles used for the minimum and maximum values.

The default values are 45 and 315 (0 degrees is straight down and the angles progress clockwise). Normally
angle1 is less than angle2, but if you reverse them the dial moves counter-clockwise.

30.22.3.2 void Fl_Dial::draw (int X, int Y, int W, int H) [protected]

Draws dial at given position and size.

Parameters:

← X,Y,W,H position and size

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.22 Fl_Dial Class Reference 433

30.22.3.3 int Fl_Dial::handle (int event, int X, int Y, int W, int H) [protected]

Allows subclasses to handle event based on given position and size.

Parameters:

← event,X,Y,W,H event to handle, related position and size.

The documentation for this class was generated from the following files:

• Fl_Dial.H
• Fl_Dial.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

434 Class Documentation

30.23 Fl_Display_Device Class Reference

A display to which the computer can draw.

#include <Fl_Device.H>

Inheritance diagram for Fl_Display_Device::

Fl_Display_Device

Fl_Surface_Device

Fl_Device

Public Member Functions

• Fl_Display_Device (Fl_Graphics_Driver ∗graphics_driver)

A constructor that sets the graphics driver used by the display.

Static Public Member Functions

• static Fl_Display_Device ∗ display_device ()

Returns the platform’s display device.

Static Public Attributes

• static const char ∗ device_type = "Fl_Display_Device"

A string that identifies each subclass of Fl_Device.

30.23.1 Detailed Description

A display to which the computer can draw.

30.23.2 Member Data Documentation

30.23.2.1 const char ∗ Fl_Display_Device::device_type = "Fl_Display_Device" [static]

A string that identifies each subclass of Fl_Device.

Function type() applied to a device of this class returns this string.

Reimplemented from Fl_Surface_Device.

The documentation for this class was generated from the following files:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.23 Fl_Display_Device Class Reference 435

• Fl_Device.H
• Fl_Device.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

436 Class Documentation

30.24 Fl_Double_Window Class Reference

The Fl_Double_Window provides a double-buffered window.

#include <Fl_Double_Window.H>

Inheritance diagram for Fl_Double_Window::

Fl_Double_Window

Fl_Window

Fl_Group

Fl_Widget

Fl_Cairo_Window Fl_Overlay_Window

Public Member Functions

• Fl_Double_Window (int X, int Y, int W, int H, const char ∗l=0)

See Fl_Double_Window::Fl_Double_Window(int w, int h, const char ∗label = 0).

• Fl_Double_Window (int W, int H, const char ∗l=0)

Creates a new Fl_Double_Window widget using the given position, size, and label (title) string.

• void flush ()

Forces the window to be redrawn.

• void hide ()

Removes the window from the screen.

• void resize (int, int, int, int)

Changes the size and position of the window.

• void show (int a, char ∗∗b)

Puts the window on the screen and parses command-line arguments.

• void show ()

Puts the window on the screen.

• ∼Fl_Double_Window ()

The destructor also deletes all the children.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.24 Fl_Double_Window Class Reference 437

Protected Member Functions

• void flush (int eraseoverlay)

Forces the window to be redrawn.

Protected Attributes

• char force_doublebuffering_

Force double buffering, even if the OS already buffers windows (overlays need that on MacOS and Win-
dows2000).

30.24.1 Detailed Description

The Fl_Double_Window provides a double-buffered window.

If possible this will use the X double buffering extension (Xdbe). If not, it will draw the window data into
an off-screen pixmap, and then copy it to the on-screen window.

It is highly recommended that you put the following code before the first show() of any window in your
program:

Fl::visual(FL_DOUBLE|FL_INDEX)

This makes sure you can use Xdbe on servers where double buffering does not exist for every visual.

30.24.2 Constructor & Destructor Documentation

30.24.2.1 Fl_Double_Window::∼Fl_Double_Window ()

The destructor also deletes all the children.

This allows a whole tree to be deleted at once, without having to keep a pointer to all the children in the
user code.

30.24.3 Member Function Documentation

30.24.3.1 void Fl_Double_Window::flush (int eraseoverlay) [protected]

Forces the window to be redrawn.

Parameters:

← eraseoverlay non-zero to erase overlay, zero to ignore

Fl_Overlay_Window relies on flush(1) copying the back buffer to the front everywhere, even if damage()
== 0, thus erasing the overlay, and leaving the clip region set to the entire window.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

438 Class Documentation

30.24.3.2 void Fl_Double_Window::hide () [virtual]

Removes the window from the screen.

If the window is already hidden or has not been shown then this does nothing and is harmless.

Reimplemented from Fl_Window.

Reimplemented in Fl_Overlay_Window.

30.24.3.3 void Fl_Double_Window::resize (int, int, int, int) [virtual]

Changes the size and position of the window.

If shown() is true, these changes are communicated to the window server (which may refuse that size and
cause a further resize). If shown() is false, the size and position are used when show() is called. See
Fl_Group for the effect of resizing on the child widgets.

You can also call the Fl_Widget methods size(x,y) and position(w,h), which are inline wrappers for this
virtual function.

A top-level window can not force, but merely suggest a position and size to the operating system. The
window manager may not be willing or able to display a window at the desired position or with the given
dimensions. It is up to the application developer to verify window parameters after the resize request.

Reimplemented from Fl_Window.

Reimplemented in Fl_Overlay_Window.

30.24.3.4 void Fl_Double_Window::show (int argc, char ∗∗ argv) [inline]

Puts the window on the screen and parses command-line arguments.

Usually (on X) this has the side effect of opening the display.

This form should be used for top-level windows, at least for the first (main) window. It allows standard
arguments to be parsed from the command-line. You can use argc and argv from main(int argc, char
∗∗argv) for this call.

The first call also sets up some system-specific internal variables like the system colors.

Todo

explain which system parameters are set up.

Parameters:

argc command-line argument count, usually from main()

argv command-line argument vector, usually from main()

See also:

virtual void Fl_Window::show()

Reimplemented from Fl_Window.

Reimplemented in Fl_Overlay_Window.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.24 Fl_Double_Window Class Reference 439

30.24.3.5 void Fl_Double_Window::show () [virtual]

Puts the window on the screen.

Usually (on X) this has the side effect of opening the display.

If the window is already shown then it is restored and raised to the top. This is really convenient because
your program can call show() at any time, even if the window is already up. It also means that show()
serves the purpose of raise() in other toolkits.

Fl_Window::show(int argc, char ∗∗argv) is used for top-level windows and allows standard arguments to
be parsed from the command-line.

See also:

Fl_Window::show(int argc, char ∗∗argv)

Reimplemented from Fl_Window.

Reimplemented in Fl_Overlay_Window.

The documentation for this class was generated from the following files:

• Fl_Double_Window.H
• Fl_Double_Window.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

440 Class Documentation

30.25 Fl_End Class Reference

This is a dummy class that allows you to end a Fl_Group in a constructor list of a class:.

#include <Fl_Group.H>

Public Member Functions

• Fl_End ()
All it does is calling Fl_Group::current()->end().

30.25.1 Detailed Description

This is a dummy class that allows you to end a Fl_Group in a constructor list of a class:.

class MyClass {
Fl_Group group;
Fl_Button button_in_group;
Fl_End end;
Fl_Button button_outside_group;
MyClass();

};
MyClass::MyClass() :
group(10,10,100,100),
button_in_group(20,20,60,30),
end(),
button_outside_group(10,120,60,30)

{}

The documentation for this class was generated from the following file:

• Fl_Group.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.26 Fl_File_Browser Class Reference 441

30.26 Fl_File_Browser Class Reference

The Fl_File_Browser widget displays a list of filenames, optionally with file-specific icons.

#include <Fl_File_Browser.H>

Inheritance diagram for Fl_File_Browser::

Fl_File_Browser

Fl_Browser

Fl_Browser_

Fl_Group

Fl_Widget

Public Types

• enum { FILES, DIRECTORIES }

Public Member Functions

• void filetype (int t)

Sets or gets the file browser type, FILES or DIRECTORIES.

• int filetype () const

Sets or gets the file browser type, FILES or DIRECTORIES.

• const char ∗ filter () const

Sets or gets the filename filter.

• void filter (const char ∗pattern)

Sets or gets the filename filter.

• Fl_File_Browser (int, int, int, int, const char ∗=0)

The constructor creates the Fl_File_Browser widget at the specified position and size.

• void iconsize (uchar s)

Sets or gets the size of the icons.

• uchar iconsize () const

Sets or gets the size of the icons.

• int load (const char ∗directory, Fl_File_Sort_F ∗sort=fl_numericsort)

Loads the specified directory into the browser.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

442 Class Documentation

• void textsize (Fl_Fontsize s)
Sets the default text size (in pixels) for the lines in the browser to size.

• Fl_Fontsize textsize () const
Gets the default text size (in pixels) for the lines in the browser.

30.26.1 Detailed Description

The Fl_File_Browser widget displays a list of filenames, optionally with file-specific icons.

30.26.2 Constructor & Destructor Documentation

30.26.2.1 Fl_File_Browser::Fl_File_Browser (int X, int Y, int W, int H, const char ∗ l = 0)

The constructor creates the Fl_File_Browser widget at the specified position and size.

The destructor destroys the widget and frees all memory that has been allocated.

30.26.3 Member Function Documentation

30.26.3.1 void Fl_File_Browser::filetype (int t) [inline]

Sets or gets the file browser type, FILES or DIRECTORIES.

When set to FILES, both files and directories are shown. Otherwise only directories are shown.

30.26.3.2 int Fl_File_Browser::filetype () const [inline]

Sets or gets the file browser type, FILES or DIRECTORIES.

When set to FILES, both files and directories are shown. Otherwise only directories are shown.

30.26.3.3 const char∗ Fl_File_Browser::filter () const [inline]

Sets or gets the filename filter.

The pattern matching uses the fl_filename_match() function in FLTK.

30.26.3.4 void Fl_File_Browser::filter (const char ∗ pattern)

Sets or gets the filename filter.

The pattern matching uses the fl_filename_match() function in FLTK.

30.26.3.5 void Fl_File_Browser::iconsize (uchar s) [inline]

Sets or gets the size of the icons.

The default size is 20 pixels.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.26 Fl_File_Browser Class Reference 443

30.26.3.6 uchar Fl_File_Browser::iconsize () const [inline]

Sets or gets the size of the icons.

The default size is 20 pixels.

30.26.3.7 int Fl_File_Browser::load (const char ∗ directory, Fl_File_Sort_F ∗ sort =
fl_numericsort)

Loads the specified directory into the browser.

If icons have been loaded then the correct icon is associated with each file in the list.

The sort argument specifies a sort function to be used with fl_filename_list().

The documentation for this class was generated from the following files:

• Fl_File_Browser.H
• Fl_File_Browser.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

444 Class Documentation

30.27 Fl_File_Chooser Class Reference

The Fl_File_Chooser widget displays a standard file selection dialog that supports various selection modes.

Public Types

• enum { SINGLE = 0, MULTI = 1, CREATE = 2, DIRECTORY = 4 }

Public Member Functions

• Fl_Widget ∗ add_extra (Fl_Widget ∗gr)
Adds extra widget at the bottom of Fl_File_Chooser window.

• Fl_File_Browser ∗ browser (void)
returns a pointer to the underlying Fl_File_Browser object

• void callback (void(∗cb)(Fl_File_Chooser ∗, void ∗), void ∗d=0)
Sets the file chooser callback cb and associated data d.

• Fl_Color color ()
Sets or gets the background color of the Fl_File_Browser list.

• void color (Fl_Color c)
Sets or gets the background color of the Fl_File_Browser list.

• int count ()
Returns the number of selected files.

• char ∗ directory ()
Sets or gets the current directory.

• void directory (const char ∗d)
Sets or gets the current directory.

• const char ∗ filter ()
See void filter(const char ∗pattern).

• void filter (const char ∗p)
Sets or gets the current filename filter patterns.

• void filter_value (int f)
Sets or gets the current filename filter selection.

• int filter_value ()
Sets or gets the current filename filter selection.

• Fl_File_Chooser (const char ∗d, const char ∗p, int t, const char ∗title)
The constructor creates the Fl_File_Chooser dialog shown.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.27 Fl_File_Chooser Class Reference 445

• void hide ()
Hides the Fl_File_Chooser window.

• uchar iconsize ()
Sets or gets the size of the icons in the Fl_File_Browser.

• void iconsize (uchar s)
Sets or gets the size of the icons in the Fl_File_Browser.

• const char ∗ label ()
Sets or gets the title bar text for the Fl_File_Chooser.

• void label (const char ∗l)
Sets or gets the title bar text for the Fl_File_Chooser.

• const char ∗ ok_label ()
Sets or gets the label for the "ok" button in the Fl_File_Chooser.

• void ok_label (const char ∗l)
Sets or gets the label for the "ok" button in the Fl_File_Chooser.

• int preview () const
Returns the current state of the preview box.

• void preview (int e)
Enable or disable the preview tile.

• void rescan ()
Reloads the current directory in the Fl_File_Browser.

• void rescan_keep_filename ()
Rescan the current directory without clearing the filename, then select the file if it is in the list.

• void show ()
Shows the Fl_File_Chooser window.

• int shown ()
Returns non-zero if the file chooser main window show() has been called (but not hide() see Fl_-
Window::shown().

• Fl_Color textcolor ()
Sets or gets the current Fl_File_Browser text color.

• void textcolor (Fl_Color c)
Sets or gets the current Fl_File_Browser text color.

• Fl_Font textfont ()
Sets or gets the current Fl_File_Browser text font.

• void textfont (Fl_Font f)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

446 Class Documentation

Sets or gets the current Fl_File_Browser text font.

• Fl_Fontsize textsize ()
Sets or gets the current Fl_File_Browser text size.

• void textsize (Fl_Fontsize s)
Sets or gets the current Fl_File_Browser text size.

• int type ()
Sets or gets the current type of Fl_File_Chooser.

• void type (int t)
Sets or gets the current type of Fl_File_Chooser.

• void user_data (void ∗d)
Sets the file chooser user data d.

• void ∗ user_data () const
Gets the file chooser user data d.

• void value (const char ∗filename)
Sets or gets the current value of the selected file.

• const char ∗ value (int f=1)
See const char ∗value(const char ∗pathname).

• int visible ()
Returns 1 if the Fl_File_Chooser window is visible.

• ∼Fl_File_Chooser ()
Destroys the widget and frees all memory used by it.

Public Attributes

• Fl_Button ∗ newButton
The "new directory" button is exported so that application developers can control the appearance and use.

• Fl_Check_Button ∗ previewButton
The "preview" button is exported so that application developers can control the appearance and use.

Static Public Attributes

• static const char ∗ add_favorites_label = "Add to Favorites"
[standard text may be customized at run-time]

• static const char ∗ all_files_label = "All Files (∗)"
[standard text may be customized at run-time]

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.27 Fl_File_Chooser Class Reference 447

• static const char ∗ custom_filter_label = "Custom Filter"

[standard text may be customized at run-time]

• static const char ∗ existing_file_label = "Please choose an existing file!"

[standard text may be customized at run-time]

• static const char ∗ favorites_label = "Favorites"

[standard text may be customized at run-time]

• static const char ∗ filename_label = "Filename:"

[standard text may be customized at run-time]

• static const char ∗ filesystems_label = "File Systems"

[standard text may be customized at run-time]

• static const char ∗ manage_favorites_label = "Manage Favorites"

[standard text may be customized at run-time]

• static const char ∗ new_directory_label = "New Directory?"

[standard text may be customized at run-time]

• static const char ∗ new_directory_tooltip = "Create a new directory."

[standard text may be customized at run-time]

• static const char ∗ preview_label = "Preview"

[standard text may be customized at run-time]

• static const char ∗ save_label = "Save"

[standard text may be customized at run-time]

• static const char ∗ show_label = "Show:"

[standard text may be customized at run-time]

• static Fl_File_Sort_F ∗ sort = fl_numericsort

the sort function that is used when loading the contents of a directory.

Related Functions

(Note that these are not member functions.)

• char ∗ fl_dir_chooser (const char ∗message, const char ∗fname, int relative)
• char ∗ fl_file_chooser (const char ∗message, const char ∗pat, const char ∗fname, int relative)
• void fl_file_chooser_callback (void(∗cb)(const char ∗))
• void fl_file_chooser_ok_label (const char ∗l)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

448 Class Documentation

30.27.1 Detailed Description

The Fl_File_Chooser widget displays a standard file selection dialog that supports various selection modes.

Figure 30.12: Fl_File_Chooser

The Fl_File_Chooser class also exports several static values that may be used to localize or customize the
appearance of all file chooser dialogs:

Member Default value
add_favorites_label "Add to Favorites"
all_files_label "All Files (∗)"
custom_filter_label "Custom Filter"
existing_file_label "Please choose an existing file!"
favorites_label "Favorites"
filename_label "Filename:"
filesystems_label "My Computer" (WIN32)

"File Systems" (all others)
manage_favorites_label "Manage Favorites"
new_directory_label "New Directory?"
new_directory_tooltip "Create a new directory."
preview_label "Preview"
save_label "Save"
show_label "Show:"
sort fl_numericsort

The Fl_File_Chooser::sort member specifies the sort function that is used when loading the contents of a
directory and can be customized at run-time.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.27 Fl_File_Chooser Class Reference 449

The Fl_File_Chooser class also exports the Fl_File_Chooser::newButton and Fl_File_-
Chooser::previewButton widgets so that application developers can control their appearance and
use. For more complex customization, consider copying the FLTK file chooser code and changing it
accordingly.

30.27.2 Constructor & Destructor Documentation

30.27.2.1 Fl_File_Chooser::Fl_File_Chooser (const char ∗ pathname, const char ∗ pattern, int
type, const char ∗ title)

The constructor creates the Fl_File_Chooser dialog shown.

The pathname argument can be a directory name or a complete file name (in which case the corresponding
file is highlighted in the list and in the filename input field.)

The pattern argument can be a NULL string or "∗" to list all files, or it can be a series of descriptions and
filter strings separated by tab characters (\t). The format of filters is either "Description text (patterns)" or
just "patterns". A file chooser that provides filters for HTML and image files might look like:

"HTML Files (*.html)\tImage Files (*.{bmp,gif,jpg,png})"

The file chooser will automatically add the "All Files (∗)" pattern to the end of the string you pass if you
do not provide one. The first filter in the string is the default filter.

See the FLTK documentation on fl_filename_match() for the kinds of pattern strings that are supported.

The type argument can be one of the following:

• SINGLE - allows the user to select a single, existing file.

• MULTI - allows the user to select one or more existing files.

• CREATE - allows the user to select a single, existing file or specify a new filename.

• DIRECTORY - allows the user to select a single, existing directory.

The title argument is used to set the title bar text for the Fl_File_Chooser window.

30.27.2.2 Fl_File_Chooser::∼Fl_File_Chooser ()

Destroys the widget and frees all memory used by it.

30.27.3 Member Function Documentation

30.27.3.1 Fl_Widget ∗ Fl_File_Chooser::add_extra (Fl_Widget ∗ gr)

Adds extra widget at the bottom of Fl_File_Chooser window.

Returns pointer for previous extra widget or NULL if not set previously. If argument is NULL only remove
previous extra widget.

Note:

Fl_File_Chooser does not delete extra widget in destructor! To prevent memory leakage, don’t forget
to delete unused extra widgets

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

450 Class Documentation

30.27.3.2 Fl_Color Fl_File_Chooser::color ()

Sets or gets the background color of the Fl_File_Browser list.

30.27.3.3 void Fl_File_Chooser::color (Fl_Color c)

Sets or gets the background color of the Fl_File_Browser list.

30.27.3.4 int Fl_File_Chooser::count ()

Returns the number of selected files.

30.27.3.5 const char ∗ Fl_File_Chooser::directory ()

Sets or gets the current directory.

30.27.3.6 void Fl_File_Chooser::directory (const char ∗ pathname)

Sets or gets the current directory.

30.27.3.7 void Fl_File_Chooser::filter (const char ∗ pattern)

Sets or gets the current filename filter patterns.

The filter patterns use fl_filename_match(). Multiple patterns can be used by separating them with tabs,
like "∗.jpg\t∗.png\t∗.gif\t∗". In addition, you can provide human-readable labels with the
patterns inside parenthesis, like "JPEG Files (∗.jpg)\tPNG Files (∗.png)\tGIF Files
(∗.gif)\tAll Files (∗)" .

Use filter(NULL) to show all files.

30.27.3.8 void Fl_File_Chooser::filter_value (int f)

Sets or gets the current filename filter selection.

30.27.3.9 int Fl_File_Chooser::filter_value ()

Sets or gets the current filename filter selection.

30.27.3.10 void Fl_File_Chooser::hide ()

Hides the Fl_File_Chooser window.

30.27.3.11 uchar Fl_File_Chooser::iconsize ()

Sets or gets the size of the icons in the Fl_File_Browser.

By default the icon size is set to 1.5 times the textsize().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.27 Fl_File_Chooser Class Reference 451

30.27.3.12 void Fl_File_Chooser::iconsize (uchar s)

Sets or gets the size of the icons in the Fl_File_Browser.

By default the icon size is set to 1.5 times the textsize().

30.27.3.13 const char ∗ Fl_File_Chooser::label ()

Sets or gets the title bar text for the Fl_File_Chooser.

30.27.3.14 void Fl_File_Chooser::label (const char ∗ l)

Sets or gets the title bar text for the Fl_File_Chooser.

30.27.3.15 int Fl_File_Chooser::preview () const [inline]

Returns the current state of the preview box.

30.27.3.16 void Fl_File_Chooser::preview (int e)

Enable or disable the preview tile.

1 = enable preview, 0 = disable preview.

30.27.3.17 void Fl_File_Chooser::rescan ()

Reloads the current directory in the Fl_File_Browser.

30.27.3.18 void Fl_File_Chooser::show ()

Shows the Fl_File_Chooser window.

30.27.3.19 Fl_Color Fl_File_Chooser::textcolor ()

Sets or gets the current Fl_File_Browser text color.

30.27.3.20 void Fl_File_Chooser::textcolor (Fl_Color c)

Sets or gets the current Fl_File_Browser text color.

30.27.3.21 Fl_Font Fl_File_Chooser::textfont ()

Sets or gets the current Fl_File_Browser text font.

30.27.3.22 void Fl_File_Chooser::textfont (Fl_Font f)

Sets or gets the current Fl_File_Browser text font.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

452 Class Documentation

30.27.3.23 Fl_Fontsize Fl_File_Chooser::textsize ()

Sets or gets the current Fl_File_Browser text size.

30.27.3.24 void Fl_File_Chooser::textsize (Fl_Fontsize s)

Sets or gets the current Fl_File_Browser text size.

30.27.3.25 int Fl_File_Chooser::type ()

Sets or gets the current type of Fl_File_Chooser.

30.27.3.26 void Fl_File_Chooser::type (int t)

Sets or gets the current type of Fl_File_Chooser.

30.27.3.27 void Fl_File_Chooser::value (const char ∗ pathname)

Sets or gets the current value of the selected file.

In the second form, file is a 1-based index into a list of file names. The number of selected files is
returned by Fl_File_Chooser::count().

This sample code loops through all selected files:

// Get list of filenames user selected from a MULTI chooser
for (int t=1; t<=chooser->count(); t++) {

const char *filename = chooser->value(t);
...

}

30.27.3.28 int Fl_File_Chooser::visible ()

Returns 1 if the Fl_File_Chooser window is visible.

The documentation for this class was generated from the following files:

• Fl_File_Chooser.H
• Fl_File_Chooser.cxx
• Fl_File_Chooser2.cxx
• fl_file_dir.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.28 Fl_File_Icon Class Reference 453

30.28 Fl_File_Icon Class Reference

The Fl_File_Icon class manages icon images that can be used as labels in other widgets and as icons in the
FileBrowser widget.

#include <Fl_File_Icon.H>

Public Types

• enum {

ANY, PLAIN, FIFO, DEVICE,

LINK, DIRECTORY }
• enum {

END, COLOR, LINE, CLOSEDLINE,

POLYGON, OUTLINEPOLYGON, VERTEX }

Public Member Functions

• short ∗ add (short d)
Adds a keyword value to the icon array, returning a pointer to it.

• short ∗ add_color (Fl_Color c)
Adds a color value to the icon array, returning a pointer to it.

• short ∗ add_vertex (float x, float y)
Adds a vertex value to the icon array, returning a pointer to it.

• short ∗ add_vertex (int x, int y)
Adds a vertex value to the icon array, returning a pointer to it.

• void clear ()
Clears all icon data from the icon.

• void draw (int x, int y, int w, int h, Fl_Color ic, int active=1)
Draws an icon in the indicated area.

• Fl_File_Icon (const char ∗p, int t, int nd=0, short ∗d=0)
Creates a new Fl_File_Icon with the specified information.

• void label (Fl_Widget ∗w)
Applies the icon to the widget, registering the Fl_File_Icon label type as needed.

• void load (const char ∗f)
Loads the specified icon image.

• int load_fti (const char ∗fti)
Loads an SGI icon file.

• int load_image (const char ∗i)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

454 Class Documentation

Load an image icon file from an image filename.

• Fl_File_Icon ∗ next ()
Returns next file icon object.

• const char ∗ pattern ()
Returns the filename matching pattern for the icon.

• int size ()
Returns the number of words of data used by the icon.

• int type ()
Returns the filetype associated with the icon, which can be one of the following:.

• short ∗ value ()
Returns the data array for the icon.

• ∼Fl_File_Icon ()
The destructor destroys the icon and frees all memory that has been allocated for it.

Static Public Member Functions

• static Fl_File_Icon ∗ find (const char ∗filename, int filetype=ANY)
Finds an icon that matches the given filename and file type.

• static Fl_File_Icon ∗ first ()
Returns a pointer to the first icon in the list.

• static void labeltype (const Fl_Label ∗o, int x, int y, int w, int h, Fl_Align a)
Draw the icon label.

• static void load_system_icons (void)
Loads all system-defined icons.

30.28.1 Detailed Description

The Fl_File_Icon class manages icon images that can be used as labels in other widgets and as icons in the
FileBrowser widget.

30.28.2 Constructor & Destructor Documentation

30.28.2.1 Fl_File_Icon::Fl_File_Icon (const char ∗ p, int t, int nd = 0, short ∗ d = 0)

Creates a new Fl_File_Icon with the specified information.

Parameters:

← p filename pattern

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.28 Fl_File_Icon Class Reference 455

← t file type

← nd number of data values

← d data values

30.28.3 Member Function Documentation

30.28.3.1 short ∗ Fl_File_Icon::add (short d)

Adds a keyword value to the icon array, returning a pointer to it.

Parameters:

← d data value

30.28.3.2 short∗ Fl_File_Icon::add_color (Fl_Color c) [inline]

Adds a color value to the icon array, returning a pointer to it.

Parameters:

← c color value

30.28.3.3 short∗ Fl_File_Icon::add_vertex (float x, float y) [inline]

Adds a vertex value to the icon array, returning a pointer to it.

The floating point version goes from 0.0 to 1.0. The origin (0.0) is in the lower-lefthand corner of the
icon.

Parameters:

← x,y vertex coordinates

30.28.3.4 short∗ Fl_File_Icon::add_vertex (int x, int y) [inline]

Adds a vertex value to the icon array, returning a pointer to it.

The integer version accepts coordinates from 0 to 10000. The origin (0.0) is in the lower-lefthand corner
of the icon.

Parameters:

← x,y vertex coordinates

30.28.3.5 void Fl_File_Icon::clear () [inline]

Clears all icon data from the icon.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

456 Class Documentation

30.28.3.6 void Fl_File_Icon::draw (int x, int y, int w, int h, Fl_Color ic, int active = 1)

Draws an icon in the indicated area.

Parameters:

← x,y,w,h position and size

← ic icon color

← active status, default is active [non-zero]

30.28.3.7 Fl_File_Icon ∗ Fl_File_Icon::find (const char ∗ filename, int filetype = ANY) [static]

Finds an icon that matches the given filename and file type.

Parameters:

← filename name of file

← filetype enumerated file type

Returns:

matching file icon or NULL

30.28.3.8 static Fl_File_Icon∗ Fl_File_Icon::first () [inline, static]

Returns a pointer to the first icon in the list.

30.28.3.9 void Fl_File_Icon::label (Fl_Widget ∗ w)

Applies the icon to the widget, registering the Fl_File_Icon label type as needed.

Parameters:

← w widget for which this icon will become the label

30.28.3.10 void Fl_File_Icon::labeltype (const Fl_Label ∗ o, int x, int y, int w, int h, Fl_Align a)
[static]

Draw the icon label.

Parameters:

← o label data

← x,y,w,h position and size of label

← a label alignment [not used]

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.28 Fl_File_Icon Class Reference 457

30.28.3.11 void Fl_File_Icon::load (const char ∗ f)

Loads the specified icon image.

The format is deduced from the filename.

Parameters:

← f filename

30.28.3.12 int Fl_File_Icon::load_fti (const char ∗ fti)

Loads an SGI icon file.

Parameters:

← fti icon filename

Returns:

0 on success, non-zero on error

30.28.3.13 int Fl_File_Icon::load_image (const char ∗ ifile)

Load an image icon file from an image filename.

Parameters:

← ifile image filename

Returns:

0 on success, non-zero on error

30.28.3.14 void Fl_File_Icon::load_system_icons (void) [static]

Loads all system-defined icons.

This call is useful when using the FileChooser widget and should be used when the application starts:

Fl_File_Icon::load_system_icons();

30.28.3.15 Fl_File_Icon∗ Fl_File_Icon::next () [inline]

Returns next file icon object.

See Fl_File_Icon::first()

30.28.3.16 const char∗ Fl_File_Icon::pattern () [inline]

Returns the filename matching pattern for the icon.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

458 Class Documentation

30.28.3.17 int Fl_File_Icon::size () [inline]

Returns the number of words of data used by the icon.

30.28.3.18 int Fl_File_Icon::type () [inline]

Returns the filetype associated with the icon, which can be one of the following:.

• Fl_File_Icon::ANY, any kind of file.

• Fl_File_Icon::PLAIN, plain files.

• Fl_File_Icon::FIFO, named pipes.

• Fl_File_Icon::DEVICE, character and block devices.

• Fl_File_Icon::LINK, symbolic links.

• Fl_File_Icon::DIRECTORY, directories.

30.28.3.19 short∗ Fl_File_Icon::value () [inline]

Returns the data array for the icon.

The documentation for this class was generated from the following files:

• Fl_File_Icon.H
• Fl_File_Icon.cxx
• Fl_File_Icon2.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.29 Fl_File_Input Class Reference 459

30.29 Fl_File_Input Class Reference

This widget displays a pathname in a text input field.

#include <Fl_File_Input.H>

Inheritance diagram for Fl_File_Input::

Fl_File_Input

Fl_Input

Fl_Input_

Fl_Widget

Public Member Functions

• void down_box (Fl_Boxtype b)

Sets the box type to use for the navigation bar.

• Fl_Boxtype down_box () const

Gets the box type used for the navigation bar.

• void errorcolor (Fl_Color c)

Sets the current error color to c.

• Fl_Color errorcolor () const

Gets the current error color.

• Fl_File_Input (int X, int Y, int W, int H, const char ∗L=0)

Creates a new Fl_File_Input widget using the given position, size, and label string.

• virtual int handle (int event)

Handle events in the widget.

• const char ∗ value ()

Returns the current value, which is a pointer to an internal buffer and is valid only until the next event is
handled.

• int value (const char ∗str, int len)

Sets the value of the widget given a new string value and its length.

• int value (const char ∗str)

Sets the value of the widget given a new string value.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

460 Class Documentation

Protected Member Functions

• virtual void draw ()

Draws the file input widget.

30.29.1 Detailed Description

This widget displays a pathname in a text input field.

A navigation bar located above the input field allows the user to navigate upward in the directory tree.
You may want to handle FL_WHEN_CHANGED events for tracking text changes and also FL_WHEN_-
RELEASE for button release when changing to parent dir. FL_WHEN_RELEASE callback won’t be called
if the directory clicked is the same that the current one.

Figure 30.13: Fl_File_Input

Note:

As all Fl_Input derived objects, Fl_File_Input may call its callback when loosing focus (see FL_-
UNFOCUS) to update its state like its cursor shape. One resulting side effect is that you should call
clear_changed() early in your callback to avoid reentrant calls if you plan to show another window or
dialog box in the callback.

30.29.2 Constructor & Destructor Documentation

30.29.2.1 Fl_File_Input::Fl_File_Input (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_File_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

30.29.3 Member Function Documentation

30.29.3.1 void Fl_File_Input::down_box (Fl_Boxtype b) [inline]

Sets the box type to use for the navigation bar.

30.29.3.2 Fl_Boxtype Fl_File_Input::down_box () const [inline]

Gets the box type used for the navigation bar.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.29 Fl_File_Input Class Reference 461

30.29.3.3 Fl_Color Fl_File_Input::errorcolor () const [inline]

Gets the current error color.

Todo

Better docs for Fl_File_Input::errorcolor() - is it even used?

30.29.3.4 int Fl_File_Input::handle (int event) [virtual]

Handle events in the widget.

Return non zero if event is handled.

Parameters:

← event

Reimplemented from Fl_Input.

30.29.3.5 int Fl_File_Input::value (const char ∗ str, int len)

Sets the value of the widget given a new string value and its length.

Returns non 0 on success.

Parameters:

← str new string value

← len lengh of value

Reimplemented from Fl_Input_.

30.29.3.6 int Fl_File_Input::value (const char ∗ str)

Sets the value of the widget given a new string value.

Returns non 0 on success.

Parameters:

← str new string value

Reimplemented from Fl_Input_.

The documentation for this class was generated from the following files:

• Fl_File_Input.H
• Fl_File_Input.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

462 Class Documentation

30.30 Fl_Fill_Dial Class Reference

Draws a dial with a filled arc.

#include <Fl_Fill_Dial.H>

Inheritance diagram for Fl_Fill_Dial::

Fl_Fill_Dial

Fl_Dial

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Fill_Dial (int x, int y, int w, int h, const char ∗l=0)
Creates a filled dial, also setting its type to FL_FILL_DIAL.

30.30.1 Detailed Description

Draws a dial with a filled arc.

30.30.2 Constructor & Destructor Documentation

30.30.2.1 Fl_Fill_Dial::Fl_Fill_Dial (int x, int y, int w, int h, const char ∗ l = 0) [inline]

Creates a filled dial, also setting its type to FL_FILL_DIAL.

The documentation for this class was generated from the following file:

• Fl_Fill_Dial.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.31 Fl_Fill_Slider Class Reference 463

30.31 Fl_Fill_Slider Class Reference

Widget that draws a filled horizontal slider, useful as a progress or value meter.

#include <Fl_Fill_Slider.H>

Inheritance diagram for Fl_Fill_Slider::

Fl_Fill_Slider

Fl_Slider

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Fill_Slider (int x, int y, int w, int h, const char ∗l=0)
Creates the slider from its position,size and optional title.

30.31.1 Detailed Description

Widget that draws a filled horizontal slider, useful as a progress or value meter.

30.31.2 Constructor & Destructor Documentation

30.31.2.1 Fl_Fill_Slider::Fl_Fill_Slider (int x, int y, int w, int h, const char ∗ l = 0) [inline]

Creates the slider from its position,size and optional title.

The documentation for this class was generated from the following file:

• Fl_Fill_Slider.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

464 Class Documentation

30.32 Fl_Float_Input Class Reference

The Fl_Float_Input class is a subclass of Fl_Input that only allows the user to type floating point numbers
(sign, digits, decimal point, more digits, ’E’ or ’e’, sign, digits).

#include <Fl_Float_Input.H>

Inheritance diagram for Fl_Float_Input::

Fl_Float_Input

Fl_Input

Fl_Input_

Fl_Widget

Public Member Functions

• Fl_Float_Input (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Float_Input widget using the given position, size, and label string.

30.32.1 Detailed Description

The Fl_Float_Input class is a subclass of Fl_Input that only allows the user to type floating point numbers
(sign, digits, decimal point, more digits, ’E’ or ’e’, sign, digits).

30.32.2 Constructor & Destructor Documentation

30.32.2.1 Fl_Float_Input::Fl_Float_Input (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Float_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Inherited destructor destroys the widget and any value associated with it

The documentation for this class was generated from the following file:

• Fl_Float_Input.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.33 Fl_Font_Descriptor Class Reference 465

30.33 Fl_Font_Descriptor Class Reference

This a structure for an actual system font, with junk to help choose it and info on character sizes.

#include <Fl_Font.H>

Public Attributes

• Fl_Font_Descriptor ∗ next
linked list for this Fl_Fontdesc

30.33.1 Detailed Description

This a structure for an actual system font, with junk to help choose it and info on character sizes.

Each Fl_Fontdesc has a linked list of these. These are created the first time each system font/size combi-
nation is used.

The documentation for this class was generated from the following file:

• Fl_Font.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

466 Class Documentation

30.34 Fl_FormsBitmap Class Reference

Forms compatibility Bitmap Image Widget.

#include <Fl_FormsBitmap.H>

Inheritance diagram for Fl_FormsBitmap::

Fl_FormsBitmap

Fl_Widget

Public Member Functions

• Fl_Bitmap ∗ bitmap () const

Gets a the current associated Fl_Bitmap objects.

• void bitmap (Fl_Bitmap ∗B)

Sets a new bitmap.

• Fl_FormsBitmap (Fl_Boxtype, int, int, int, int, const char ∗=0)

Creates a bitmap widget from a box type, position, size and optional label specification.

• void set (int W, int H, const uchar ∗bits)

Sets a new bitmap bits with size W,H.

Protected Member Functions

• void draw ()

Draws the bitmap and its associated box.

30.34.1 Detailed Description

Forms compatibility Bitmap Image Widget.

30.34.2 Member Function Documentation

30.34.2.1 Fl_Bitmap∗ Fl_FormsBitmap::bitmap () const [inline]

Gets a the current associated Fl_Bitmap objects.

30.34.2.2 void Fl_FormsBitmap::bitmap (Fl_Bitmap ∗ B) [inline]

Sets a new bitmap.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.34 Fl_FormsBitmap Class Reference 467

30.34.2.3 void Fl_FormsBitmap::draw (void) [protected, virtual]

Draws the bitmap and its associated box.

Implements Fl_Widget.

30.34.2.4 void Fl_FormsBitmap::set (int W, int H, const uchar ∗ bits)

Sets a new bitmap bits with size W,H.

Deletes the previous one.

The documentation for this class was generated from the following files:

• Fl_FormsBitmap.H
• forms_bitmap.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

468 Class Documentation

30.35 Fl_FormsPixmap Class Reference

Forms pixmap drawing routines.

#include <Fl_FormsPixmap.H>

Inheritance diagram for Fl_FormsPixmap::

Fl_FormsPixmap

Fl_Widget

Public Member Functions

• Fl_FormsPixmap (Fl_Boxtype t, int X, int Y, int W, int H, const char ∗L=0)

Creates a new Fl_FormsPixmap widget using the given box type, position, size and label string.

• Fl_Pixmap ∗ Pixmap () const

Get the internal pixmap pointer.

• void Pixmap (Fl_Pixmap ∗B)

Set the internal pixmap pointer to an existing pixmap.

• void set (char ∗const ∗bits)

Set/create the internal pixmap using raw data.

Protected Member Functions

• void draw ()

Draws the widget.

30.35.1 Detailed Description

Forms pixmap drawing routines.

30.35.2 Constructor & Destructor Documentation

30.35.2.1 Fl_FormsPixmap::Fl_FormsPixmap (Fl_Boxtype t, int X, int Y, int W, int H, const
char ∗ L = 0)

Creates a new Fl_FormsPixmap widget using the given box type, position, size and label string.

Parameters:

← t box type

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.35 Fl_FormsPixmap Class Reference 469

← X,Y,W,H position and size

← L widget label, default is no label

30.35.3 Member Function Documentation

30.35.3.1 void Fl_FormsPixmap::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.35.3.2 Fl_Pixmap∗ Fl_FormsPixmap::Pixmap () const [inline]

Get the internal pixmap pointer.

30.35.3.3 void Fl_FormsPixmap::Pixmap (Fl_Pixmap ∗ B) [inline]

Set the internal pixmap pointer to an existing pixmap.

Parameters:

← B existing pixmap

30.35.3.4 void Fl_FormsPixmap::set (char ∗const ∗ bits)

Set/create the internal pixmap using raw data.

Parameters:

← bits raw data

The documentation for this class was generated from the following files:

• Fl_FormsPixmap.H
• forms_pixmap.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

470 Class Documentation

30.36 Fl_Free Class Reference

Emulation of the Forms "free" widget.

#include <Fl_Free.H>

Inheritance diagram for Fl_Free::

Fl_Free

Fl_Widget

Public Member Functions

• Fl_Free (uchar t, int X, int Y, int W, int H, const char ∗L, FL_HANDLEPTR hdl)

Create a new Fl_Free widget with type, position, size, label and handler.

• int handle (int e)

Handles the specified event.

• ∼Fl_Free ()

The destructor will call the handle function with the event FL_FREE_MEM.

Protected Member Functions

• void draw ()

Draws the widget.

30.36.1 Detailed Description

Emulation of the Forms "free" widget.

This emulation allows the free demo to run, and appears to be useful for porting programs written in Forms
which use the free widget or make subclasses of the Forms widgets.

There are five types of free, which determine when the handle function is called:

• FL_NORMAL_FREE normal event handling.

• FL_SLEEPING_FREE deactivates event handling (widget is inactive).

• FL_INPUT_FREE accepts FL_FOCUS events.

• FL_CONTINUOUS_FREE sets a timeout callback 100 times a second and provides an FL_STEP
event. This has obvious detrimental effects on machine performance.

• FL_ALL_FREE same as FL_INPUT_FREE and FL_CONTINUOUS_FREE.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.36 Fl_Free Class Reference 471

30.36.2 Constructor & Destructor Documentation

30.36.2.1 Fl_Free::Fl_Free (uchar t, int X, int Y, int W, int H, const char ∗ L, FL_HANDLEPTR
hdl)

Create a new Fl_Free widget with type, position, size, label and handler.

Parameters:

← t type

← X,Y,W,H position and size

← L widget label

← hdl handler function

The constructor takes both the type and the handle function. The handle function should be declared as
follows:

int handle_function(Fl_Widget *w,
int event,
float event_x,
float event_y,
char key)

This function is called from the handle() method in response to most events, and is called by the draw()
method.

The event argument contains the event type:

// old event names for compatibility:
#define FL_MOUSE FL_DRAG
#define FL_DRAW 0
#define FL_STEP 9
#define FL_FREEMEM 12
#define FL_FREEZE FL_UNMAP
#define FL_THAW FL_MAP

30.36.3 Member Function Documentation

30.36.3.1 void Fl_Free::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

472 Class Documentation

30.36.3.2 int Fl_Free::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

The documentation for this class was generated from the following files:

• Fl_Free.H
• forms_free.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.37 Fl_GDI_Graphics_Driver Class Reference 473

30.37 Fl_GDI_Graphics_Driver Class Reference

The MSWindows-specific graphics class.

#include <Fl_Device.H>

Inheritance diagram for Fl_GDI_Graphics_Driver::

Fl_GDI_Graphics_Driver

Fl_Graphics_Driver

Fl_Device

Public Member Functions

• void draw (Fl_RGB_Image ∗img, int XP, int YP, int WP, int HP, int cx, int cy)

Draws an Fl_RGB_Image object to the device.

• void draw (Fl_Bitmap ∗pxm, int XP, int YP, int WP, int HP, int cx, int cy)

Draws an Fl_Bitmap object to the device.

• void draw (Fl_Pixmap ∗pxm, int XP, int YP, int WP, int HP, int cx, int cy)

Draws an Fl_Pixmap object to the device.

• Fl_GDI_Graphics_Driver ()

The constructor.

Static Public Attributes

• static const char ∗ device_type = "Fl_GDI_Graphics_Driver"

A string that identifies each subclass of Fl_Device.

30.37.1 Detailed Description

The MSWindows-specific graphics class.

This class is implemented only on the MSWindows platform.

30.37.2 Constructor & Destructor Documentation

30.37.2.1 Fl_GDI_Graphics_Driver::Fl_GDI_Graphics_Driver () [inline]

The constructor.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

474 Class Documentation

30.37.3 Member Function Documentation

30.37.3.1 void Fl_GDI_Graphics_Driver::draw (Fl_RGB_Image ∗ rgb, int XP, int YP, int WP,
int HP, int cx, int cy) [virtual]

Draws an Fl_RGB_Image object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented from Fl_Graphics_Driver.

30.37.3.2 void Fl_GDI_Graphics_Driver::draw (Fl_Bitmap ∗ bm, int XP, int YP, int WP, int HP,
int cx, int cy) [virtual]

Draws an Fl_Bitmap object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented from Fl_Graphics_Driver.

30.37.3.3 void Fl_GDI_Graphics_Driver::draw (Fl_Pixmap ∗ pxm, int XP, int YP, int WP, int
HP, int cx, int cy) [virtual]

Draws an Fl_Pixmap object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented from Fl_Graphics_Driver.

30.37.4 Member Data Documentation

30.37.4.1 const char ∗ Fl_GDI_Graphics_Driver::device_type = "Fl_GDI_Graphics_Driver"
[static]

A string that identifies each subclass of Fl_Device.

Function type() applied to a device of this class returns this string.

Reimplemented from Fl_Graphics_Driver.

The documentation for this class was generated from the following files:

• Fl_Device.H
• Fl_Device.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.38 Fl_GIF_Image Class Reference 475

30.38 Fl_GIF_Image Class Reference

The Fl_GIF_Image class supports loading, caching, and drawing of Compuserve GIFSM images.

#include <Fl_GIF_Image.H>

Inheritance diagram for Fl_GIF_Image::

Fl_GIF_Image

Fl_Pixmap

Fl_Image

Public Member Functions

• Fl_GIF_Image (const char ∗filename)
The constructor loads the named GIF image.

30.38.1 Detailed Description

The Fl_GIF_Image class supports loading, caching, and drawing of Compuserve GIFSM images.

The class loads the first image and supports transparency.

30.38.2 Constructor & Destructor Documentation

30.38.2.1 Fl_GIF_Image::Fl_GIF_Image (const char ∗ infname)

The constructor loads the named GIF image.

The inherited destructor free all memory and server resources that are used by the image.

The documentation for this class was generated from the following files:

• Fl_GIF_Image.H
• Fl_GIF_Image.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

476 Class Documentation

30.39 Fl_Gl_Window Class Reference

The Fl_Gl_Window widget sets things up so OpenGL works.

#include <Fl_Gl_Window.H>

Inheritance diagram for Fl_Gl_Window::

Fl_Gl_Window

Fl_Window

Fl_Group

Fl_Widget

Fl_Glut_Window

Public Member Functions

• virtual Fl_Gl_Window ∗ as_gl_window ()
Returns an Fl_Gl_Window pointer if this widget is an Fl_Gl_Window.

• int can_do ()
Returns non-zero if the hardware supports the given or current OpenGL mode.

• int can_do_overlay ()
Returns true if the hardware overlay is possible.

• void context (void ∗, int destroy_flag=0)
Returns or sets a pointer to the GLContext that this window is using.

• void ∗ context () const
void See void context(void∗ v, int destroy_flag)

• void context_valid (char v)
See char Fl_Gl_Window::context_valid() const.

• char context_valid () const
Will only be set if the OpenGL context is created or recreated.

• Fl_Gl_Window (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Gl_Window widget using the given position, size, and label string.

• Fl_Gl_Window (int W, int H, const char ∗l=0)
Creates a new Fl_Gl_Window widget using the given size, and label string.

• void flush ()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.39 Fl_Gl_Window Class Reference 477

Forces the window to be drawn, this window is also made current and calls draw().

• int handle (int)
Handle some FLTK events as needed.

• void hide ()
Hides the window and destroys the OpenGL context.

• void hide_overlay ()
Hides the window if it is not this window, does nothing in WIN32.

• void invalidate ()
The invalidate() method turns off valid() and is equivalent to calling value(0).

• void make_current ()
The make_current() method selects the OpenGL context for the widget.

• void make_overlay_current ()
The make_overlay_current() method selects the OpenGL context for the widget’s overlay.

• int mode (const int ∗a)
See Fl_Mode mode() const.

• int mode (int a)
See Fl_Mode mode() const.

• Fl_Mode mode () const
Set or change the OpenGL capabilites of the window.

• void ortho ()
Sets the projection so 0,0 is in the lower left of the window and each pixel is 1 unit wide/tall.

• void redraw_overlay ()
This method causes draw_overlay() to be called at a later time.

• void resize (int, int, int, int)
Changes the size and position of the window.

• void show (int a, char ∗∗b)
Puts the window on the screen and parses command-line arguments.

• void show ()
Puts the window on the screen.

• void swap_buffers ()
The swap_buffers() method swaps the back and front buffers.

• void valid (char v)
See char Fl_Gl_Window::valid() const.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

478 Class Documentation

• char valid () const
Is turned off when FLTK creates a new context for this window or when the window resizes, and is turned
on after draw() is called.

• ∼Fl_Gl_Window ()
The destructor removes the widget and destroys the OpenGL context associated with it.

Static Public Member Functions

• static int can_do (const int ∗m)
Returns non-zero if the hardware supports the given or current OpenGL mode.

• static int can_do (int m)
Returns non-zero if the hardware supports the given or current OpenGL mode.

Protected Member Functions

• virtual void draw ()
Draws the Fl_Gl_Window.

Friends

• class _Fl_Gl_Overlay

30.39.1 Detailed Description

The Fl_Gl_Window widget sets things up so OpenGL works.

It also keeps an OpenGL "context" for that window, so that changes to the lighting and projection may be
reused between redraws. Fl_Gl_Window also flushes the OpenGL streams and swaps buffers after draw()
returns.

OpenGL hardware typically provides some overlay bit planes, which are very useful for drawing UI con-
trols atop your 3D graphics. If the overlay hardware is not provided, FLTK tries to simulate the overlay.
This works pretty well if your graphics are double buffered, but not very well for single-buffered.

Please note that the FLTK drawing and clipping functions will not work inside an Fl_Gl_Window. All
drawing should be done using OpenGL calls exclusively. Even though Fl_Gl_Window is derived from
Fl_Group, it is not useful to add other FLTK Widgets as children, unless those widgets are modified to
draw using OpenGL calls.

30.39.2 Constructor & Destructor Documentation

30.39.2.1 Fl_Gl_Window::Fl_Gl_Window (int W, int H, const char ∗ l = 0) [inline]

Creates a new Fl_Gl_Window widget using the given size, and label string.

The default boxtype is FL_NO_BOX. The default mode is FL_RGB|FL_DOUBLE|FL_DEPTH.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.39 Fl_Gl_Window Class Reference 479

30.39.2.2 Fl_Gl_Window::Fl_Gl_Window (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Gl_Window widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX. The default mode is FL_RGB|FL_DOUBLE|FL_DEPTH.

30.39.3 Member Function Documentation

30.39.3.1 virtual Fl_Gl_Window∗ Fl_Gl_Window::as_gl_window () [inline, virtual]

Returns an Fl_Gl_Window pointer if this widget is an Fl_Gl_Window.

Return values:

NULL if this widget is not derived from Fl_Gl_Window.

Note:

This method is provided to avoid dynamic_cast.

Todo

More documentation ...

Reimplemented from Fl_Widget.

30.39.3.2 int Fl_Gl_Window::can_do () [inline]

Returns non-zero if the hardware supports the given or current OpenGL mode.

30.39.3.3 static int Fl_Gl_Window::can_do (const int ∗ m) [inline, static]

Returns non-zero if the hardware supports the given or current OpenGL mode.

30.39.3.4 static int Fl_Gl_Window::can_do (int m) [inline, static]

Returns non-zero if the hardware supports the given or current OpenGL mode.

30.39.3.5 int Fl_Gl_Window::can_do_overlay ()

Returns true if the hardware overlay is possible.

If this is false, FLTK will try to simulate the overlay, with significant loss of update speed. Calling this will
cause FLTK to open the display.

30.39.3.6 void Fl_Gl_Window::context (void ∗ v, int destroy_flag = 0)

Returns or sets a pointer to the GLContext that this window is using.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

480 Class Documentation

This is a system-dependent structure, but it is portable to copy the context from one window to another.
You can also set it to NULL, which will force FLTK to recreate the context the next time make_current()
is called, this is useful for getting around bugs in OpenGL implementations.

If destroy_flag is true the context will be destroyed by fltk when the window is destroyed, or when the
mode() is changed, or the next time context(x) is called.

30.39.3.7 char Fl_Gl_Window::context_valid () const [inline]

Will only be set if the OpenGL context is created or recreated.

It differs from Fl_Gl_Window::valid() which is also set whenever the context changes size.

30.39.3.8 void Fl_Gl_Window::draw (void) [protected, virtual]

Draws the Fl_Gl_Window.

You must subclass Fl_Gl_Window and provide an implementation for draw().

You must override the draw() method.

You may also provide an implementation of draw_overlay() if you want to draw into the overlay planes.
You can avoid reinitializing the viewport and lights and other things by checking valid() at the start of
draw() and only doing the initialization if it is false.

The draw() method can only use OpenGL calls. Do not attempt to call X, any of the functions in <FL/fl_-
draw.H>, or glX directly. Do not call gl_start() or gl_finish().

If double-buffering is enabled in the window, the back and front buffers are swapped after this function is
completed.

Reimplemented from Fl_Window.

Reimplemented in Fl_Glut_Window.

30.39.3.9 void Fl_Gl_Window::flush () [virtual]

Forces the window to be drawn, this window is also made current and calls draw().

Reimplemented from Fl_Window.

30.39.3.10 void Fl_Gl_Window::hide_overlay ()

Hides the window if it is not this window, does nothing in WIN32.

30.39.3.11 void Fl_Gl_Window::make_current ()

The make_current() method selects the OpenGL context for the widget.

It is called automatically prior to the draw() method being called and can also be used to implement feed-
back and/or selection within the handle() method.

Reimplemented from Fl_Window.

Reimplemented in Fl_Glut_Window.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.39 Fl_Gl_Window Class Reference 481

30.39.3.12 void Fl_Gl_Window::make_overlay_current ()

The make_overlay_current() method selects the OpenGL context for the widget’s overlay.

It is called automatically prior to the draw_overlay() method being called and can also be used to implement
feedback and/or selection within the handle() method.

30.39.3.13 Fl_Mode Fl_Gl_Window::mode () const [inline]

Set or change the OpenGL capabilites of the window.

The value can be any of the following OR’d together:

• FL_RGB - RGB color (not indexed)

• FL_RGB8 - RGB color with at least 8 bits of each color

• FL_INDEX - Indexed mode

• FL_SINGLE - not double buffered

• FL_DOUBLE - double buffered

• FL_ACCUM - accumulation buffer

• FL_ALPHA - alpha channel in color

• FL_DEPTH - depth buffer

• FL_STENCIL - stencil buffer

• FL_MULTISAMPLE - multisample antialiasing

FL_RGB and FL_SINGLE have a value of zero, so they are "on" unless you give FL_INDEX or FL_-
DOUBLE.

If the desired combination cannot be done, FLTK will try turning off FL_MULTISAMPLE. If this also
fails the show() will call Fl::error() and not show the window.

You can change the mode while the window is displayed. This is most useful for turning double-buffering
on and off. Under X this will cause the old X window to be destroyed and a new one to be created. If
this is a top-level window this will unfortunately also cause the window to blink, raise to the top, and be
de-iconized, and the xid() will change, possibly breaking other code. It is best to make the GL window a
child of another window if you wish to do this!

mode() must not be called within draw() since it changes the current context.

30.39.3.14 void Fl_Gl_Window::ortho ()

Sets the projection so 0,0 is in the lower left of the window and each pixel is 1 unit wide/tall.

If you are drawing 2D images, your draw() method may want to call this if valid() is false.

30.39.3.15 void Fl_Gl_Window::redraw_overlay ()

This method causes draw_overlay() to be called at a later time.

Initially the overlay is clear. If you want the window to display something in the overlay when it first
appears, you must call this immediately after you show() your window.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

482 Class Documentation

30.39.3.16 void Fl_Gl_Window::resize (int, int, int, int) [virtual]

Changes the size and position of the window.

If shown() is true, these changes are communicated to the window server (which may refuse that size and
cause a further resize). If shown() is false, the size and position are used when show() is called. See
Fl_Group for the effect of resizing on the child widgets.

You can also call the Fl_Widget methods size(x,y) and position(w,h), which are inline wrappers for this
virtual function.

A top-level window can not force, but merely suggest a position and size to the operating system. The
window manager may not be willing or able to display a window at the desired position or with the given
dimensions. It is up to the application developer to verify window parameters after the resize request.

Reimplemented from Fl_Window.

30.39.3.17 void Fl_Gl_Window::show (int argc, char ∗∗ argv) [inline]

Puts the window on the screen and parses command-line arguments.

Usually (on X) this has the side effect of opening the display.

This form should be used for top-level windows, at least for the first (main) window. It allows standard
arguments to be parsed from the command-line. You can use argc and argv from main(int argc, char
∗∗argv) for this call.

The first call also sets up some system-specific internal variables like the system colors.

Todo

explain which system parameters are set up.

Parameters:

argc command-line argument count, usually from main()
argv command-line argument vector, usually from main()

See also:

virtual void Fl_Window::show()

Reimplemented from Fl_Window.

30.39.3.18 void Fl_Gl_Window::show () [virtual]

Puts the window on the screen.

Usually (on X) this has the side effect of opening the display.

If the window is already shown then it is restored and raised to the top. This is really convenient because
your program can call show() at any time, even if the window is already up. It also means that show()
serves the purpose of raise() in other toolkits.

Fl_Window::show(int argc, char ∗∗argv) is used for top-level windows and allows standard arguments to
be parsed from the command-line.

See also:

Fl_Window::show(int argc, char ∗∗argv)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.39 Fl_Gl_Window Class Reference 483

Reimplemented from Fl_Window.

30.39.3.19 void Fl_Gl_Window::swap_buffers ()

The swap_buffers() method swaps the back and front buffers.

It is called automatically after the draw() method is called.

30.39.3.20 char Fl_Gl_Window::valid () const [inline]

Is turned off when FLTK creates a new context for this window or when the window resizes, and is turned
on after draw() is called.

You can use this inside your draw() method to avoid unnecessarily initializing the OpenGL context. Just
do this:

void mywindow::draw() {
if (!valid()) {

glViewport(0,0,w(),h());
glFrustum(...);
...other initialization...

}
if (!context_valid()) {

...load textures, etc. ...
}
... draw your geometry here ...

}

You can turn valid() on by calling valid(1). You should only do this after fixing the transformation inside a
draw() or after make_current(). This is done automatically after draw() returns.

The documentation for this class was generated from the following files:

• Fl_Gl_Window.H
• Fl_Gl_Overlay.cxx
• Fl_Gl_Window.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

484 Class Documentation

30.40 Fl_Glut_Bitmap_Font Struct Reference

fltk glut font/size attributes used in the glutXXX functions

#include <glut.H>

Public Attributes

• Fl_Font font
• Fl_Fontsize size

30.40.1 Detailed Description

fltk glut font/size attributes used in the glutXXX functions

The documentation for this struct was generated from the following file:

• glut.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.41 Fl_Glut_Window Class Reference 485

30.41 Fl_Glut_Window Class Reference

GLUT is emulated using this window class and these static variables (plus several more static variables
hidden in glut_compatability.cxx):.

#include <glut.H>

Inheritance diagram for Fl_Glut_Window::

Fl_Glut_Window

Fl_Gl_Window

Fl_Window

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Glut_Window (int x, int y, int w, int h, const char ∗)
Creates a glut window, registers to the glut windows list.

• Fl_Glut_Window (int w, int h, const char ∗)
Creates a glut window, registers to the glut windows list.

• void make_current ()
The make_current() method selects the OpenGL context for the widget.

• ∼Fl_Glut_Window ()
Destroys the glut window, first unregister it from the glut windows list.

Public Attributes

• void(∗ display)()
• void(∗ entry)(int)
• void(∗ keyboard)(uchar, int x, int y)
• int menu [3]
• void(∗ motion)(int x, int y)
• void(∗ mouse)(int b, int state, int x, int y)
• int number
• void(∗ overlaydisplay)()
• void(∗ passivemotion)(int x, int y)
• void(∗ reshape)(int w, int h)
• void(∗ special)(int, int x, int y)
• void(∗ visibility)(int)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

486 Class Documentation

Protected Member Functions

• void draw ()

Draws the Fl_Gl_Window.

• void draw_overlay ()

You must implement this virtual function if you want to draw into the overlay.

• int handle (int)

Handle some FLTK events as needed.

30.41.1 Detailed Description

GLUT is emulated using this window class and these static variables (plus several more static variables
hidden in glut_compatability.cxx):.

30.41.2 Constructor & Destructor Documentation

30.41.2.1 Fl_Glut_Window::Fl_Glut_Window (int W, int H, const char ∗ t)

Creates a glut window, registers to the glut windows list.

30.41.2.2 Fl_Glut_Window::Fl_Glut_Window (int X, int Y, int W, int H, const char ∗ t)

Creates a glut window, registers to the glut windows list.

30.41.3 Member Function Documentation

30.41.3.1 void Fl_Glut_Window::draw (void) [protected, virtual]

Draws the Fl_Gl_Window.

You must subclass Fl_Gl_Window and provide an implementation for draw().

You must override the draw() method.

You may also provide an implementation of draw_overlay() if you want to draw into the overlay planes.
You can avoid reinitializing the viewport and lights and other things by checking valid() at the start of
draw() and only doing the initialization if it is false.

The draw() method can only use OpenGL calls. Do not attempt to call X, any of the functions in <FL/fl_-
draw.H>, or glX directly. Do not call gl_start() or gl_finish().

If double-buffering is enabled in the window, the back and front buffers are swapped after this function is
completed.

Reimplemented from Fl_Gl_Window.

30.41.3.2 void Fl_Glut_Window::draw_overlay () [protected, virtual]

You must implement this virtual function if you want to draw into the overlay.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.41 Fl_Glut_Window Class Reference 487

The overlay is cleared before this is called. You should draw anything that is not clear using OpenGL. You
must use gl_color(i) to choose colors (it allocates them from the colormap using system-specific calls),
and remember that you are in an indexed OpenGL mode and drawing anything other than flat-shaded will
probably not work.

Both this function and Fl_Gl_Window::draw() should check Fl_Gl_Window::valid() and set the same trans-
formation. If you don’t your code may not work on other systems. Depending on the OS, and on whether
overlays are real or simulated, the OpenGL context may be the same or different between the overlay and
main window.

Reimplemented from Fl_Gl_Window.

30.41.3.3 void Fl_Glut_Window::make_current ()

The make_current() method selects the OpenGL context for the widget.

It is called automatically prior to the draw() method being called and can also be used to implement feed-
back and/or selection within the handle() method.

Reimplemented from Fl_Gl_Window.

The documentation for this class was generated from the following files:

• glut.H
• glut_compatability.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

488 Class Documentation

30.42 Fl_Graphics_Driver Class Reference

A virtual class subclassed for each graphics driver FLTK uses.

#include <Fl_Device.H>

Inheritance diagram for Fl_Graphics_Driver::

Fl_Graphics_Driver

Fl_Device

Fl_GDI_Graphics_Driver Fl_PostScript_Graphics_Driver Fl_Quartz_Graphics_Driver Fl_Xlib_Graphics_Driver

Public Member Functions

• virtual ∼Fl_Graphics_Driver ()

The destructor.

Static Public Attributes

• static const char ∗ device_type = "Fl_Graphics_Driver"

A string that identifies each subclass of Fl_Device.

Protected Member Functions

• virtual void arc (int x, int y, int w, int h, double a1, double a2)

see fl_arc(int x, int y, int w, int h, double a1, double a2).

• virtual void arc (double x, double y, double r, double start, double end)

see fl_arc(double x, double y, double r, double start, double end).

• virtual void begin_complex_polygon ()

see fl_begin_complex_polygon().

• virtual void begin_line ()

see fl_begin_line().

• virtual void begin_loop ()

see fl_begin_loop().

• virtual void begin_points ()

see fl_begin_points().

• virtual void begin_polygon ()

see fl_begin_polygon().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.42 Fl_Graphics_Driver Class Reference 489

• virtual void circle (double x, double y, double r)
see fl_circle(double x, double y, double r).

• virtual int clip_box (int x, int y, int w, int h, int &X, int &Y, int &W, int &H)
see fl_clip_box(int x, int y, int w, int h, int &X, int &Y, int &W, int &H).

• virtual void color (uchar r, uchar g, uchar b)
see fl_color(uchar r, uchar g, uchar b).

• virtual void color (Fl_Color c)
see fl_color(Fl_Color c).

• virtual void curve (double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3,
double Y3)

see fl_curve(double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3, double Y3).

• virtual void draw (Fl_Bitmap ∗bm, int XP, int YP, int WP, int HP, int cx, int cy)
Draws an Fl_Bitmap object to the device.

• virtual void draw (Fl_Pixmap ∗pxm, int XP, int YP, int WP, int HP, int cx, int cy)
Draws an Fl_Pixmap object to the device.

• virtual void draw (Fl_RGB_Image ∗rgb, int XP, int YP, int WP, int HP, int cx, int cy)
Draws an Fl_RGB_Image object to the device.

• virtual void draw (int angle, const char ∗str, int n, int x, int y)
see fl_draw(int angle, const char ∗str, int n, int x, int y).

• virtual void draw (const char ∗str, int n, int x, int y)
see fl_draw(const char ∗str, int n, int x, int y).

• virtual void draw_image (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int H, int D=3)
see fl_draw_image(Fl_Draw_Image_Cb cb, void∗ data, int X,int Y,int W,int H, int D).

• virtual void draw_image (const uchar ∗buf, int X, int Y, int W, int H, int D=3, int L=0)
see fl_draw_image(const uchar∗ buf, int X,int Y,int W,int H, int D, int L).

• virtual void draw_image_mono (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int H, int
D=1)

see fl_draw_image_mono(Fl_Draw_Image_Cb cb, void∗ data, int X,int Y,int W,int H, int D).

• virtual void draw_image_mono (const uchar ∗buf, int X, int Y, int W, int H, int D=1, int L=0)
see fl_draw_image_mono(const uchar∗ buf, int X,int Y,int W,int H, int D, int L).

• virtual void end_complex_polygon ()
see fl_end_complex_polygon().

• virtual void end_line ()
see fl_end_line().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

490 Class Documentation

• virtual void end_loop ()
see fl_end_loop().

• virtual void end_points ()
see fl_end_points().

• virtual void end_polygon ()
see fl_end_polygon().

• Fl_Graphics_Driver ()
The constructor.

• virtual void font (Fl_Font face, Fl_Fontsize size)
see fl_font(Fl_Font face, Fl_Fontsize size).

• virtual void gap ()
see fl_gap().

• virtual void line (int x, int y, int x1, int y1, int x2, int y2)
see fl_line(int x, int y, int x1, int y1, int x2, int y2).

• virtual void line (int x, int y, int x1, int y1)
see fl_line(int x, int y, int x1, int y1).

• virtual void line_style (int style, int width=0, char ∗dashes=0)
see fl_line_style(int style, int width, char∗ dashes).

• virtual void loop (int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3)
see fl_loop(int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3).

• virtual void loop (int x0, int y0, int x1, int y1, int x2, int y2)
see fl_loop(int x0, int y0, int x1, int y1, int x2, int y2).

• virtual int not_clipped (int x, int y, int w, int h)
see fl_not_clipped(int x, int y, int w, int h).

• virtual void pie (int x, int y, int w, int h, double a1, double a2)
see fl_pie(int x, int y, int w, int h, double a1, double a2).

• virtual void point (int x, int y)
see fl_point(int x, int y).

• virtual void polygon (int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3)
see fl_polygon(int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3).

• virtual void polygon (int x0, int y0, int x1, int y1, int x2, int y2)
see fl_polygon(int x0, int y0, int x1, int y1, int x2, int y2).

• virtual void pop_clip ()
see fl_pop_clip().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.42 Fl_Graphics_Driver Class Reference 491

• virtual void push_clip (int x, int y, int w, int h)
see fl_push_clip(int x, int y, int w, int h).

• virtual void push_no_clip ()
see fl_push_no_clip().

• virtual void rect (int x, int y, int w, int h)
see fl_rect(int x, int y, int w, int h).

• virtual void rectf (int x, int y, int w, int h)
see fl_rectf(int x, int y, int w, int h).

• virtual void rtl_draw (const char ∗str, int n, int x, int y)
see fl_rtl_draw(const char ∗str, int n, int x, int y).

• virtual void transformed_vertex (double xf, double yf)
see fl_transformed_vertex(double xf, double yf).

• virtual void vertex (double x, double y)
see fl_vertex(double x, double y).

• virtual void xyline (int x, int y, int x1, int y2, int x3)
see fl_xyline(int x, int y, int x1, int y2, int x3).

• virtual void xyline (int x, int y, int x1, int y2)
see fl_xyline(int x, int y, int x1, int y2).

• virtual void xyline (int x, int y, int x1)
see fl_xyline(int x, int y, int x1).

• virtual void yxline (int x, int y, int y1, int x2, int y3)
see fl_yxline(int x, int y, int y1, int x2, int y3).

• virtual void yxline (int x, int y, int y1, int x2)
see fl_yxline(int x, int y, int y1, int x2).

• virtual void yxline (int x, int y, int y1)
see fl_yxline(int x, int y, int y1).

Friends

• void fl_arc (int x, int y, int w, int h, double a1, double a2)
Draw ellipse sections using integer coordinates.

• void fl_arc (double x, double y, double r, double start, double end)
Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using scale
and rotate before calling fl_arc().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

492 Class Documentation

• void fl_begin_complex_polygon ()
Starts drawing a complex filled polygon.

• void fl_begin_line ()
Starts drawing a list of lines.

• void fl_begin_loop ()
Starts drawing a closed sequence of lines.

• void fl_begin_points ()
Starts drawing a list of points.

• void fl_begin_polygon ()
Starts drawing a convex filled polygon.

• class Fl_Bitmap
• void fl_circle (double x, double y, double r)

fl_circle() is equivalent to fl_arc(x,y,r,0,360), but may be faster.

• int fl_clip_box (int x, int y, int w, int h, int &X, int &Y, int &W, int &H)
Intersects the rectangle with the current clip region and returns the bounding box of the result.

• void fl_color (uchar r, uchar g, uchar b)
Set the color for all subsequent drawing operations.

• void fl_color (Fl_Color c)
Sets the color for all subsequent drawing operations.

• void fl_curve (double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3,
double Y3)

Add a series of points on a Bezier curve to the path.

• void fl_draw (int angle, const char ∗str, int n, int x, int y)
Draws an array of n characters starting at the given location, rotating angle degrees counterclockwise.

• void fl_draw (const char ∗str, int n, int x, int y)
Draws an array of n characters starting at the given location.

• void fl_draw_image (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int H, int D)
Draw image using callback function to generate image data.

• void fl_draw_image (const uchar ∗buf, int X, int Y, int W, int H, int D, int L)
Draw an 8-bit per color RGB or luminance image.

• FL_EXPORT void fl_draw_image_mono (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int
H, int D)

Draw gray-scale image using callback function to generate image data.

• void fl_draw_image_mono (const uchar ∗buf, int X, int Y, int W, int H, int D, int L)
Draw a gray-scale (1 channel) image.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.42 Fl_Graphics_Driver Class Reference 493

• void fl_end_complex_polygon ()
Ends complex filled polygon, and draws.

• void fl_end_line ()
Ends list of lines, and draws.

• void fl_end_loop ()
Ends closed sequence of lines, and draws.

• void fl_end_points ()
Ends list of points, and draws.

• void fl_end_polygon ()
Ends convex filled polygon, and draws.

• void fl_font (Fl_Font face, Fl_Fontsize size)
Sets the current font, which is then used in various drawing routines.

• void fl_gap ()
Call fl_gap() to separate loops of the path.

• void fl_line (int x, int y, int x1, int y1, int x2, int y2)
Draws a line from (x,y) to (x1,y1) and another from (x1,y1) to (x2,y2).

• void fl_line (int x, int y, int x1, int y1)
Draws a line from (x,y) to (x1,y1).

• void fl_line_style (int style, int width, char ∗dashes)
Sets how to draw lines (the "pen").

• void fl_loop (int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3)
Outlines a 4-sided polygon with lines.

• void fl_loop (int x0, int y0, int x1, int y1, int x2, int y2)
Outlines a 3-sided polygon with lines.

• int fl_not_clipped (int x, int y, int w, int h)
Does the rectangle intersect the current clip region?

• void fl_pie (int x, int y, int w, int h, double a1, double a2)
Draw filled ellipse sections using integer coordinates.

• class Fl_Pixmap
• void fl_point (int x, int y)

Draws a single pixel at the given coordinates.

• void fl_polygon (int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3)
Fills a 4-sided polygon.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

494 Class Documentation

• void fl_polygon (int x0, int y0, int x1, int y1, int x2, int y2)

Fills a 3-sided polygon.

• void fl_pop_clip ()

Restores the previous clip region.

• class Fl_PostScript_Graphics_Driver
• void fl_push_clip (int x, int y, int w, int h)

Intersects the current clip region with a rectangle and pushes this new region onto the stack.

• void fl_push_no_clip ()

Pushes an empty clip region onto the stack so nothing will be clipped.

• void fl_rect (int x, int y, int w, int h)

Draws a 1-pixel border inside the given bounding box.

• void fl_rectf (int x, int y, int w, int h)

Colors with current color a rectangle that exactly fills the given bounding box.

• class Fl_RGB_Image
• void fl_rtl_draw (const char ∗str, int n, int x, int y)

Draws an array of n characters right to left starting at given location.

• void fl_transformed_vertex (double xf, double yf)

Adds coordinate pair to the vertex list without further transformations.

• void fl_vertex (double x, double y)

Adds a single vertex to the current path.

• void fl_xyline (int x, int y, int x1, int y2, int x3)

Draws a horizontal line from (x,y) to (x1,y), then a vertical from (x1,y) to (x1,y2) and then another horizontal
from (x1,y2) to (x3,y2).

• void fl_xyline (int x, int y, int x1, int y2)

Draws a horizontal line from (x,y) to (x1,y), then vertical from (x1,y) to (x1,y2).

• void fl_xyline (int x, int y, int x1)

Draws a horizontal line from (x,y) to (x1,y).

• void fl_yxline (int x, int y, int y1, int x2, int y3)

Draws a vertical line from (x,y) to (x,y1) then a horizontal from (x,y1) to (x2,y1), then another vertical from
(x2,y1) to (x2,y3).

• void fl_yxline (int x, int y, int y1, int x2)

Draws a vertical line from (x,y) to (x,y1), then a horizontal from (x,y1) to (x2,y1).

• void fl_yxline (int x, int y, int y1)

Draws a vertical line from (x,y) to (x,y1).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.42 Fl_Graphics_Driver Class Reference 495

30.42.1 Detailed Description

A virtual class subclassed for each graphics driver FLTK uses.

The protected virtual methods of this class are those that a graphics driver should implement to support all
of FLTK drawing functions.

The public API for drawing operations is functionally presented in Drawing Things in FLTK and as func-
tion lists in the Drawing functions and Color & Font functions modules.

30.42.2 Constructor & Destructor Documentation

30.42.2.1 Fl_Graphics_Driver::Fl_Graphics_Driver () [inline, protected]

The constructor.

30.42.3 Member Function Documentation

30.42.3.1 void Fl_Graphics_Driver::arc (int x, int y, int w, int h, double a1, double a2)
[protected, virtual]

see fl_arc(int x, int y, int w, int h, double a1, double a2).

30.42.3.2 void Fl_Graphics_Driver::arc (double x, double y, double r, double start, double end)
[protected, virtual]

see fl_arc(double x, double y, double r, double start, double end).

30.42.3.3 void Fl_Graphics_Driver::begin_complex_polygon () [protected, virtual]

see fl_begin_complex_polygon().

30.42.3.4 void Fl_Graphics_Driver::begin_line () [protected, virtual]

see fl_begin_line().

30.42.3.5 void Fl_Graphics_Driver::begin_loop () [protected, virtual]

see fl_begin_loop().

30.42.3.6 void Fl_Graphics_Driver::begin_points () [protected, virtual]

see fl_begin_points().

30.42.3.7 void Fl_Graphics_Driver::begin_polygon () [protected, virtual]

see fl_begin_polygon().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

496 Class Documentation

30.42.3.8 void Fl_Graphics_Driver::circle (double x, double y, double r) [protected,
virtual]

see fl_circle(double x, double y, double r).

30.42.3.9 int Fl_Graphics_Driver::clip_box (int x, int y, int w, int h, int & X, int & Y, int & W,
int & H) [protected, virtual]

see fl_clip_box(int x, int y, int w, int h, int &X, int &Y, int &W, int &H).

30.42.3.10 void Fl_Graphics_Driver::color (uchar r, uchar g, uchar b) [protected,
virtual]

see fl_color(uchar r, uchar g, uchar b).

30.42.3.11 void Fl_Graphics_Driver::color (Fl_Color c) [protected, virtual]

see fl_color(Fl_Color c).

30.42.3.12 void Fl_Graphics_Driver::curve (double X0, double Y0, double X1, double Y1, double
X2, double Y2, double X3, double Y3) [protected, virtual]

see fl_curve(double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3, double Y3).

30.42.3.13 virtual void Fl_Graphics_Driver::draw (Fl_Bitmap ∗ bm, int XP, int YP, int WP, int
HP, int cx, int cy) [inline, protected, virtual]

Draws an Fl_Bitmap object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented in Fl_Quartz_Graphics_Driver, Fl_GDI_Graphics_Driver, Fl_Xlib_Graphics_Driver, and
Fl_PostScript_Graphics_Driver.

30.42.3.14 virtual void Fl_Graphics_Driver::draw (Fl_Pixmap ∗ pxm, int XP, int YP, int WP, int
HP, int cx, int cy) [inline, protected, virtual]

Draws an Fl_Pixmap object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented in Fl_Quartz_Graphics_Driver, Fl_GDI_Graphics_Driver, Fl_Xlib_Graphics_Driver, and
Fl_PostScript_Graphics_Driver.

30.42.3.15 virtual void Fl_Graphics_Driver::draw (Fl_RGB_Image ∗ rgb, int XP, int YP, int WP,
int HP, int cx, int cy) [inline, protected, virtual]

Draws an Fl_RGB_Image object to the device.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.42 Fl_Graphics_Driver Class Reference 497

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented in Fl_Quartz_Graphics_Driver, Fl_GDI_Graphics_Driver, Fl_Xlib_Graphics_Driver, and
Fl_PostScript_Graphics_Driver.

30.42.3.16 virtual void Fl_Graphics_Driver::draw (int angle, const char ∗ str, int n, int x, int y)
[protected, virtual]

see fl_draw(int angle, const char ∗str, int n, int x, int y).

30.42.3.17 virtual void Fl_Graphics_Driver::draw (const char ∗ str, int n, int x, int y)
[protected, virtual]

see fl_draw(const char ∗str, int n, int x, int y).

30.42.3.18 void Fl_Graphics_Driver::draw_image (Fl_Draw_Image_Cb cb, void ∗ data, int X, int
Y, int W, int H, int D = 3) [protected, virtual]

see fl_draw_image(Fl_Draw_Image_Cb cb, void∗ data, int X,int Y,int W,int H, int D).

30.42.3.19 void Fl_Graphics_Driver::draw_image (const uchar ∗ buf, int X, int Y, int W, int H,
int D = 3, int L = 0) [protected, virtual]

see fl_draw_image(const uchar∗ buf, int X,int Y,int W,int H, int D, int L).

30.42.3.20 void Fl_Graphics_Driver::draw_image_mono (Fl_Draw_Image_Cb cb, void ∗ data,
int X, int Y, int W, int H, int D = 1) [protected, virtual]

see fl_draw_image_mono(Fl_Draw_Image_Cb cb, void∗ data, int X,int Y,int W,int H, int D).

30.42.3.21 void Fl_Graphics_Driver::draw_image_mono (const uchar ∗ buf, int X, int Y, int W,
int H, int D = 1, int L = 0) [protected, virtual]

see fl_draw_image_mono(const uchar∗ buf, int X,int Y,int W,int H, int D, int L).

30.42.3.22 void Fl_Graphics_Driver::end_complex_polygon () [protected, virtual]

see fl_end_complex_polygon().

30.42.3.23 void Fl_Graphics_Driver::end_line () [protected, virtual]

see fl_end_line().

30.42.3.24 void Fl_Graphics_Driver::end_loop () [protected, virtual]

see fl_end_loop().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

498 Class Documentation

30.42.3.25 void Fl_Graphics_Driver::end_points () [protected, virtual]

see fl_end_points().

30.42.3.26 void Fl_Graphics_Driver::end_polygon () [protected, virtual]

see fl_end_polygon().

30.42.3.27 virtual void Fl_Graphics_Driver::font (Fl_Font face, Fl_Fontsize size) [protected,
virtual]

see fl_font(Fl_Font face, Fl_Fontsize size).

30.42.3.28 void Fl_Graphics_Driver::gap () [protected, virtual]

see fl_gap().

30.42.3.29 void Fl_Graphics_Driver::line (int x, int y, int x1, int y1, int x2, int y2)
[protected, virtual]

see fl_line(int x, int y, int x1, int y1, int x2, int y2).

30.42.3.30 void Fl_Graphics_Driver::line (int x, int y, int x1, int y1) [protected,
virtual]

see fl_line(int x, int y, int x1, int y1).

30.42.3.31 void Fl_Graphics_Driver::line_style (int style, int width = 0, char ∗ dashes = 0)
[protected, virtual]

see fl_line_style(int style, int width, char∗ dashes).

30.42.3.32 void Fl_Graphics_Driver::loop (int x0, int y0, int x1, int y1, int x2, int y2, int x3, int
y3) [protected, virtual]

see fl_loop(int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3).

30.42.3.33 void Fl_Graphics_Driver::loop (int x0, int y0, int x1, int y1, int x2, int y2)
[protected, virtual]

see fl_loop(int x0, int y0, int x1, int y1, int x2, int y2).

30.42.3.34 int Fl_Graphics_Driver::not_clipped (int x, int y, int w, int h) [protected,
virtual]

see fl_not_clipped(int x, int y, int w, int h).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.42 Fl_Graphics_Driver Class Reference 499

30.42.3.35 void Fl_Graphics_Driver::pie (int x, int y, int w, int h, double a1, double a2)
[protected, virtual]

see fl_pie(int x, int y, int w, int h, double a1, double a2).

30.42.3.36 void Fl_Graphics_Driver::point (int x, int y) [protected, virtual]

see fl_point(int x, int y).

30.42.3.37 void Fl_Graphics_Driver::polygon (int x0, int y0, int x1, int y1, int x2, int y2, int x3,
int y3) [protected, virtual]

see fl_polygon(int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3).

30.42.3.38 void Fl_Graphics_Driver::polygon (int x0, int y0, int x1, int y1, int x2, int y2)
[protected, virtual]

see fl_polygon(int x0, int y0, int x1, int y1, int x2, int y2).

30.42.3.39 void Fl_Graphics_Driver::pop_clip () [protected, virtual]

see fl_pop_clip().

30.42.3.40 void Fl_Graphics_Driver::push_clip (int x, int y, int w, int h) [protected,
virtual]

see fl_push_clip(int x, int y, int w, int h).

30.42.3.41 void Fl_Graphics_Driver::push_no_clip () [protected, virtual]

see fl_push_no_clip().

30.42.3.42 void Fl_Graphics_Driver::rect (int x, int y, int w, int h) [protected, virtual]

see fl_rect(int x, int y, int w, int h).

30.42.3.43 void Fl_Graphics_Driver::rectf (int x, int y, int w, int h) [protected, virtual]

see fl_rectf(int x, int y, int w, int h).

30.42.3.44 virtual void Fl_Graphics_Driver::rtl_draw (const char ∗ str, int n, int x, int y)
[protected, virtual]

see fl_rtl_draw(const char ∗str, int n, int x, int y).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

500 Class Documentation

30.42.3.45 void Fl_Graphics_Driver::transformed_vertex (double xf, double yf) [protected,
virtual]

see fl_transformed_vertex(double xf, double yf).

30.42.3.46 void Fl_Graphics_Driver::vertex (double x, double y) [protected, virtual]

see fl_vertex(double x, double y).

30.42.3.47 void Fl_Graphics_Driver::xyline (int x, int y, int x1, int y2, int x3) [protected,
virtual]

see fl_xyline(int x, int y, int x1, int y2, int x3).

30.42.3.48 void Fl_Graphics_Driver::xyline (int x, int y, int x1, int y2) [protected,
virtual]

see fl_xyline(int x, int y, int x1, int y2).

30.42.3.49 void Fl_Graphics_Driver::xyline (int x, int y, int x1) [protected, virtual]

see fl_xyline(int x, int y, int x1).

30.42.3.50 void Fl_Graphics_Driver::yxline (int x, int y, int y1, int x2, int y3) [protected,
virtual]

see fl_yxline(int x, int y, int y1, int x2, int y3).

30.42.3.51 void Fl_Graphics_Driver::yxline (int x, int y, int y1, int x2) [protected,
virtual]

see fl_yxline(int x, int y, int y1, int x2).

30.42.3.52 void Fl_Graphics_Driver::yxline (int x, int y, int y1) [protected, virtual]

see fl_yxline(int x, int y, int y1).

30.42.4 Friends And Related Function Documentation

30.42.4.1 void fl_arc (int x, int y, int w, int h, double a1, double a2) [friend]

Draw ellipse sections using integer coordinates.

These functions match the rather limited circle drawing code provided by X and WIN32. The advantage
over using fl_arc with floating point coordinates is that they are faster because they often use the hardware,
and they draw much nicer small circles, since the small sizes are often hard-coded bitmaps.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.42 Fl_Graphics_Driver Class Reference 501

If a complete circle is drawn it will fit inside the passed bounding box. The two angles are measured in
degrees counterclockwise from 3 o’clock and are the starting and ending angle of the arc, a2 must be
greater or equal to a1.

fl_arc() draws a series of lines to approximate the arc. Notice that the integer version of fl_arc() has a
different number of arguments than the double version fl_arc(double x, double y, double r, double start,
double end)

Parameters:

← x,y,w,h bounding box of complete circle

← a1,a2 start and end angles of arc measured in degrees counter-clockwise from 3 o’clock. a2 must
be greater than or equal to a1.

30.42.4.2 void fl_arc (double x, double y, double r, double start, double end) [friend]

Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using scale
and rotate before calling fl_arc().

Parameters:

← x,y,r center and radius of circular arc

← start,end angles of start and end of arc measured in degrees counter-clockwise from 3 o’clock. If
end is less than start then it draws the arc in a clockwise direction.

30.42.4.3 void fl_begin_complex_polygon () [friend]

Starts drawing a complex filled polygon.

The polygon may be concave, may have holes in it, or may be several disconnected pieces. Call fl_gap() to
separate loops of the path.

To outline the polygon, use fl_begin_loop() and replace each fl_gap() with fl_end_loop();fl_begin_loop()
pairs.

Note:

For portability, you should only draw polygons that appear the same whether "even/odd" or "non-zero"
winding rules are used to fill them. Holes should be drawn in the opposite direction to the outside loop.

30.42.4.4 void fl_begin_points () [friend]

Starts drawing a list of points.

Points are added to the list with fl_vertex()

30.42.4.5 void fl_circle (double x, double y, double r) [friend]

fl_circle() is equivalent to fl_arc(x,y,r,0,360), but may be faster.

It must be the only thing in the path: if you want a circle as part of a complex polygon you must use
fl_arc()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

502 Class Documentation

Parameters:

← x,y,r center and radius of circle

30.42.4.6 int fl_clip_box (int x, int y, int w, int h, int & X, int & Y, int & W, int & H)
[friend]

Intersects the rectangle with the current clip region and returns the bounding box of the result.

Returns non-zero if the resulting rectangle is different to the original. This can be used to limit the necessary
drawing to a rectangle. W and H are set to zero if the rectangle is completely outside the region.

Parameters:

← x,y,w,h position and size of rectangle

→ X,Y,W,H position and size of resulting bounding box. W and H are set to zero if the rectangle is
completely outside the region.

Returns:

Non-zero if the resulting rectangle is different to the original.

30.42.4.7 void fl_color (uchar r, uchar g, uchar b) [friend]

Set the color for all subsequent drawing operations.

The closest possible match to the RGB color is used. The RGB color is used directly on TrueColor displays.
For colormap visuals the nearest index in the gray ramp or color cube is used. If no valid graphical context
(fl_gc) is available, the foreground is not set for the current window.

Parameters:

← r,g,b color components

30.42.4.8 void fl_color (Fl_Color c) [friend]

Sets the color for all subsequent drawing operations.

For colormapped displays, a color cell will be allocated out of fl_colormap the first time you use a
color. If the colormap fills up then a least-squares algorithm is used to find the closest color. If no valid
graphical context (fl_gc) is available, the foreground is not set for the current window.

Parameters:

← c color

30.42.4.9 void fl_curve (double X0, double Y0, double X1, double Y1, double X2, double Y2,
double X3, double Y3) [friend]

Add a series of points on a Bezier curve to the path.

The curve ends (and two of the points) are at X0,Y0 and X3,Y3.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.42 Fl_Graphics_Driver Class Reference 503

Parameters:

← X0,Y0 curve start point

← X1,Y1 curve control point

← X2,Y2 curve control point

← X3,Y3 curve end point

30.42.4.10 void fl_draw_image (Fl_Draw_Image_Cb cb, void ∗ data, int X, int Y, int W, int H,
int D = 3) [friend]

Draw image using callback function to generate image data.

You can generate the image as it is being drawn, or do arbitrary decompression of stored data, provided it
can be decompressed to individual scan lines easily.

Parameters:

← cb callback function to generate scan line data

← data user data passed to callback function

← X,Y

←W,H

← D

See also:

fl_draw_image(const uchar∗ buf, int X,int Y,int W,int H, int D, int L)

The callback function cb is called with the void∗ data user data pointer to allow access to a structure
of information about the image, and the x, y, and w of the scan line desired from the image. 0,0 is the
upper-left corner of the image, not X, Y. A pointer to a buffer to put the data into is passed. You must copy
w pixels from scanline y, starting at pixel x, to this buffer.

Due to cropping, less than the whole image may be requested. So x may be greater than zero, the first y
may be greater than zero, and w may be less than W. The buffer is long enough to store the entire W ∗ D
pixels, this is for convenience with some decompression schemes where you must decompress the entire
line at once: decompress it into the buffer, and then if x is not zero, copy the data over so the x’th pixel
is at the start of the buffer.

You can assume the y’s will be consecutive, except the first one may be greater than zero.

If D is 4 or more, you must fill in the unused bytes with zero.

30.42.4.11 void fl_draw_image (const uchar ∗ buf, int X, int Y, int W, int H, int D = 3, int L = 0)
[friend]

Draw an 8-bit per color RGB or luminance image.

Parameters:

← buf points at the "r" data of the top-left pixel. Color data must be in r,g,b order.

← X,Y position where to put top-left corner of image

←W,H size of the image

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

504 Class Documentation

← D delta to add to the pointer between pixels. it may be any value greater than or equal to 3, or it
can be negative to flip the image horizontally

← L delta to add to the pointer between lines (if 0 is passed it uses W ∗ D), and may be larger than W ∗
D to crop data, or negative to flip the image vertically

It is highly recommended that you put the following code before the first show() of any window in your
program to get rid of the dithering if possible:

Fl::visual(FL_RGB);

Gray scale (1-channel) images may be drawn. This is done if abs(D) is less than 3, or by calling fl_-
draw_image_mono(). Only one 8-bit sample is used for each pixel, and on screens with different numbers
of bits for red, green, and blue only gray colors are used. Setting D greater than 1 will let you display one
channel of a color image.

Note:

The X version does not support all possible visuals. If FLTK cannot draw the image in the current
visual it will abort. FLTK supports any visual of 8 bits or less, and all common TrueColor visuals up
to 32 bits.

30.42.4.12 FL_EXPORT void fl_draw_image_mono (Fl_Draw_Image_Cb cb, void ∗ data, int X,
int Y, int W, int H, int D) [friend]

Draw gray-scale image using callback function to generate image data.

See also:

fl_draw_image(Fl_Draw_Image_Cb cb, void∗ data, int X,int Y,int W,int H, int D)

30.42.4.13 void fl_draw_image_mono (const uchar ∗ buf, int X, int Y, int W, int H, int D = 1, int
L = 0) [friend]

Draw a gray-scale (1 channel) image.

See also:

fl_draw_image(const uchar∗ buf, int X,int Y,int W,int H, int D, int L)

30.42.4.14 void fl_font (Fl_Font face, Fl_Fontsize size) [friend]

Sets the current font, which is then used in various drawing routines.

You may call this outside a draw context if necessary to call fl_width(), but on X this will open the display.

The font is identified by a face and a size. The size of the font is measured in pixels and not "points".
Lines should be spaced size pixels apart or more.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.42 Fl_Graphics_Driver Class Reference 505

30.42.4.15 void fl_gap () [friend]

Call fl_gap() to separate loops of the path.

It is unnecessary but harmless to call fl_gap() before the first vertex, after the last vertex, or several times
in a row.

30.42.4.16 void fl_line_style (int style, int width = 0, char ∗ dashes = 0) [friend]

Sets how to draw lines (the "pen").

If you change this it is your responsibility to set it back to the default using fl_line_style(0).

Parameters:

← style A bitmask which is a bitwise-OR of a line style, a cap style, and a join style. If you don’t
specify a dash type you will get a solid line. If you don’t specify a cap or join type you will get a
system-defined default of whatever value is fastest.

← width The thickness of the lines in pixels. Zero results in the system defined default, which on both
X and Windows is somewhat different and nicer than 1.

← dashes A pointer to an array of dash lengths, measured in pixels. The first location is how long to
draw a solid portion, the next is how long to draw the gap, then the solid, etc. It is terminated
with a zero-length entry. A NULL pointer or a zero-length array results in a solid line. Odd array
sizes are not supported and result in undefined behavior.

Note:

Because of how line styles are implemented on Win32 systems, you must set the line style after setting
the drawing color. If you set the color after the line style you will lose the line style settings.
The dashes array does not work under Windows 95, 98 or Me, since those operating systems do not
support complex line styles.

30.42.4.17 int fl_not_clipped (int x, int y, int w, int h) [friend]

Does the rectangle intersect the current clip region?

Parameters:

← x,y,w,h position and size of rectangle

Returns:

non-zero if any of the rectangle intersects the current clip region. If this returns 0 you don’t have to
draw the object.

Note:

Under X this returns 2 if the rectangle is partially clipped, and 1 if it is entirely inside the clip region.

30.42.4.18 void fl_pie (int x, int y, int w, int h, double a1, double a2) [friend]

Draw filled ellipse sections using integer coordinates.

Like fl_arc(), but fl_pie() draws a filled-in pie slice. This slice may extend outside the line drawn by fl_arc();
to avoid this use w - 1 and h - 1.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

506 Class Documentation

Parameters:

← x,y,w,h bounding box of complete circle

← a1,a2 start and end angles of arc measured in degrees counter-clockwise from 3 o’clock. a2 must
be greater than or equal to a1.

30.42.4.19 void fl_polygon (int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3) [friend]

Fills a 4-sided polygon.

The polygon must be convex.

30.42.4.20 void fl_polygon (int x0, int y0, int x1, int y1, int x2, int y2) [friend]

Fills a 3-sided polygon.

The polygon must be convex.

30.42.4.21 void fl_pop_clip () [friend]

Restores the previous clip region.

You must call fl_pop_clip() once for every time you call fl_push_clip(). Unpredictable results may occur if
the clip stack is not empty when you return to FLTK.

30.42.4.22 void fl_push_clip (int x, int y, int w, int h) [friend]

Intersects the current clip region with a rectangle and pushes this new region onto the stack.

Parameters:

← x,y,w,h position and size

30.42.4.23 void fl_rect (int x, int y, int w, int h) [friend]

Draws a 1-pixel border inside the given bounding box.

This function is meant for quick drawing of simple boxes. The behavior is undefined for line widths that
are not 1.

30.42.4.24 void fl_transformed_vertex (double xf, double yf) [friend]

Adds coordinate pair to the vertex list without further transformations.

Parameters:

← xf,yf transformed coordinate

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.42 Fl_Graphics_Driver Class Reference 507

30.42.4.25 void fl_vertex (double x, double y) [friend]

Adds a single vertex to the current path.

Parameters:

← x,y coordinate

30.42.5 Member Data Documentation

30.42.5.1 const char ∗ Fl_Graphics_Driver::device_type = "Fl_Graphics_Driver" [static]

A string that identifies each subclass of Fl_Device.

Function type() applied to a device of this class returns this string.

Reimplemented from Fl_Device.

Reimplemented in Fl_Quartz_Graphics_Driver, Fl_GDI_Graphics_Driver, Fl_Xlib_Graphics_Driver, and
Fl_PostScript_Graphics_Driver.

The documentation for this class was generated from the following files:

• Fl_Device.H
• fl_arc.cxx
• fl_arci.cxx
• fl_color.cxx
• fl_color_mac.cxx
• fl_color_win32.cxx
• fl_curve.cxx
• Fl_Device.cxx
• fl_draw_image.cxx
• fl_draw_image_mac.cxx
• fl_draw_image_win32.cxx
• fl_line_style.cxx
• fl_rect.cxx
• fl_vertex.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

508 Class Documentation

30.43 Fl_Group Class Reference

The Fl_Group class is the FLTK container widget.

#include <Fl_Group.H>

Inheritance diagram for Fl_Group::

Fl_Group

Fl_Widget

Fl_Browser_

Fl_Color_Chooser

Fl_Help_View

Fl_Input_Choice

Fl_Pack

Fl_Scroll

Fl_Spinner

Fl_Table

Fl_Tabs

Fl_Text_Display

Fl_Tile

Fl_Tree

Fl_Window

Fl_Wizard

Public Member Functions

• Fl_Widget ∗& _ddfdesign_kludge ()

This is for forms compatibility only.

• void add (Fl_Widget ∗o)

See void Fl_Group::add(Fl_Widget &w).

• void add (Fl_Widget &)

The widget is removed from its current group (if any) and then added to the end of this group.

• void add_resizable (Fl_Widget &o)

Adds a widget to the group and makes it the resizable widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.43 Fl_Group Class Reference 509

• Fl_Widget ∗const ∗ array () const
Returns a pointer to the array of children.

• virtual Fl_Group ∗ as_group ()
Returns an Fl_Group pointer if this widget is an Fl_Group.

• void begin ()
Sets the current group so you can build the widget tree by just constructing the widgets.

• Fl_Widget ∗ child (int n) const
Returns array()[n].

• int children () const
Returns how many child widgets the group has.

• void clear ()
Deletes all child widgets from memory recursively.

• unsigned int clip_children ()
Returns the current clipping mode.

• void clip_children (int c)
Controls whether the group widget clips the drawing of child widgets to its bounding box.

• void end ()
Exactly the same as current(this->parent()).

• int find (const Fl_Widget &o) const
See int Fl_Group::find(const Fl_Widget ∗w) const.

• int find (const Fl_Widget ∗) const
Searches the child array for the widget and returns the index.

• Fl_Group (int, int, int, int, const char ∗=0)
Creates a new Fl_Group widget using the given position, size, and label string.

• void focus (Fl_Widget ∗W)
• void forms_end ()

This is for forms compatibility only.

• int handle (int)
Handles the specified event.

• void init_sizes ()
Resets the internal array of widget sizes and positions.

• void insert (Fl_Widget &o, Fl_Widget ∗before)
This does insert(w, find(before)).

• void insert (Fl_Widget &, int i)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

510 Class Documentation

The widget is removed from its current group (if any) and then inserted into this group.

• void remove (Fl_Widget ∗o)
Removes the widget o from the group.

• void remove (Fl_Widget &)
Removes a widget from the group but does not delete it.

• void remove (int index)
Removes the widget at index from the group but does not delete it.

• Fl_Widget ∗ resizable () const
See void Fl_Group::resizable(Fl_Widget ∗box).

• void resizable (Fl_Widget ∗o)
The resizable widget defines the resizing box for the group.

• void resizable (Fl_Widget &o)
See void Fl_Group::resizable(Fl_Widget ∗box).

• void resize (int, int, int, int)
Resizes the Fl_Group widget and all of its children.

• virtual ∼Fl_Group ()
The destructor also deletes all the children.

Static Public Member Functions

• static void current (Fl_Group ∗g)
See static Fl_Group ∗Fl_Groupcurrent().

• static Fl_Group ∗ current ()
Returns the currently active group.

Protected Member Functions

• void draw ()
Draws the widget.

• void draw_child (Fl_Widget &widget) const
Forces a child to redraw.

• void draw_children ()
Draws all children of the group.

• void draw_outside_label (const Fl_Widget &widget) const
Parents normally call this to draw outside labels of child widgets.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.43 Fl_Group Class Reference 511

• int ∗ sizes ()
Returns the internal array of widget sizes and positions.

• void update_child (Fl_Widget &widget) const
Draws a child only if it needs it.

30.43.1 Detailed Description

The Fl_Group class is the FLTK container widget.

It maintains an array of child widgets. These children can themselves be any widget including Fl_Group.
The most important subclass of Fl_Group is Fl_Window, however groups can also be used to control radio
buttons or to enforce resize behavior.

30.43.2 Constructor & Destructor Documentation

30.43.2.1 Fl_Group::Fl_Group (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Group widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

30.43.2.2 Fl_Group::∼Fl_Group () [virtual]

The destructor also deletes all the children.

This allows a whole tree to be deleted at once, without having to keep a pointer to all the children in the
user code.

It is allowed that the Fl_Group and all of its children are automatic (local) variables, but you must declare
the Fl_Group first, so that it is destroyed last.

If you add static or automatic (local) variables to an Fl_Group, then it is your responsibility to remove (or
delete) all such static or automatic child widgets before destroying the group - otherwise the child widgets’
destructors would be called twice!

30.43.3 Member Function Documentation

30.43.3.1 Fl_Widget ∗const ∗ Fl_Group::array () const

Returns a pointer to the array of children.

This pointer is only valid until the next time a child is added or removed.

30.43.3.2 virtual Fl_Group∗ Fl_Group::as_group () [inline, virtual]

Returns an Fl_Group pointer if this widget is an Fl_Group.

Return values:

NULL if this widget is not derived from Fl_Group.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

512 Class Documentation

Note:

This method is provided to avoid dynamic_cast.

Todo

More documentation ...

Reimplemented from Fl_Widget.

30.43.3.3 void Fl_Group::begin ()

Sets the current group so you can build the widget tree by just constructing the widgets.

begin() is automatically called by the constructor for Fl_Group (and thus for Fl_Window as well). begin()
is exactly the same as current(this). Don’t forget to end() the group or window!

Reimplemented in Fl_Table.

30.43.3.4 Fl_Widget∗ Fl_Group::child (int n) const [inline]

Returns array()[n].

No range checking is done!

Reimplemented in Fl_Table.

30.43.3.5 void Fl_Group::clear ()

Deletes all child widgets from memory recursively.

This method differs from the remove() method in that it affects all child widgets and deletes them from
memory.

Reimplemented in Fl_Browser, Fl_Check_Browser, Fl_Input_Choice, Fl_Scroll, Fl_Table, Fl_Table_Row,
and Fl_Tree.

30.43.3.6 unsigned int Fl_Group::clip_children () [inline]

Returns the current clipping mode.

Returns:

true, if clipping is enabled, false otherwise.

See also:

void Fl_Group::clip_children(int c)

30.43.3.7 void Fl_Group::clip_children (int c) [inline]

Controls whether the group widget clips the drawing of child widgets to its bounding box.

Set c to 1 if you want to clip the child widgets to the bounding box.

The default is to not clip (0) the drawing of child widgets.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.43 Fl_Group Class Reference 513

30.43.3.8 Fl_Group ∗ Fl_Group::current () [static]

Returns the currently active group.

The Fl_Widget constructor automatically does current()->add(widget) if this is not null. To prevent new
widgets from being added to a group, call Fl_Group::current(0).

Reimplemented in Fl_Window.

30.43.3.9 void Fl_Group::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

Reimplemented in Fl_Browser_, Fl_Cairo_Window, Fl_Gl_Window, Fl_Pack, Fl_Scroll, Fl_Table, Fl_-
Tabs, Fl_Text_Display, Fl_Tree, Fl_Window, and Fl_Glut_Window.

30.43.3.10 void Fl_Group::draw_child (Fl_Widget & widget) const [protected]

Forces a child to redraw.

This draws a child widget, if it is not clipped. The damage bits are cleared after drawing.

30.43.3.11 void Fl_Group::draw_children () [protected]

Draws all children of the group.

This is useful, if you derived a widget from Fl_Group and want to draw a special border or background.
You can call draw_children() from the derived draw() method after drawing the box, border, or background.

30.43.3.12 void Fl_Group::draw_outside_label (const Fl_Widget & widget) const [protected]

Parents normally call this to draw outside labels of child widgets.

30.43.3.13 void Fl_Group::end ()

Exactly the same as current(this->parent()).

Any new widgets added to the widget tree will be added to the parent of the group.

Reimplemented in Fl_Table.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

514 Class Documentation

30.43.3.14 int Fl_Group::find (const Fl_Widget ∗ o) const

Searches the child array for the widget and returns the index.

Returns children() if the widget is NULL or not found.

Reimplemented in Fl_Table.

30.43.3.15 void Fl_Group::focus (Fl_Widget ∗W) [inline]

Deprecated

This is for backwards compatibility only. You should use W->take_focus() instead.

See also:

Fl_Widget::take_focus();

30.43.3.16 int Fl_Group::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

Reimplemented in Fl_Browser_, Fl_Check_Browser, Fl_Gl_Window, Fl_Scroll, Fl_Spinner, Fl_Table,
Fl_Table_Row, Fl_Tabs, Fl_Text_Display, Fl_Text_Editor, Fl_Tile, Fl_Tree, Fl_Window, and Fl_Glut_-
Window.

30.43.3.17 void Fl_Group::init_sizes ()

Resets the internal array of widget sizes and positions.

The Fl_Group widget keeps track of the original widget sizes and positions when resizing occurs so that if
you resize a window back to its original size the widgets will be in the correct places. If you rearrange the

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.43 Fl_Group Class Reference 515

widgets in your group, call this method to register the new arrangement with the Fl_Group that contains
them.

If you add or remove widgets, this will be done automatically.

Note:

The internal array of widget sizes and positions will be allocated and filled when the next resize()
occurs.

See also:

sizes()

Reimplemented in Fl_Table.

30.43.3.18 void Fl_Group::insert (Fl_Widget & o, Fl_Widget ∗ before) [inline]

This does insert(w, find(before)).

This will append the widget if before is not in the group.

Reimplemented in Fl_Table.

30.43.3.19 void Fl_Group::insert (Fl_Widget & o, int index)

The widget is removed from its current group (if any) and then inserted into this group.

It is put at index n - or at the end, if n >= children(). This can also be used to rearrange the widgets inside
a group.

Reimplemented in Fl_Table.

30.43.3.20 void Fl_Group::remove (Fl_Widget ∗ o) [inline]

Removes the widget o from the group.

See also:

void remove(Fl_Widget&)

30.43.3.21 void Fl_Group::remove (Fl_Widget & o)

Removes a widget from the group but does not delete it.

This method does nothing if the widget is not a child of the group.

This method differs from the clear() method in that it only affects a single widget and does not delete it
from memory.

Note:

If you have the child’s index anyway, use remove(int index) instead, because this doesn’t need a child
lookup in the group’s table of children. This can be much faster, if there are lots of children.

Reimplemented in Fl_Table.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

516 Class Documentation

30.43.3.22 void Fl_Group::remove (int index)

Removes the widget at index from the group but does not delete it.

This method does nothing if index is out of bounds.

This method differs from the clear() method in that it only affects a single widget and does not delete it
from memory.

Since:

FLTK 1.3.0

Reimplemented in Fl_Browser, and Fl_Check_Browser.

30.43.3.23 void Fl_Group::resizable (Fl_Widget ∗ o) [inline]

The resizable widget defines the resizing box for the group.

When the group is resized it calculates a new size and position for all of its children. Widgets that are
horizontally or vertically inside the dimensions of the box are scaled to the new size. Widgets outside the
box are moved.

In these examples the gray area is the resizable:

Figure 30.14: before resize

Figure 30.15: after resize

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.43 Fl_Group Class Reference 517

The resizable may be set to the group itself, in which case all the contents are resized. This is the default
value for Fl_Group, although NULL is the default for Fl_Window and Fl_Pack.

If the resizable is NULL then all widgets remain a fixed size and distance from the top-left corner.

It is possible to achieve any type of resize behavior by using an invisible Fl_Box as the resizable and/or by
using a hierarchy of child Fl_Group’s.

30.43.3.24 void Fl_Group::resize (int X, int Y, int W, int H) [virtual]

Resizes the Fl_Group widget and all of its children.

The Fl_Group widget first resizes itself, and then it moves and resizes all its children according to the rules
documented for Fl_Group::resizable(Fl_Widget∗)

See also:

Fl_Group::resizable(Fl_Widget∗)
Fl_Group::resizable()
Fl_Widget::resize(int,int,int,int)

Reimplemented from Fl_Widget.

Reimplemented in Fl_Browser_, Fl_Double_Window, Fl_Gl_Window, Fl_Help_View, Fl_Input_Choice,
Fl_Overlay_Window, Fl_Scroll, Fl_Spinner, Fl_Table, Fl_Text_Display, Fl_Tile, and Fl_Window.

30.43.3.25 int ∗ Fl_Group::sizes () [protected]

Returns the internal array of widget sizes and positions.

If the sizes() array does not exist, it will be allocated and filled with the current widget sizes and positions.

Note:

You should never need to use this method directly, unless you have special needs to rearrange the
children of a Fl_Group. Fl_Tile uses this to rearrange its widget positions.

See also:

init_sizes()

Todo

Should the internal representation of the sizes() array be documented?

30.43.3.26 void Fl_Group::update_child (Fl_Widget & widget) const [protected]

Draws a child only if it needs it.

This draws a child widget, if it is not clipped and if any damage() bits are set. The damage bits are cleared
after drawing.

See also:

Fl_Group::draw_child(Fl_Widget& widget) const

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

518 Class Documentation

The documentation for this class was generated from the following files:

• Fl_Group.H
• Fl_Group.cxx
• forms_compatability.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.44 Fl_Help_Dialog Class Reference 519

30.44 Fl_Help_Dialog Class Reference

The Fl_Help_Dialog widget displays a standard help dialog window using the Fl_Help_View widget.

Public Member Functions

• Fl_Help_Dialog ()

The constructor creates the dialog pictured above.

• int h ()

Returns the position and size of the help dialog.

• void hide ()

Hides the Fl_Help_Dialog window.

• void load (const char ∗f)
Loads the specified HTML file into the Fl_Help_View widget.

• void position (int xx, int yy)

Set the screen position of the dialog.

• void resize (int xx, int yy, int ww, int hh)

Change the position and size of the dialog.

• void show (int argc, char ∗∗argv)

Shows the main Help Dialog Window Delegates call to encapsulated window_ void Fl_Window::show(int
argc, char ∗∗argv) instance method.

• void show ()

Shows the Fl_Help_Dialog window.

• Fl_Fontsize textsize ()

Sets or gets the default text size for the help view.

• void textsize (Fl_Fontsize s)

Sets or gets the default text size for the help view.

• void topline (int n)

Sets the top line in the Fl_Help_View widget to the named or numbered line.

• void topline (const char ∗n)

Sets the top line in the Fl_Help_View widget to the named or numbered line.

• const char ∗ value () const

The first form sets the current buffer to the string provided and reformats the text.

• void value (const char ∗f)
The first form sets the current buffer to the string provided and reformats the text.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

520 Class Documentation

• int visible ()

Returns 1 if the Fl_Help_Dialog window is visible.

• int w ()

Returns the position and size of the help dialog.

• int x ()

Returns the position and size of the help dialog.

• int y ()

Returns the position and size of the help dialog.

• ∼Fl_Help_Dialog ()

The destructor destroys the widget and frees all memory that has been allocated for the current file.

30.44.1 Detailed Description

The Fl_Help_Dialog widget displays a standard help dialog window using the Fl_Help_View widget.

Figure 30.16: Fl_Help_Dialog

30.44.2 Constructor & Destructor Documentation

30.44.2.1 Fl_Help_Dialog::Fl_Help_Dialog ()

The constructor creates the dialog pictured above.

30.44.3 Member Function Documentation

30.44.3.1 int Fl_Help_Dialog::h ()

Returns the position and size of the help dialog.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.44 Fl_Help_Dialog Class Reference 521

30.44.3.2 void Fl_Help_Dialog::hide ()

Hides the Fl_Help_Dialog window.

30.44.3.3 void Fl_Help_Dialog::load (const char ∗ f)

Loads the specified HTML file into the Fl_Help_View widget.

The filename can also contain a target name ("filename.html#target").

30.44.3.4 void Fl_Help_Dialog::position (int x, int y)

Set the screen position of the dialog.

30.44.3.5 void Fl_Help_Dialog::resize (int xx, int yy, int ww, int hh)

Change the position and size of the dialog.

30.44.3.6 void Fl_Help_Dialog::show ()

Shows the Fl_Help_Dialog window.

Shows the main Help Dialog Window Delegates call to encapsulated window_ void Fl_Window::show()
method.

30.44.3.7 uchar Fl_Help_Dialog::textsize ()

Sets or gets the default text size for the help view.

30.44.3.8 void Fl_Help_Dialog::textsize (Fl_Fontsize s)

Sets or gets the default text size for the help view.

Sets the internal Fl_Help_View instance text size.

Delegates call to encapsulated view_ void Fl_Help_View::textsize(Fl_Fontsize s) instance method

30.44.3.9 const char ∗ Fl_Help_Dialog::value () const

The first form sets the current buffer to the string provided and reformats the text.

It also clears the history of the "back" and "forward" buttons. The second form returns the current buffer
contents.

30.44.3.10 void Fl_Help_Dialog::value (const char ∗ v)

The first form sets the current buffer to the string provided and reformats the text.

It also clears the history of the "back" and "forward" buttons. The second form returns the current buffer
contents.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

522 Class Documentation

30.44.3.11 int Fl_Help_Dialog::visible ()

Returns 1 if the Fl_Help_Dialog window is visible.

30.44.3.12 int Fl_Help_Dialog::w ()

Returns the position and size of the help dialog.

30.44.3.13 int Fl_Help_Dialog::x ()

Returns the position and size of the help dialog.

30.44.3.14 int Fl_Help_Dialog::y ()

Returns the position and size of the help dialog.

The documentation for this class was generated from the following files:

• Fl_Help_Dialog.H
• Fl_Help_Dialog.cxx
• Fl_Help_Dialog_Dox.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.45 Fl_Help_Font_Style Struct Reference 523

30.45 Fl_Help_Font_Style Struct Reference

Fl_Help_View font stack element definition.

#include <Fl_Help_View.H>

Public Member Functions

• Fl_Help_Font_Style (Fl_Font afont, Fl_Fontsize asize, Fl_Color acolor)
• void get (Fl_Font &afont, Fl_Fontsize &asize, Fl_Color &acolor)

Gets current font attributes.

• void set (Fl_Font afont, Fl_Fontsize asize, Fl_Color acolor)
Sets current font attributes.

Public Attributes

• Fl_Color c
Font Color.

• Fl_Font f
Font.

• Fl_Fontsize s
Font Size.

30.45.1 Detailed Description

Fl_Help_View font stack element definition.

The documentation for this struct was generated from the following file:

• Fl_Help_View.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

524 Class Documentation

30.46 Fl_Help_Link Struct Reference

Definition of a link for the html viewer.

#include <Fl_Help_View.H>

Public Attributes

• char filename [192]
Reference filename.

• int h
Height of link text.

• char name [32]
Link target (blank if none).

• int w
Width of link text.

• int x
X offset of link text.

• int y
Y offset of link text.

30.46.1 Detailed Description

Definition of a link for the html viewer.

The documentation for this struct was generated from the following file:

• Fl_Help_View.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.47 Fl_Help_Target Struct Reference 525

30.47 Fl_Help_Target Struct Reference

Fl_Help_Target structure.

#include <Fl_Help_View.H>

Public Attributes

• char name [32]
Target name.

• int y
Y offset of target.

30.47.1 Detailed Description

Fl_Help_Target structure.

The documentation for this struct was generated from the following file:

• Fl_Help_View.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

526 Class Documentation

30.48 Fl_Help_View Class Reference

The Fl_Help_View widget displays HTML text.

#include <Fl_Help_View.H>

Inheritance diagram for Fl_Help_View::

Fl_Help_View

Fl_Group

Fl_Widget

Public Member Functions

• void clear_selection ()

Removes the current text selection.

• const char ∗ directory () const

Returns the current directory for the text in the buffer.

• const char ∗ filename () const

Returns the current filename for the text in the buffer.

• int find (const char ∗s, int p=0)

Finds the specified string s at starting position p.

• Fl_Help_View (int xx, int yy, int ww, int hh, const char ∗l=0)

The constructor creates the Fl_Help_View widget at the specified position and size.

• int leftline () const

Gets the left position in pixels.

• void leftline (int)

Scrolls the text to the indicated position, given a pixel column.

• void link (Fl_Help_Func ∗fn)

This method assigns a callback function to use when a link is followed or a file is loaded (via Fl_Help_-
View::load()) that requires a different file or path.

• int load (const char ∗f)
Loads the specified file.

• void resize (int, int, int, int)

Resizes the help widget.

• void scrollbar_size (int size)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.48 Fl_Help_View Class Reference 527

Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

• int scrollbar_size () const
Gets the current size of the scrollbars’ troughs, in pixels.

• void select_all ()
Selects all the text in the view.

• void size (int W, int H)
Changes the size of the widget.

• int size () const
Gets the size of the help view.

• Fl_Color textcolor () const
Returns the current default text color.

• void textcolor (Fl_Color c)
Sets the default text color.

• Fl_Font textfont () const
Returns the current default text font.

• void textfont (Fl_Font f)
Sets the default text font.

• Fl_Fontsize textsize () const
Gets the default text size.

• void textsize (Fl_Fontsize s)
Sets the default text size.

• const char ∗ title ()
Returns the current document title, or NULL if there is no title.

• int topline () const
Returns the current top line in pixels.

• void topline (int)
Scrolls the text to the indicated position, given a pixel line.

• void topline (const char ∗n)
Scrolls the text to the indicated position, given a named destination.

• const char ∗ value () const
Returns the current buffer contents.

• void value (const char ∗val)
Sets the current help text buffer to the string provided and reformats the text.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

528 Class Documentation

• ∼Fl_Help_View ()
Destroys the Fl_Help_View widget.

30.48.1 Detailed Description

The Fl_Help_View widget displays HTML text.

Most HTML 2.0 elements are supported, as well as a primitive implementation of tables. GIF, JPEG, and
PNG images are displayed inline.

Supported HTML tags:

• A: HREF/NAME

• B

• BODY: BGCOLOR/TEXT/LINK

• BR

• CENTER

• CODE

• DD

• DL

• DT

• EM

• FONT: COLOR/SIZE/FACE=(helvetica/arial/sans/times/serif/symbol/courier)

• H1/H2/H3/H4/H5/H6

• HEAD

• HR

• I

• IMG: SRC/WIDTH/HEIGHT/ALT

• KBD

• LI

• OL

• P

• PRE

• STRONG

• TABLE: TH/TD/TR/BORDER/BGCOLOR/COLSPAN/ALIGN=CENTER|RIGHT|LEFT

• TITLE

• TT

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.48 Fl_Help_View Class Reference 529

• U

• UL

• VAR

Supported color names:

• black,red,green,yellow,blue,magenta,fuchsia,cyan,aqua,white,gray,grey,lime,maroon,navy,olive,purple,silver,teal.

Supported urls:

• Internal: file:

• External: http: ftp: https: ipp: mailto: news:

Quoted char names:

• Aacute aacute Acirc acirc acute AElig aelig Agrave agrave amp Aring aring Atilde atilde Auml auml

• brvbar bull

• Ccedil ccedil cedil cent copy curren

• deg divide

• Eacute eacute Ecirc ecirc Egrave egrave ETH eth Euml euml euro

• frac12 frac14 frac34

• gt

• Iacute iacute Icirc icirc iexcl Igrave igrave iquest Iuml iuml

• laquo lt

• macr micro middot

• nbsp not Ntilde ntilde

• Oacute oacute Ocirc ocirc Ograve ograve ordf ordm Oslash oslash Otilde otilde Ouml ouml

• para premil plusmn pound

• quot

• raquo reg

• sect shy sup1 sup2 sup3 szlig

• THORN thorn times trade

• Uacute uacute Ucirc ucirc Ugrave ugrave uml Uuml uuml

• Yacute yacute

• yen Yuml yuml

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

530 Class Documentation

30.48.2 Constructor & Destructor Documentation

30.48.2.1 Fl_Help_View::∼Fl_Help_View ()

Destroys the Fl_Help_View widget.

The destructor destroys the widget and frees all memory that has been allocated for the current document.

30.48.3 Member Function Documentation

30.48.3.1 void Fl_Help_View::clear_selection ()

Removes the current text selection.

30.48.3.2 const char∗ Fl_Help_View::directory () const [inline]

Returns the current directory for the text in the buffer.

30.48.3.3 const char∗ Fl_Help_View::filename () const [inline]

Returns the current filename for the text in the buffer.

30.48.3.4 int Fl_Help_View::find (const char ∗ s, int p = 0)

Finds the specified string s at starting position p.

Returns:

the matching position or -1 if not found

30.48.3.5 int Fl_Help_View::leftline () const [inline]

Gets the left position in pixels.

30.48.3.6 void Fl_Help_View::leftline (int left)

Scrolls the text to the indicated position, given a pixel column.

If the given pixel value left is out of range, then the text is scrolled to the left or right side of the
document, resp.

Parameters:

← left left column number in pixels (0 = left side)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.48 Fl_Help_View Class Reference 531

30.48.3.7 void Fl_Help_View::link (Fl_Help_Func ∗ fn) [inline]

This method assigns a callback function to use when a link is followed or a file is loaded (via Fl_Help_-
View::load()) that requires a different file or path.

The callback function receives a pointer to the Fl_Help_View widget and the URI or full pathname for the
file in question. It must return a pathname that can be opened as a local file or NULL:

const char *fn(Fl_Widget *w, const char *uri);

The link function can be used to retrieve remote or virtual documents, returning a temporary file that
contains the actual data. If the link function returns NULL, the value of the Fl_Help_View widget will
remain unchanged.

If the link callback cannot handle the URI scheme, it should return the uri value unchanged or set the
value() of the widget before returning NULL.

30.48.3.8 int Fl_Help_View::load (const char ∗ f)

Loads the specified file.

This method loads the specified file or URL.

30.48.3.9 void Fl_Help_View::resize (int xx, int yy, int ww, int hh) [virtual]

Resizes the help widget.

Reimplemented from Fl_Group.

30.48.3.10 void Fl_Help_View::scrollbar_size (int size) [inline]

Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

Normally you should not need this method, and should use Fl::scrollbar_size(int) instead to manage the
size of ALL your widgets’ scrollbars. This ensures your application has a consistent UI, is the default
behavior, and is normally what you want.

Only use THIS method if you really need to override the global scrollbar size. The need for this should be
rare.

Setting size to the special value of 0 causes the widget to track the global Fl::scrollbar_size(), which is
the default.

Parameters:

← size Sets the scrollbar size in pixels.

If 0 (default), scrollbar size tracks the global Fl::scrollbar_size()

See also:

Fl::scrollbar_size()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

532 Class Documentation

30.48.3.11 int Fl_Help_View::scrollbar_size () const [inline]

Gets the current size of the scrollbars’ troughs, in pixels.

If this value is zero (default), this widget will use the Fl::scrollbar_size() value as the scrollbar’s width.

Returns:

Scrollbar size in pixels, or 0 if the global Fl::scrollbar_size() is being used.

See also:

Fl::scrollbar_size(int)

30.48.3.12 void Fl_Help_View::select_all ()

Selects all the text in the view.

30.48.3.13 void Fl_Help_View::size (int W, int H) [inline]

Changes the size of the widget.

size(W, H) is a shortcut for resize(x(), y(), W, H).

Parameters:

←W,H new size

See also:

position(int,int), resize(int,int,int,int)

Reimplemented from Fl_Widget.

30.48.3.14 int Fl_Help_View::size () const [inline]

Gets the size of the help view.

30.48.3.15 Fl_Color Fl_Help_View::textcolor () const [inline]

Returns the current default text color.

30.48.3.16 void Fl_Help_View::textcolor (Fl_Color c) [inline]

Sets the default text color.

30.48.3.17 Fl_Font Fl_Help_View::textfont () const [inline]

Returns the current default text font.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.48 Fl_Help_View Class Reference 533

30.48.3.18 void Fl_Help_View::textfont (Fl_Font f) [inline]

Sets the default text font.

30.48.3.19 Fl_Fontsize Fl_Help_View::textsize () const [inline]

Gets the default text size.

30.48.3.20 void Fl_Help_View::textsize (Fl_Fontsize s) [inline]

Sets the default text size.

30.48.3.21 const char∗ Fl_Help_View::title () [inline]

Returns the current document title, or NULL if there is no title.

30.48.3.22 int Fl_Help_View::topline () const [inline]

Returns the current top line in pixels.

30.48.3.23 void Fl_Help_View::topline (int top)

Scrolls the text to the indicated position, given a pixel line.

If the given pixel value top is out of range, then the text is scrolled to the top or bottom of the document,
resp.

Parameters:

← top top line number in pixels (0 = start of document)

30.48.3.24 void Fl_Help_View::topline (const char ∗ n)

Scrolls the text to the indicated position, given a named destination.

Parameters:

← n target name

30.48.3.25 const char∗ Fl_Help_View::value () const [inline]

Returns the current buffer contents.

30.48.3.26 void Fl_Help_View::value (const char ∗ val)

Sets the current help text buffer to the string provided and reformats the text.

The provided character string val is copied internally and will be freed when value() is called again, or
when the widget is destroyed.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

534 Class Documentation

If val is NULL, then the widget is cleared.

The documentation for this class was generated from the following files:

• Fl_Help_View.H
• Fl_Help_View.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.49 Fl_Hold_Browser Class Reference 535

30.49 Fl_Hold_Browser Class Reference

The Fl_Hold_Browser is a subclass of Fl_Browser which lets the user select a single item, or no items by
clicking on the empty space.

#include <Fl_Hold_Browser.H>

Inheritance diagram for Fl_Hold_Browser::

Fl_Hold_Browser

Fl_Browser

Fl_Browser_

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Hold_Browser (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Hold_Browser widget using the given position, size, and label string.

30.49.1 Detailed Description

The Fl_Hold_Browser is a subclass of Fl_Browser which lets the user select a single item, or no items by
clicking on the empty space.

As long as the mouse button is held down the item pointed to by it is highlighted, and this highlighting
remains on when the mouse button is released. Normally the callback is done when the user releases the
mouse, but you can change this with when().

See Fl_Browser for methods to add and remove lines from the browser.

30.49.2 Constructor & Destructor Documentation

30.49.2.1 Fl_Hold_Browser::Fl_Hold_Browser (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Hold_Browser widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX. The constructor specializes Fl_Browser() by setting the type to
FL_HOLD_BROWSER. The destructor destroys the widget and frees all memory that has been allocated.

The documentation for this class was generated from the following file:

• Fl_Hold_Browser.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

536 Class Documentation

30.50 Fl_Image Class Reference

Fl_Image is the base class used for caching and drawing all kinds of images in FLTK.

#include <Fl_Image.H>

Inheritance diagram for Fl_Image::

Fl_Image

Fl_Bitmap Fl_Pixmap Fl_RGB_Image Fl_Shared_Image Fl_Tiled_Image

Fl_XBM_Image Fl_GIF_Image Fl_XPM_Image Fl_BMP_Image Fl_JPEG_Image Fl_PNG_Image Fl_PNM_Image

Public Member Functions

• virtual void color_average (Fl_Color c, float i)

The color_average() method averages the colors in the image with the FLTK color value c.

• Fl_Image ∗ copy ()

The copy() method creates a copy of the specified image.

• virtual Fl_Image ∗ copy (int W, int H)

The copy() method creates a copy of the specified image.

• int count () const

The count() method returns the number of data values associated with the image.

• int d () const

The first form of the d() method returns the current image depth.

• const char ∗const ∗ data () const

The first form of the data() method returns a pointer to the current image data array.

• virtual void desaturate ()

The desaturate() method converts an image to grayscale.

• void draw (int X, int Y)

The draw() methods draw the image.

• virtual void draw (int X, int Y, int W, int H, int cx=0, int cy=0)

The draw() methods draw the image.

• Fl_Image (int W, int H, int D)

The constructor creates an empty image with the specified width, height, and depth.

• int h () const

See void Fl_Image::h(int).

• void inactive ()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.50 Fl_Image Class Reference 537

The inactive() method calls color_average(FL_BACKGROUND_COLOR, 0.33f) to produce an image that
appears grayed out.

• virtual void label (Fl_Menu_Item ∗m)

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• virtual void label (Fl_Widget ∗w)

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• int ld () const

The first form of the ld() method returns the current line data size in bytes.

• virtual void uncache ()

If the image has been cached for display, delete the cache data.

• int w () const

See void Fl_Image::w(int).

• virtual ∼Fl_Image ()

The destructor is a virtual method that frees all memory used by the image.

Protected Member Functions

• void d (int D)

The first form of the d() method returns the current image depth.

• void data (const char ∗const ∗p, int c)

See const char ∗ const ∗data().

• void draw_empty (int X, int Y)

The protected method draw_empty() draws a box with an X in it.

• void h (int H)

The first form of the h() method returns the current image height in pixels.

• void ld (int LD)

See int ld().

• void w (int W)

The first form of the w() method returns the current image width in pixels.

Static Protected Member Functions

• static void labeltype (const Fl_Label ∗lo, int lx, int ly, int lw, int lh, Fl_Align la)
• static void measure (const Fl_Label ∗lo, int &lw, int &lh)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

538 Class Documentation

30.50.1 Detailed Description

Fl_Image is the base class used for caching and drawing all kinds of images in FLTK.

This class keeps track of common image data such as the pixels, colormap, width, height, and depth. Virtual
methods are used to provide type-specific image handling.

Since the Fl_Image class does not support image drawing by itself, calling the draw() method results in a
box with an X in it being drawn instead.

30.50.2 Constructor & Destructor Documentation

30.50.2.1 Fl_Image::Fl_Image (int W, int H, int D) [inline]

The constructor creates an empty image with the specified width, height, and depth.

The width and height are in pixels. The depth is 0 for bitmaps, 1 for pixmap (colormap) images, and 1 to 4
for color images.

30.50.3 Member Function Documentation

30.50.3.1 void Fl_Image::color_average (Fl_Color c, float i) [virtual]

The color_average() method averages the colors in the image with the FLTK color value c.

The i argument specifies the amount of the original image to combine with the color, so a value of 1.0
results in no color blend, and a value of 0.0 results in a constant image of the specified color. The original
image data is not altered by this method.

Reimplemented in Fl_RGB_Image, Fl_Pixmap, Fl_Shared_Image, and Fl_Tiled_Image.

30.50.3.2 Fl_Image∗ Fl_Image::copy () [inline]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented in Fl_Bitmap, Fl_RGB_Image, Fl_Pixmap, Fl_Shared_Image, and Fl_Tiled_Image.

30.50.3.3 Fl_Image ∗ Fl_Image::copy (int W, int H) [virtual]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented in Fl_Bitmap, Fl_RGB_Image, Fl_Pixmap, Fl_Shared_Image, and Fl_Tiled_Image.

30.50.3.4 int Fl_Image::count () const [inline]

The count() method returns the number of data values associated with the image.

The value will be 0 for images with no associated data, 1 for bitmap and color images, and greater than 2
for pixmap images.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.50 Fl_Image Class Reference 539

30.50.3.5 int Fl_Image::d () const [inline]

The first form of the d() method returns the current image depth.

The return value will be 0 for bitmaps, 1 for pixmaps, and 1 to 4 for color images.

The second form is a protected method that sets the current image depth.

30.50.3.6 void Fl_Image::d (int D) [inline, protected]

The first form of the d() method returns the current image depth.

The return value will be 0 for bitmaps, 1 for pixmaps, and 1 to 4 for color images.

The second form is a protected method that sets the current image depth.

30.50.3.7 const char∗ const∗ Fl_Image::data () const [inline]

The first form of the data() method returns a pointer to the current image data array.

Use the count() method to find the size of the data array.

The second form is a protected method that sets the current array pointer and count of pointers in the array.

30.50.3.8 void Fl_Image::desaturate () [virtual]

The desaturate() method converts an image to grayscale.

If the image contains an alpha channel (depth = 4), the alpha channel is preserved. This method does not
alter the original image data.

Reimplemented in Fl_RGB_Image, Fl_Pixmap, Fl_Shared_Image, and Fl_Tiled_Image.

30.50.3.9 void Fl_Image::draw (int X, int Y) [inline]

The draw() methods draw the image.

This form specifies the upper-lefthand corner of the image

Reimplemented in Fl_Bitmap, Fl_RGB_Image, Fl_Pixmap, Fl_Shared_Image, and Fl_Tiled_Image.

30.50.3.10 void Fl_Image::draw (int X, int Y, int W, int H, int cx = 0, int cy = 0) [virtual]

The draw() methods draw the image.

This form specifies a bounding box for the image, with the origin (upper-lefthand corner) of the image
offset by the cx and cy arguments.

Reimplemented in Fl_Bitmap, Fl_RGB_Image, Fl_Pixmap, Fl_Shared_Image, and Fl_Tiled_Image.

30.50.3.11 void Fl_Image::draw_empty (int X, int Y) [protected]

The protected method draw_empty() draws a box with an X in it.

It can be used to draw any image that lacks image data.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

540 Class Documentation

30.50.3.12 void Fl_Image::h (int H) [inline, protected]

The first form of the h() method returns the current image height in pixels.

The second form is a protected method that sets the current image height.

30.50.3.13 void Fl_Image::inactive () [inline]

The inactive() method calls color_average(FL_BACKGROUND_COLOR, 0.33f) to produce an image that
appears grayed out.

This method does not alter the original image data.

30.50.3.14 void Fl_Image::label (Fl_Menu_Item ∗ m) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented in Fl_Bitmap, Fl_RGB_Image, and Fl_Pixmap.

30.50.3.15 void Fl_Image::label (Fl_Widget ∗ widget) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented in Fl_Bitmap, Fl_RGB_Image, and Fl_Pixmap.

30.50.3.16 int Fl_Image::ld () const [inline]

The first form of the ld() method returns the current line data size in bytes.

Line data is extra data that is included after each line of color image data and is normally not present.

The second form is a protected method that sets the current line data size in bytes.

30.50.3.17 void Fl_Image::uncache () [virtual]

If the image has been cached for display, delete the cache data.

This allows you to change the data used for the image and then redraw it without recreating an image
object.

Reimplemented in Fl_Bitmap, Fl_RGB_Image, Fl_Pixmap, and Fl_Shared_Image.

30.50.3.18 void Fl_Image::w (int W) [inline, protected]

The first form of the w() method returns the current image width in pixels.

The second form is a protected method that sets the current image width.

The documentation for this class was generated from the following files:

• Fl_Image.H
• Fl_Image.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.51 Fl_Input Class Reference 541

30.51 Fl_Input Class Reference

This is the FLTK text input widget.

#include <Fl_Input.H>

Inheritance diagram for Fl_Input::

Fl_Input

Fl_Input_

Fl_Widget

Fl_File_Input Fl_Float_Input Fl_Int_Input Fl_Multiline_Input Fl_Output Fl_Secret_Input

Fl_Multiline_Output

Public Member Functions

• Fl_Input (int, int, int, int, const char ∗=0)

Creates a new Fl_Input widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

Protected Member Functions

• void draw ()

Draws the widget.

30.51.1 Detailed Description

This is the FLTK text input widget.

It displays a single line of text and lets the user edit it. Normally it is drawn with an inset box and a
white background. The text may contain any characters, and will correctly display any UTF text, using ∧X
notation for unprintable control characters. It assumes the font can draw any characters of the used scripts,
which is true for standard fonts under MSWindows and Mac OS X. Characters can be input using the
keyboard or the character palette/map. Character composition is done using dead keys and/or a compose
key as defined by the operating system.

30.51.2 Constructor & Destructor Documentation

30.51.2.1 Fl_Input::Fl_Input (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

542 Class Documentation

Mouse button 1 Moves the cursor to this point. Drag selects
characters. Double click selects words. Triple
click selects all line. Shift+click extends the
selection. When you select text it is automatically
copied to the selection buffer.

Mouse button 2 Insert the selection buffer at the point clicked.
You can also select a region and replace it with
the selection buffer by selecting the region with
mouse button 2.

Mouse button 3 Currently acts like button 1.
Backspace Deletes one character to the left, or deletes the

selected region.
Delete Deletes one character to the right, or deletes the

selected region. Combine with Shift for
equivalent of ∧X (copy+cut).

Enter May cause the callback, see when().

Table 30.1: Fl_Input keyboard and mouse bindings.

30.51.3 Member Function Documentation

30.51.3.1 void Fl_Input::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

Reimplemented in Fl_File_Input.

30.51.3.2 int Fl_Input::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.51 Fl_Input Class Reference 543

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

Reimplemented in Fl_File_Input.

The documentation for this class was generated from the following files:

• Fl_Input.H
• Fl_Input.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

544 Class Documentation

Windows/Linux Mac Function

∧A Command-A Selects all text in the widget.

∧C Command-C Copy the current selection to
the clipboard.

∧I ∧I Insert a tab.

∧J ∧J Insert a Line Feed.
(Similar to literal ’Enter’
character)

∧L ∧L Insert a Form Feed.

∧M ∧M Insert a Carriage Return.

∧V,
Shift-Insert

Command-V Paste the clipboard.
(Macs keyboards don’t have
"Insert" keys, but if they did,
Shift-Insert would work)

∧X,
Shift-Delete

Command-X,
Shift-Delete

Cut.
Copy the selection to the
clipboard and delete it. (If
there’s no selection,
Shift-Delete acts like Delete)

∧Z Command-Z Undo.
This is a single-level undo
mechanism, but all adjacent
deletions and insertions are
concatenated into a single
"undo". Often this will undo a
lot more than you expected.

Shift-∧Z Shift-Command-Z Redo.
Currently same behavior as ∧Z.
Reserved for future multilevel
undo/redo.

Arrow Keys Arrow Keys Standard cursor movement.
Can be combined with Shift to
extend selection.

Home Command-Up,
Command-Left

Move to start of line.
Can be combined with Shift to
extend selection.

End Command-Down,
Command-Right

Move to end of line.
Can be combined with Shift to
extend selection.

Ctrl-Home Command-Up,
Command-PgUp,
Ctrl-Left

Move to top of
document/field.
In single line input, moves to
start of line. In multiline input,
moves to start of top line. Can
be combined with Shift to
extend selection.

Ctrl-End Command-End,
Command-PgDn,
Ctrl-Right

Move to bottom of
document/field.
In single line input, moves to
end of line. In multiline input,
moves to end of last line. Can
be combined with Shift to
extend selection.

Ctrl-Left Alt-Left Word left.
Can be combined with Shift to
extend selection.

Ctrl-Right Alt-Right Word right.
Can be combined with Shift to
extend selection.

Ctrl-Backspace Alt-Backspace Delete word left.

Ctrl-Delete Alt-Delete Delete word right.

Table 30.2: Fl_Input platform specific keyboard bindings.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 545

30.52 Fl_Input_ Class Reference

This class provides a low-overhead text input field.

#include <Fl_Input_.H>

Inheritance diagram for Fl_Input_::

Fl_Input_

Fl_Widget

Fl_Input

Fl_File_Input Fl_Float_Input Fl_Int_Input Fl_Multiline_Input Fl_Output Fl_Secret_Input

Fl_Multiline_Output

Public Member Functions

• int copy (int clipboard)
Put the current selection into the clipboard.

• int copy_cuts ()
Copies the yank buffer to the clipboard.

• void cursor_color (Fl_Color n)
Sets the color of the cursor.

• Fl_Color cursor_color () const
Gets the color of the cursor.

• int cut (int a, int b)
Deletes all characters between index a and b.

• int cut (int n)
Deletes the next n bytes rounded to characters before or after the cursor.

• int cut ()
Deletes the current selection.

• Fl_Input_ (int, int, int, int, const char ∗=0)
Creates a new Fl_Input_ widget.

• Fl_Char index (int i) const
Returns the character at index i.

• void input_type (int t)
Sets the input field type.

• int input_type () const

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

546 Class Documentation

Gets the input field type.

• int insert (const char ∗t, int l=0)
Inserts text at the cursor position.

• int mark (int m)
Sets the current selection mark.

• int mark () const
Gets the current selection mark.

• void maximum_size (int m)
Sets the maximum length of the input field.

• int maximum_size () const
Gets the maximum length of the input field.

• int position (int p)
Set the cursor position and mark.

• int position (int p, int m)
Sets the index for the cursor and mark.

• int position () const
Gets the position of the text cursor.

• void readonly (int b)
Sets the read-only state of the input field.

• int readonly () const
Gets the read-only state of the input field.

• int replace (int, int, const char ∗, int=0)
Deletes text from b to e and inserts the new string text.

• void resize (int, int, int, int)
Changes the size of the widget.

• void shortcut (int s)
Sets the shortcut key associated with this widget.

• int shortcut () const
Return the shortcut key associated with this widget.

• void size (int W, int H)
Sets the width and height of this widget.

• int size () const
Returns the number of bytes in value().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 547

• int static_value (const char ∗, int)
Changes the widget text.

• int static_value (const char ∗)
Changes the widget text.

• int tab_nav () const
Gets whether the Tab key causes focus navigation in multiline input fields or not.

• void tab_nav (int val)
Sets whether the Tab key does focus navigation, or inserts tab characters into Fl_Multiline_Input.

• void textcolor (Fl_Color n)
Sets the color of the text in the input field.

• Fl_Color textcolor () const
Gets the color of the text in the input field.

• void textfont (Fl_Font s)
Sets the font of the text in the input field.

• Fl_Font textfont () const
Gets the font of the text in the input field.

• void textsize (Fl_Fontsize s)
Sets the size of the text in the input field.

• Fl_Fontsize textsize () const
Gets the size of the text in the input field.

• int undo ()
Undoes previous changes to the text buffer.

• const char ∗ value () const
Returns the text displayed in the widget.

• int value (const char ∗, int)
Changes the widget text.

• int value (const char ∗)
Changes the widget text.

• void wrap (int b)
Sets the word wrapping state of the input field.

• int wrap () const
Gets the word wrapping state of the input field.

• ∼Fl_Input_ ()
Destroys the widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

548 Class Documentation

Protected Member Functions

• void drawtext (int, int, int, int)
Draws the text in the passed bounding box.

• void handle_mouse (int, int, int, int, int keepmark=0)
Handles mouse clicks and mouse moves.

• int handletext (int e, int, int, int, int)
Handles all kinds of text field related events.

• int line_end (int i) const
Finds the end of a line.

• int line_start (int i) const
Finds the start of a line.

• int linesPerPage ()
• void maybe_do_callback ()
• int up_down_position (int, int keepmark=0)

Moves the cursor to the column given by up_down_pos.

• int word_end (int i) const
Finds the end of a word.

• int word_start (int i) const
Finds the start of a word.

• int xscroll () const
• void yscroll (int y)
• int yscroll () const

30.52.1 Detailed Description

This class provides a low-overhead text input field.

This is a virtual base class below Fl_Input. It has all the same interfaces, but lacks the handle() and draw()
method. You may want to subclass it if you are one of those people who likes to change how the editing
keys work. It may also be useful for adding scrollbars to the input field.

This can act like any of the subclasses of Fl_Input, by setting type() to one of the following values:

#define FL_NORMAL_INPUT 0
#define FL_FLOAT_INPUT 1
#define FL_INT_INPUT 2
#define FL_MULTILINE_INPUT 4
#define FL_SECRET_INPUT 5
#define FL_INPUT_TYPE 7
#define FL_INPUT_READONLY 8
#define FL_NORMAL_OUTPUT (FL_NORMAL_INPUT | FL_INPUT_READONLY)
#define FL_MULTILINE_OUTPUT (FL_MULTILINE_INPUT | FL_INPUT_READONLY)
#define FL_INPUT_WRAP 16
#define FL_MULTILINE_INPUT_WRAP (FL_MULTILINE_INPUT | FL_INPUT_WRAP)
#define FL_MULTILINE_OUTPUT_WRAP (FL_MULTILINE_INPUT | FL_INPUT_READONLY | FL_INPUT_WRAP)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 549

All variables that represent an index into a text buffer are byte-oriented, not character oriented. Since UTF-
8 characters can be up to six bytes long, simply incrementing such an index will not reliably advance to the
next character in the text buffer.

Indices and pointers into the text buffer should always point at a 7 bit ASCII character or the beginning of a
UTF-8 character sequence. Behavior for false UTF-8 sequences and pointers into the middle of a sequence
are undefined.

See also:

Fl_Text_Display, Fl_Text_Editor for more powerful text handling widgets

30.52.2 Constructor & Destructor Documentation

30.52.2.1 Fl_Input_::Fl_Input_ (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Input_ widget.

This function creates a new Fl_Input_ widget and adds it to the current Fl_Group. The value() is set to
NULL. The default boxtype is FL_DOWN_BOX.

Parameters:

X,Y,W,H the dimensions of the new widget

l an optional label text

30.52.2.2 Fl_Input_::∼Fl_Input_ ()

Destroys the widget.

The destructor clears all allocated buffers and removes the widget from the parent Fl_Group.

30.52.3 Member Function Documentation

30.52.3.1 int Fl_Input_::copy (int clipboard)

Put the current selection into the clipboard.

This function copies the current selection between mark() and position() into the specified clipboard.
This does not replace the old clipboard contents if position() and mark() are equal. Clipboard 0 maps to
the current text selection and clipboard 1 maps to the cut/paste clipboard.

Parameters:

clipboard the clipboard destination 0 or 1

Returns:

0 if no text is selected, 1 if the selection was copied

See also:

Fl::copy(const char ∗, int, int)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

550 Class Documentation

30.52.3.2 int Fl_Input_::copy_cuts ()

Copies the yank buffer to the clipboard.

This method copies all the previous contiguous cuts from the undo information to the clipboard. This
function implements the ∧K shortcut key.

Returns:

0 if the operation did not change the clipboard

See also:

copy(int), cut()

30.52.3.3 void Fl_Input_::cursor_color (Fl_Color n) [inline]

Sets the color of the cursor.

The default color for the cursor is FL_BLACK.

Parameters:

← n the new cursor color

30.52.3.4 Fl_Color Fl_Input_::cursor_color () const [inline]

Gets the color of the cursor.

Returns:

the current cursor color

30.52.3.5 int Fl_Input_::cut (int a, int b) [inline]

Deletes all characters between index a and b.

This function deletes the currently selected text without storing it in the clipboard. To use the clipboard,
you may call copy() first or copy_cuts() after this call.

Parameters:

a,b range of bytes rounded to full characters and clamped to the buffer

Returns:

0 if no data was copied

30.52.3.6 int Fl_Input_::cut (int n) [inline]

Deletes the next n bytes rounded to characters before or after the cursor.

This function deletes the currently selected text without storing it in the clipboard. To use the clipboard,
you may call copy() first or copy_cuts() after this call.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 551

Parameters:

n number of bytes rounded to full characters and clamped to the buffer. A negative number will cut
characters to the left of the cursor.

Returns:

0 if no data was copied

30.52.3.7 int Fl_Input_::cut () [inline]

Deletes the current selection.

This function deletes the currently selected text without storing it in the clipboard. To use the clipboard,
you may call copy() first or copy_cuts() after this call.

Returns:

0 if no data was copied

30.52.3.8 void Fl_Input_::drawtext (int X, int Y, int W, int H) [protected]

Draws the text in the passed bounding box.

If damage() & FL_DAMAGE_ALL is true, this assumes the area has already been erased to color().
Otherwise it does minimal update and erases the area itself.

Parameters:

X,Y,W,H area that must be redrawn

30.52.3.9 void Fl_Input_::handle_mouse (int X, int Y, int, int, int drag = 0) [protected]

Handles mouse clicks and mouse moves.

Todo

Add comment and parameters

30.52.3.10 int Fl_Input_::handletext (int event, int X, int Y, int W, int H) [protected]

Handles all kinds of text field related events.

This is called by derived classes.

Todo

Add comment and parameters

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

552 Class Documentation

30.52.3.11 unsigned int Fl_Input_::index (int i) const

Returns the character at index i.

This function returns the UTF-8 character at i as a ucs4 character code.

Parameters:

← i index into the value field

Returns:

the character at index i

30.52.3.12 void Fl_Input_::input_type (int t) [inline]

Sets the input field type.

A redraw() is required to reformat the input field.

Parameters:

← t new input type

30.52.3.13 int Fl_Input_::input_type () const [inline]

Gets the input field type.

Returns:

the current input type

30.52.3.14 int Fl_Input_::insert (const char ∗ t, int l = 0) [inline]

Inserts text at the cursor position.

This function inserts the string in t at the cursor position() and moves the new position and mark to the
end of the inserted text.

Parameters:

← t text that will be inserted

← l length of text, or 0 if the string is terminated by nul.

Returns:

0 if no text was inserted

30.52.3.15 int Fl_Input_::line_end (int i) const [protected]

Finds the end of a line.

This call calculates the end of a line based on the given index i.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 553

Parameters:

← i starting index for the search

Returns:

end of the line

30.52.3.16 int Fl_Input_::line_start (int i) const [protected]

Finds the start of a line.

This call calculates the start of a line based on the given index i.

Parameters:

← i starting index for the search

Returns:

start of the line

30.52.3.17 int Fl_Input_::mark (int m) [inline]

Sets the current selection mark.

mark(n) is the same as position(position(),n).

Parameters:

m new index of the mark

Returns:

0 if the mark did not change

See also:

position(), position(int, int)

30.52.3.18 int Fl_Input_::mark () const [inline]

Gets the current selection mark.

Returns:

index into the text

30.52.3.19 void Fl_Input_::maximum_size (int m) [inline]

Sets the maximum length of the input field.

Todo

It is not clear if this function is actually required

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

554 Class Documentation

30.52.3.20 int Fl_Input_::maximum_size () const [inline]

Gets the maximum length of the input field.

Todo

It is not clear if this function is actually required

30.52.3.21 int Fl_Input_::position (int p) [inline]

Set the cursor position and mark.

position(n) is the same as position(n, n).

Parameters:

p new index for cursor and mark

Returns:

0 if no positions changed

See also:

position(int, int), position(), mark(int)

30.52.3.22 int Fl_Input_::position (int p, int m)

Sets the index for the cursor and mark.

The input widget maintains two pointers into the string. The position (p) is where the cursor is. The mark
(m) is the other end of the selected text. If they are equal then there is no selection. Changing this does not
affect the clipboard (use copy() to do that).

Changing these values causes a redraw(). The new values are bounds checked.

Parameters:

p index for the cursor position

m index for the mark

Returns:

0 if no positions changed

See also:

position(int), position(), mark(int)

Reimplemented from Fl_Widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 555

30.52.3.23 int Fl_Input_::position () const [inline]

Gets the position of the text cursor.

Returns:

the cursor position as an index

See also:

position(int, int)

30.52.3.24 void Fl_Input_::readonly (int b) [inline]

Sets the read-only state of the input field.

Parameters:

← b if b is 0, the text in this widget can be edited by the user

30.52.3.25 int Fl_Input_::readonly () const [inline]

Gets the read-only state of the input field.

Returns:

non-zero if this widget is read-only

30.52.3.26 int Fl_Input_::replace (int b, int e, const char ∗ text, int ilen = 0)

Deletes text from b to e and inserts the new string text.

All changes to the text buffer go through this function. It deletes the region between a and b (either one
may be less or equal to the other), and then inserts the string text at that point and moves the mark() and
position() to the end of the insertion. Does the callback if when() & FL_WHEN_CHANGED and there is
a change.

Set b and e equal to not delete anything. Set text to NULL to not insert anything.

ilen can be zero or strlen(text), which saves a tiny bit of time if you happen to already know the
length of the insertion, or can be used to insert a portion of a string.

b and e are clamped to the 0..size() range, so it is safe to pass any values.

cut() and insert() are just inline functions that call replace().

Parameters:

← b beginning index of text to be deleted
← e ending index of text to be deleted and insertion position
← text string that will be inserted
← ilen length of text or 0 for nul terminated strings

Returns:

0 if nothing changed

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

556 Class Documentation

30.52.3.27 void Fl_Input_::resize (int X, int Y, int W, int H) [virtual]

Changes the size of the widget.

This call updates the text layout so that the cursor is visible.

Parameters:

← X,Y,W,H new size of the widget

See also:

Fl_Widget::resize(int, int, int, int)

Reimplemented from Fl_Widget.

30.52.3.28 void Fl_Input_::shortcut (int s) [inline]

Sets the shortcut key associated with this widget.

Pressing the shortcut key gives text editing focus to this widget.

Parameters:

← s new shortcut keystroke

See also:

Fl_Button::shortcut()

30.52.3.29 int Fl_Input_::shortcut () const [inline]

Return the shortcut key associated with this widget.

Returns:

shortcut keystroke

See also:

Fl_Button::shortcut()

30.52.3.30 void Fl_Input_::size (int W, int H) [inline]

Sets the width and height of this widget.

Parameters:

←W,H new width and height

See also:

Fl_Widget::size(int, int)

Reimplemented from Fl_Widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 557

30.52.3.31 int Fl_Input_::size () const [inline]

Returns the number of bytes in value().

This may be greater than strlen(value()) if there are nul characters in the text.

Returns:

number of bytes in the text

30.52.3.32 int Fl_Input_::static_value (const char ∗ str, int len)

Changes the widget text.

This function changes the text and sets the mark and the point to the end of it. The string is not copied.
If the user edits the string it is copied to the internal buffer then. This can save a great deal of time and
memory if your program is rapidly changing the values of text fields, but this will only work if the passed
string remains unchanged until either the Fl_Input is destroyed or value() is called again.

You can use the len parameter to directly set the length if you know it already or want to put nul
characters in the text.

Parameters:

← str the new text

← len the length of the new text

Returns:

non-zero if the new value is different than the current one

30.52.3.33 int Fl_Input_::static_value (const char ∗ str)

Changes the widget text.

This function changes the text and sets the mark and the point to the end of it. The string is not copied.
If the user edits the string it is copied to the internal buffer then. This can save a great deal of time and
memory if your program is rapidly changing the values of text fields, but this will only work if the passed
string remains unchanged until either the Fl_Input is destroyed or value() is called again.

Parameters:

← str the new text

Returns:

non-zero if the new value is different than the current one

30.52.3.34 int Fl_Input_::tab_nav () const [inline]

Gets whether the Tab key causes focus navigation in multiline input fields or not.

If enabled (default), hitting Tab causes focus navigation to the next widget.

If disabled, hitting Tab inserts a tab character into the text field.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

558 Class Documentation

Returns:

1 if Tab advances focus (default), 0 if Tab inserts tab characters.

See also:

tab_nav(int)

30.52.3.35 void Fl_Input_::tab_nav (int val) [inline]

Sets whether the Tab key does focus navigation, or inserts tab characters into Fl_Multiline_Input.

By default this flag is enabled to provide the ’normal’ behavior most users expect; Tab navigates focus to
the next widget. To inserting an actual Tab character, users can use Ctrl-I or copy/paste.

Disabling this flag gives the old FLTK behavior where Tab inserts a tab character into the text field, in
which case only the mouse can be used to navigate to the next field.

History: This flag was provided for backwards support of FLTK’s old 1.1.x behavior where Tab inserts a tab
character instead of navigating focus to the next widget. This behavior was unique to Fl_Multiline_Input.
With the advent of Fl_Text_Editor, this old behavior has been deprecated.

Parameters:

← val If val is 1, Tab advances focus (default).
If val is 0, Tab inserts a tab character (old FLTK behavior).

30.52.3.36 void Fl_Input_::textcolor (Fl_Color n) [inline]

Sets the color of the text in the input field.

The text color defaults to FL_FOREGROUND_COLOR.

Parameters:

← n new text color

See also:

textcolor()

30.52.3.37 Fl_Color Fl_Input_::textcolor () const [inline]

Gets the color of the text in the input field.

Returns:

the text color

See also:

textcolor(Fl_Color)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 559

30.52.3.38 void Fl_Input_::textfont (Fl_Font s) [inline]

Sets the font of the text in the input field.

The text font defaults to FL_HELVETICA.

Parameters:

← s the new text font

30.52.3.39 Fl_Font Fl_Input_::textfont () const [inline]

Gets the font of the text in the input field.

Returns:

the current Fl_Font index

30.52.3.40 void Fl_Input_::textsize (Fl_Fontsize s) [inline]

Sets the size of the text in the input field.

The text height defaults to FL_NORMAL_SIZE.

Parameters:

← s the new font height in pixel units

30.52.3.41 Fl_Fontsize Fl_Input_::textsize () const [inline]

Gets the size of the text in the input field.

Returns:

the text height in pixels

30.52.3.42 int Fl_Input_::undo ()

Undoes previous changes to the text buffer.

This call undoes a number of previous calls to replace().

Returns:

non-zero if any change was made.

30.52.3.43 int Fl_Input_::up_down_position (int i, int keepmark = 0) [protected]

Moves the cursor to the column given by up_down_pos.

This function is helpful when implementing up and down cursor movement. It moves the cursor from the
beginning of a line to the column indicated by the global variable up_down_pos in pixel units.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

560 Class Documentation

Parameters:

← i index into the beginning of a line of text

← keepmark if set, move only the cursor, but not the mark

Returns:

index to new cursor position

30.52.3.44 const char∗ Fl_Input_::value () const [inline]

Returns the text displayed in the widget.

This function returns the current value, which is a pointer to the internal buffer and is valid only until the
next event is handled.

Returns:

pointer to an internal buffer - do not free() this

See also:

Fl_Input_::value(const char∗)

30.52.3.45 int Fl_Input_::value (const char ∗ str, int len)

Changes the widget text.

This function changes the text and sets the mark and the point to the end of it. The string is copied to the
internal buffer. Passing NULL is the same as "".

You can use the length parameter to directly set the length if you know it already or want to put nul
characters in the text.

Parameters:

← str the new text

← len the length of the new text

Returns:

non-zero if the new value is different than the current one

See also:

Fl_Input_::value(const char∗ str), Fl_Input_::value()

Reimplemented in Fl_File_Input.

30.52.3.46 int Fl_Input_::value (const char ∗ str)

Changes the widget text.

This function changes the text and sets the mark and the point to the end of it. The string is copied to the
internal buffer. Passing NULL is the same as "".

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 561

Parameters:

← str the new text

Returns:

non-zero if the new value is different than the current one

See also:

Fl_Input_::value(const char∗ str, int len), Fl_Input_::value()

Reimplemented in Fl_File_Input.

30.52.3.47 int Fl_Input_::word_end (int i) const [protected]

Finds the end of a word.

This call calculates the end of a word based on the given index i. Calling this function repeatedly will
move forwards to the end of the text.

Parameters:

← i starting index for the search

Returns:

end of the word

30.52.3.48 int Fl_Input_::word_start (int i) const [protected]

Finds the start of a word.

This call calculates the start of a word based on the given index i. Calling this function repeatedly will
move backwards to the beginning of the text.

Parameters:

← i starting index for the search

Returns:

start of the word

30.52.3.49 void Fl_Input_::wrap (int b) [inline]

Sets the word wrapping state of the input field.

Word wrap is only functional with multi-line input fields.

30.52.3.50 int Fl_Input_::wrap () const [inline]

Gets the word wrapping state of the input field.

Word wrap is only functional with multi-line input fields.

The documentation for this class was generated from the following files:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

562 Class Documentation

• Fl_Input_.H
• Fl_Input_.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.53 Fl_Input_Choice Class Reference 563

30.53 Fl_Input_Choice Class Reference

A combination of the input widget and a menu button.

#include <Fl_Input_Choice.H>

Inheritance diagram for Fl_Input_Choice::

Fl_Input_Choice

Fl_Group

Fl_Widget

Classes

• class InputMenuButton

Public Member Functions

• void add (const char ∗s)
Adds an item to the menu.

• int changed () const
Checks if the widget value changed since the last callback.

• void clear ()
Removes all items from the menu.

• void clear_changed ()
Marks the value of the widget as unchanged.

• void down_box (Fl_Boxtype b)
Sets the box type of the menu button.

• Fl_Boxtype down_box () const
Gets the box type of the menu button.

• Fl_Input_Choice (int x, int y, int w, int h, const char ∗l=0)
Creates a new Fl_Input_Choice widget using the given position, size, and label string.

• Fl_Input ∗ input ()
Returns a reference to the internal Fl_Input widget.

• void menu (const Fl_Menu_Item ∗m)
Sets the Fl_Menu_Item array used for the menu.

• const Fl_Menu_Item ∗ menu ()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

564 Class Documentation

Gets the Fl_Menu_Item array used for the menu.

• Fl_Menu_Button ∗ menubutton ()

Returns a reference to the internal Fl_Menu_Button widget.

• void resize (int X, int Y, int W, int H)

Resizes the Fl_Group widget and all of its children.

• void set_changed ()

Marks the value of the widget as changed.

• void textcolor (Fl_Color c)

Sets the encapsulated input text color attributes.

• Fl_Color textcolor () const

Gets the encapsulated input text color attributes.

• void textfont (Fl_Font f)

Sets the encapsulated input text font attributes.

• Fl_Font textfont () const

Gets the encapsulated input text font attributes.

• void textsize (Fl_Fontsize s)

Sets the encapsulated input size attributes.

• Fl_Fontsize textsize () const

Gets the encapsulated input size attributes.

• void value (int val)

See void Fl_Input_Choice::value(const char ∗s).

• void value (const char ∗val)

Sets or returns the input widget’s current contents.

• const char ∗ value () const

See void Fl_Input_Choice::value(const char ∗s).

30.53.1 Detailed Description

A combination of the input widget and a menu button.

The user can either type into the input area, or use the menu button chooser on the right, which loads the
input area with predefined text. Normally it is drawn with an inset box and a white background.

The application can directly access both the input and menu widgets directly, using the menubutton() and
input() accessor methods.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.53 Fl_Input_Choice Class Reference 565

30.53.2 Constructor & Destructor Documentation

30.53.2.1 Fl_Input_Choice::Fl_Input_Choice (int x, int y, int w, int h, const char ∗ l = 0)
[inline]

Creates a new Fl_Input_Choice widget using the given position, size, and label string.

Inherited destructor Destroys the widget and any value associated with it.

30.53.3 Member Function Documentation

30.53.3.1 void Fl_Input_Choice::add (const char ∗ s) [inline]

Adds an item to the menu.

30.53.3.2 int Fl_Input_Choice::changed () const [inline]

Checks if the widget value changed since the last callback.

"Changed" is a flag that is turned on when the user changes the value stored in the widget. This is only used
by subclasses of Fl_Widget that store values, but is in the base class so it is easier to scan all the widgets in
a panel and do_callback() on the changed ones in response to an "OK" button.

Most widgets turn this flag off when they do the callback, and when the program sets the stored value.

Return values:

0 if the value did not change

See also:

set_changed(), clear_changed()

Reimplemented from Fl_Widget.

30.53.3.3 void Fl_Input_Choice::clear () [inline]

Removes all items from the menu.

Reimplemented from Fl_Group.

30.53.3.4 void Fl_Input_Choice::clear_changed () [inline]

Marks the value of the widget as unchanged.

See also:

changed(), set_changed()

Reimplemented from Fl_Widget.

30.53.3.5 Fl_Input∗ Fl_Input_Choice::input () [inline]

Returns a reference to the internal Fl_Input widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

566 Class Documentation

30.53.3.6 void Fl_Input_Choice::menu (const Fl_Menu_Item ∗ m) [inline]

Sets the Fl_Menu_Item array used for the menu.

30.53.3.7 const Fl_Menu_Item∗ Fl_Input_Choice::menu () [inline]

Gets the Fl_Menu_Item array used for the menu.

30.53.3.8 Fl_Menu_Button∗ Fl_Input_Choice::menubutton () [inline]

Returns a reference to the internal Fl_Menu_Button widget.

30.53.3.9 void Fl_Input_Choice::resize (int X, int Y, int W, int H) [inline, virtual]

Resizes the Fl_Group widget and all of its children.

The Fl_Group widget first resizes itself, and then it moves and resizes all its children according to the rules
documented for Fl_Group::resizable(Fl_Widget∗)

See also:

Fl_Group::resizable(Fl_Widget∗)
Fl_Group::resizable()
Fl_Widget::resize(int,int,int,int)

Reimplemented from Fl_Group.

30.53.3.10 void Fl_Input_Choice::set_changed () [inline]

Marks the value of the widget as changed.

See also:

changed(), clear_changed()

Reimplemented from Fl_Widget.

30.53.3.11 void Fl_Input_Choice::value (const char ∗ val) [inline]

Sets or returns the input widget’s current contents.

The second form sets the contents using the index into the menu which you can set as an integer. Setting
the value effectively ’chooses’ this menu item, and sets it as the new input text, deleting the previous text.

The documentation for this class was generated from the following file:

• Fl_Input_Choice.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.54 Fl_Int_Input Class Reference 567

30.54 Fl_Int_Input Class Reference

The Fl_Int_Input class is a subclass of Fl_Input that only allows the user to type decimal digits (or hex
numbers of the form 0xaef).

#include <Fl_Int_Input.H>

Inheritance diagram for Fl_Int_Input::

Fl_Int_Input

Fl_Input

Fl_Input_

Fl_Widget

Public Member Functions

• Fl_Int_Input (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Int_Input widget using the given position, size, and label string.

30.54.1 Detailed Description

The Fl_Int_Input class is a subclass of Fl_Input that only allows the user to type decimal digits (or hex
numbers of the form 0xaef).

30.54.2 Constructor & Destructor Documentation

30.54.2.1 Fl_Int_Input::Fl_Int_Input (int X, int Y, int W, int H, const char ∗ l = 0) [inline]

Creates a new Fl_Int_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Inherited destructor Destroys the widget and any value associated with it.

The documentation for this class was generated from the following file:

• Fl_Int_Input.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

568 Class Documentation

30.55 Fl_JPEG_Image Class Reference

The Fl_JPEG_Image class supports loading, caching, and drawing of Joint Photographic Experts Group
(JPEG) File Interchange Format (JFIF) images.

#include <Fl_JPEG_Image.H>

Inheritance diagram for Fl_JPEG_Image::

Fl_JPEG_Image

Fl_RGB_Image

Fl_Image

Public Member Functions

• Fl_JPEG_Image (const char ∗name, const unsigned char ∗data)
The constructor loads the JPEG image from memory.

• Fl_JPEG_Image (const char ∗filename)
The constructor loads the JPEG image from the given jpeg filename.

30.55.1 Detailed Description

The Fl_JPEG_Image class supports loading, caching, and drawing of Joint Photographic Experts Group
(JPEG) File Interchange Format (JFIF) images.

The class supports grayscale and color (RGB) JPEG image files.

30.55.2 Constructor & Destructor Documentation

30.55.2.1 Fl_JPEG_Image::Fl_JPEG_Image (const char ∗ filename)

The constructor loads the JPEG image from the given jpeg filename.

The inherited destructor frees all memory and server resources that are used by the image.

There is no error function in this class. If the image has loaded correctly, w(), h(), and d() should return
values greater zero.

Parameters:

filename a full path and name pointing to a valid jpeg file.

30.55.2.2 Fl_JPEG_Image::Fl_JPEG_Image (const char ∗ name, const unsigned char ∗ data)

The constructor loads the JPEG image from memory.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.55 Fl_JPEG_Image Class Reference 569

The inherited destructor frees all memory and server resources that are used by the image.

There is no error function in this class. If the image has loaded correctly, w(), h(), and d() should return
values greater zero.

Parameters:

name developer shoud provide a unique name for this image

data a pointer to the memorry location of the jpeg image

The documentation for this class was generated from the following files:

• Fl_JPEG_Image.H
• Fl_JPEG_Image.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

570 Class Documentation

30.56 Fl_Label Struct Reference

This struct stores all information for a text or mixed graphics label.

#include <Fl_Widget.H>

Public Member Functions

• void draw (int, int, int, int, Fl_Align) const
Draws the label aligned to the given box.

• void measure (int &w, int &h) const
Measures the size of the label.

Public Attributes

• Fl_Align align_
alignment of label

• Fl_Color color
text color

• Fl_Image ∗ deimage
optional image for a deactivated label

• Fl_Font font
label font used in text

• Fl_Image ∗ image
optional image for an active label

• Fl_Fontsize size
size of label font

• uchar type
type of label.

• const char ∗ value
label text

30.56.1 Detailed Description

This struct stores all information for a text or mixed graphics label.

Todo

For FLTK 1.3, the Fl_Label type will become a widget by itself. That way we will be avoiding a lot
of code duplication by handling labels in a similar fashion to widgets containing text. We also provide
an easy interface for very complex labels, containing html or vector graphics.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.56 Fl_Label Struct Reference 571

30.56.2 Member Function Documentation

30.56.2.1 void Fl_Label::draw (int X, int Y, int W, int H, Fl_Align align) const

Draws the label aligned to the given box.

Draws a label with arbitrary alignment in an arbitrary box.

30.56.2.2 void Fl_Label::measure (int & W, int & H) const

Measures the size of the label.

Parameters:

↔W,H : this is the requested size for the label text plus image; on return, this will contain the size
needed to fit the label

30.56.3 Member Data Documentation

30.56.3.1 uchar Fl_Label::type

type of label.

See also:

Fl_Labeltype

The documentation for this struct was generated from the following files:

• Fl_Widget.H
• fl_labeltype.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

572 Class Documentation

30.57 Fl_Light_Button Class Reference

#include <Fl_Light_Button.H>

Inheritance diagram for Fl_Light_Button::

Fl_Light_Button

Fl_Button

Fl_Widget

Fl_Check_Button Fl_Round_Button

Public Member Functions

• Fl_Light_Button (int x, int y, int w, int h, const char ∗l=0)

Creates a new Fl_Light_Button widget using the given position, size, and label string.

• virtual int handle (int)

Handles the specified event.

Protected Member Functions

• virtual void draw ()

Draws the widget.

30.57.1 Detailed Description

This subclass displays the "on" state by turning on a light, rather than drawing pushed in. The shape of the
"light" is initially set to FL_DOWN_BOX. The color of the light when on is controlled with selection_-
color(), which defaults to FL_YELLOW.

Buttons generate callbacks when they are clicked by the user. You control exactly when and how by
changing the values for type() and when().

Figure 30.17: Fl_Light_Button

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.57 Fl_Light_Button Class Reference 573

30.57.2 Constructor & Destructor Documentation

30.57.2.1 Fl_Light_Button::Fl_Light_Button (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Light_Button widget using the given position, size, and label string.

The destructor deletes the check button.

30.57.3 Member Function Documentation

30.57.3.1 void Fl_Light_Button::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Button.

30.57.3.2 int Fl_Light_Button::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood
1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Button.

The documentation for this class was generated from the following files:

• Fl_Light_Button.H
• Fl_Light_Button.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

574 Class Documentation

30.58 Fl_Menu_ Class Reference

Base class of all widgets that have a menu in FLTK.

#include <Fl_Menu_.H>

Inheritance diagram for Fl_Menu_::

Fl_Menu_

Fl_Widget

Fl_Choice Fl_Menu_Bar Fl_Menu_Button

Fl_Sys_Menu_Bar

Public Member Functions

• int add (const char ∗)
This is a Forms (and SGI GL library) compatible add function, it adds many menu items, with ’|’ separating
the menu items, and tab separating the menu item names from an optional shortcut string.

• int add (const char ∗a, const char ∗b, Fl_Callback ∗c, void ∗d=0, int e=0)
See int Fl_Menu_::add(const char∗ label, int shortcut, Fl_Callback∗, void ∗user_data=0, int flags=0).

• int add (const char ∗, int shortcut, Fl_Callback ∗, void ∗=0, int=0)
Adds a new menu item.

• void clear ()
Same as menu(NULL), set the array pointer to null, indicating a zero-length menu.

• int clear_submenu (int index)
Clears the specified submenu pointed to by index of all menu items.

• void copy (const Fl_Menu_Item ∗m, void ∗user_data=0)
Sets the menu array pointer with a copy of m that will be automatically deleted.

• void down_box (Fl_Boxtype b)
See Fl_Boxtype Fl_Menu_::down_box() const.

• Fl_Boxtype down_box () const
This box type is used to surround the currently-selected items in the menus.

• void down_color (unsigned c)
For back compatibility, same as selection_color().

• Fl_Color down_color () const
For back compatibility, same as selection_color().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.58 Fl_Menu_ Class Reference 575

• int find_index (Fl_Callback ∗cb) const
Find the index into the menu array for a given callback cb.

• int find_index (const Fl_Menu_Item ∗item) const
Find the index the menu array for given item.

• int find_index (const char ∗name) const
Find the menu item index for a given menu pathname, such as "Edit/Copy".

• const Fl_Menu_Item ∗ find_item (Fl_Callback ∗)
Find the menu item for the given callback cb.

• const Fl_Menu_Item ∗ find_item (const char ∗name)
Find the menu item for a given menu pathname, such as "Edit/Copy".

• Fl_Menu_ (int, int, int, int, const char ∗=0)
Creates a new Fl_Menu_ widget using the given position, size, and label string.

• void global ()
Make the shortcuts for this menu work no matter what window has the focus when you type it.

• int insert (int index, const char ∗a, const char ∗b, Fl_Callback ∗c, void ∗d=0, int e=0)
See int Fl_Menu_::insert(const char∗ label, int shortcut, Fl_Callback∗, void ∗user_data=0, int flags=0).

• int insert (int index, const char ∗, int shortcut, Fl_Callback ∗, void ∗=0, int=0)
Inserts a new menu item at the specified index position.

• int item_pathname (char ∗name, int namelen, const Fl_Menu_Item ∗finditem=0) const
Get the menu ’pathname’ for the specified menuitem.

• void menu (const Fl_Menu_Item ∗m)
Sets the menu array pointer directly.

• const Fl_Menu_Item ∗ menu () const
Returns a pointer to the array of Fl_Menu_Items.

• int mode (int i) const
Gets the flags of item i.

• void mode (int i, int fl)
Sets the flags of item i.

• const Fl_Menu_Item ∗ mvalue () const
Returns a pointer to the last menu item that was picked.

• const Fl_Menu_Item ∗ picked (const Fl_Menu_Item ∗)
When user picks a menu item, call this.

• void remove (int)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

576 Class Documentation

Deletes item i from the menu.

• void replace (int, const char ∗)
Changes the text of item i.

• void shortcut (int i, int s)
Changes the shortcut of item i to n.

• void size (int W, int H)
Changes the size of the widget.

• int size () const
This returns the number of Fl_Menu_Item structures that make up the menu, correctly counting submenus.

• const Fl_Menu_Item ∗ test_shortcut ()
Returns the menu item with the entered shortcut (key value).

• const char ∗ text (int i) const
Returns the title of item i.

• const char ∗ text () const
Returns the title of the last item chosen.

• void textcolor (Fl_Color c)
Sets the current color of menu item labels.

• Fl_Color textcolor () const
Get the current color of menu item labels.

• void textfont (Fl_Font c)
Sets the current font of menu item labels.

• Fl_Font textfont () const
Gets the current font of menu item labels.

• void textsize (Fl_Fontsize c)
Sets the font size of menu item labels.

• Fl_Fontsize textsize () const
Gets the font size of menu item labels.

• int value (int i)
The value is the index into menu() of the last item chosen by the user.

• int value (const Fl_Menu_Item ∗)
The value is the index into menu() of the last item chosen by the user.

• int value () const
Returns the index into menu() of the last item chosen by the user.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.58 Fl_Menu_ Class Reference 577

Protected Attributes

• uchar alloc
• uchar down_box_
• Fl_Color textcolor_
• Fl_Font textfont_
• Fl_Fontsize textsize_

30.58.1 Detailed Description

Base class of all widgets that have a menu in FLTK.

Currently FLTK provides you with Fl_Menu_Button, Fl_Menu_Bar, and Fl_Choice.

The class contains a pointer to an array of structures of type Fl_Menu_Item. The array may either be
supplied directly by the user program, or it may be "private": a dynamically allocated array managed by
the Fl_Menu_.

30.58.2 Constructor & Destructor Documentation

30.58.2.1 Fl_Menu_::Fl_Menu_ (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Menu_ widget using the given position, size, and label string.

menu() is initialized to null.

30.58.3 Member Function Documentation

30.58.3.1 int Fl_Menu_::add (const char ∗ str)

This is a Forms (and SGI GL library) compatible add function, it adds many menu items, with ’|’ separating
the menu items, and tab separating the menu item names from an optional shortcut string.

The passed string is split at any ’|’ characters and then add(s,0,0,0,0) is done with each section. This is
often useful if you are just using the value, and is compatible with Forms and other GL programs. The
section strings use the same special characters as described for the long version of add().

No items must be added to a menu during a callback to the same menu.

Parameters:

str string containing multiple menu labels as described above

Returns:

the index into the menu() array, where the entry was added

30.58.3.2 int Fl_Menu_::add (const char ∗ label, int shortcut, Fl_Callback ∗ callback, void ∗
userdata = 0, int flags = 0)

Adds a new menu item.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

578 Class Documentation

Parameters:

← label The text label for the menu item.

← shortcut Optional keyboard shortcut that can be an int or string; (FL_CTRL+’a’) or "∧a". Default
0 if none.

← callback Optional callback invoked when user clicks the item. Default 0 if none.

← userdata Optional user data passed as an argument to the callback. Default 0 if none.

← flags Optional flags that control the type of menu item; see below. Default is 0 for none.

Returns:

The index into the menu() array, where the entry was added.

Description

If the menu array was directly set with menu(x), then copy() is done to make a private array.

Since this method can change the internal menu array, any menu item pointers or indecies the applica-
tion may have cached can become stale, and should be recalculated/refreshed.

A menu item’s callback must not add() items to its parent menu during the callback.

Detailed Description of Parameters

label

The menu item’s label. This option is required.

The characters "&", "/", "\", and "_" are treated as special characters in the label string. The "&" char-
acter specifies that the following character is an accelerator and will be underlined. The "\" character
is used to escape the next character in the string. Labels starting with the "_" character cause a divider
to be placed after that menu item.

A label of the form "File/Quit" will create the submenu "File" with a menu item called "Quit". The "/"
character is ignored if it appears as the first character of the label string, e.g. "/File/Quit".

The label string is copied to new memory and can be freed. The other arguments (including the
shortcut) are copied into the menu item unchanged.

If an item exists already with that name then it is replaced with this new one. Otherwise this new one
is added to the end of the correct menu or submenu. The return value is the offset into the array that
the new entry was placed at.

shortcut

The keyboard shortcut for this menu item.

This parameter is optional, and defaults to 0 to indicate no shortcut.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.58 Fl_Menu_ Class Reference 579

The shortcut can either be a raw integer value (eg. FL_CTRL+’A’) or a string (eg. "∧c" or "∧97").

Raw integer shortcuts can be a combination of keyboard chars (eg. ’A’) and optional keyboard modi-
fiers (see Fl::event_state(), e.g. FL_SHIFT, etc). In addition, FL_COMMAND can be used to denote
FL_META under Mac OS X and FL_CTRL under other platforms.

String shortcuts can be specified in one of two ways:

[#+^]<ascii_value> e.g. "97", "^97", "+97", "#97"
[#+^]<ascii_char> e.g. "a", "^a", "+a", "#a"

..where <ascii_value> is a decimal value representing an ascii character (eg. 97 is the ascii code for
’a’), and the optional prefixes enhance the value that follows. Multiple prefixes must appear in the
order below.

- Alt
+ - Shift
^ - Control

Internally, the text shortcuts are converted to integer values using fl_old_shortcut(const char∗).

callback

The callback to invoke when this menu item is selected.

This parameter is optional, and defaults to 0 for no callback.

userdata

The callback’s ’user data’ that is passed to the callback.

This parameter is optional, and defaults to 0.

flags

These are bit flags to define what kind of menu item this is.

This parameter is optional, and defaults to 0 to define a ’regular’ menu item.

These flags can be ’OR’ed together:

FL_MENU_INACTIVE // Deactivate menu item (gray out)
FL_MENU_TOGGLE // Item is a checkbox toggle (shows checkbox for on/off state)
FL_MENU_VALUE // The on/off state for checkbox/radio buttons (if set, state is ’on’)
FL_MENU_RADIO // Item is a radio button (one checkbox of many can be on)
FL_MENU_INVISIBLE // Item will not show up (shortcut will work)
FL_SUBMENU_POINTER // Indicates user_data() is a pointer to another menu array
FL_SUBMENU // This item is a submenu to other items
FL_MENU_DIVIDER // Creates divider line below this item. Also ends a group of radio buttons.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

580 Class Documentation

Todo

Raw integer shortcut needs examples. Dependent on responses to
http://fltk.org/newsgroups.php?gfltk.development+v:10086 and results
of STR#2344

Reimplemented in Fl_Sys_Menu_Bar.

30.58.3.3 void Fl_Menu_::clear ()

Same as menu(NULL), set the array pointer to null, indicating a zero-length menu.

Menus must not be cleared during a callback to the same menu.

Reimplemented in Fl_Sys_Menu_Bar.

30.58.3.4 int Fl_Menu_::clear_submenu (int index)

Clears the specified submenu pointed to by index of all menu items.

This method is useful for clearing a submenu so that it can be re-populated with new items. Example: a
"File/Recent Files/..." submenu that shows the last few files that have been opened.

The specified index must point to a submenu.

The submenu is cleared with remove(). If the menu array was directly set with menu(x), then copy() is
done to make a private array.

Warning:

Since this method can change the internal menu array, any menu item pointers or indecies the applica-
tion may have cached can become stale, and should be recalculated/refreshed.

Example:

int index = menubar->find_index("File/Recent"); // get index of "File/Recent" submenu
if (index != -1) menubar->clear_submenu(index); // clear the submenu
menubar->add("File/Recent/Aaa");
menubar->add("File/Recent/Bbb");
[..]

Parameters:

index The index of the submenu to be cleared

Returns:

0 on success, -1 if the index is out of range or not a submenu

See also:

remove(int)

Reimplemented in Fl_Sys_Menu_Bar.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://fltk.org/newsgroups.php?gfltk.development+v:10086

30.58 Fl_Menu_ Class Reference 581

30.58.3.5 void Fl_Menu_::copy (const Fl_Menu_Item ∗ m, void ∗ ud = 0)

Sets the menu array pointer with a copy of m that will be automatically deleted.

If userdata ud is not NULL, then all user data pointers are changed in the menus as well. See void Fl_-
Menu_::menu(const Fl_Menu_Item∗ m).

30.58.3.6 Fl_Boxtype Fl_Menu_::down_box () const [inline]

This box type is used to surround the currently-selected items in the menus.

If this is FL_NO_BOX then it acts like FL_THIN_UP_BOX and selection_color() acts like FL_WHITE,
for back compatibility.

30.58.3.7 int Fl_Menu_::find_index (Fl_Callback ∗ cb) const

Find the index into the menu array for a given callback cb.

This method finds a menu item’s index position, also traversing submenus, but not submenu pointers. This
is useful if an application uses internationalisation and a menu item can not be found using its label. This
search is also much faster.

Parameters:

cb Find the first item with this callback

Returns:

The index of the item with the specific callback, or -1 if not found

See also:

find_index(const char∗)

30.58.3.8 int Fl_Menu_::find_index (const Fl_Menu_Item ∗ item) const

Find the index the menu array for given item.

A way to convert a menu item pointer into an index.

Current implementation is fast and not expensive.

// Convert an index-to-item
int index = 12;
const Fl_Menu_Item *item = mymenu->menu() + index;

// Convert an item-to-index
int index = mymenu->find_index(item);
if (index == -1) { ..error.. }

Parameters:

item The ∗item to be found

Returns:

The index of the item, or -1 if not found.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

582 Class Documentation

See also:

menu()

30.58.3.9 int Fl_Menu_::find_index (const char ∗ pathname) const

Find the menu item index for a given menu pathname, such as "Edit/Copy".

This method finds a menu item’s index position for the given menu pathname, also traversing submenus,
but not submenu pointers.

To get the menu item pointer for a pathname, use find_item()

Parameters:

pathname The path and name of the menu item index to find

Returns:

The index of the matching item, or -1 if not found.

See also:

item_pathname()

30.58.3.10 const Fl_Menu_Item ∗ Fl_Menu_::find_item (Fl_Callback ∗ cb)

Find the menu item for the given callback cb.

This method finds a menu item in a menu array, also traversing submenus, but not submenu pointers. This
is useful if an application uses internationalisation and a menu item can not be found using its label. This
search is also much faster.

Parameters:

cb find the first item with this callback

Returns:

The item found, or NULL if not found

See also:

find_item(const char∗)

30.58.3.11 const Fl_Menu_Item ∗ Fl_Menu_::find_item (const char ∗ pathname)

Find the menu item for a given menu pathname, such as "Edit/Copy".

This method finds a menu item in the menu array, also traversing submenus, but not submenu pointers.

To get the menu item’s index, use find_index(const char∗)

Example:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.58 Fl_Menu_ Class Reference 583

Fl_Menu_Bar *menubar = new Fl_Menu_Bar(..);
menubar->add("File/&Open");
menubar->add("File/&Save");
menubar->add("Edit/&Copy");
// [..]
Fl_Menu_Item *item;
if ((item = (Fl_Menu_Item*)menubar->find_item("File/&Open")) != NULL) {

item->labelcolor(FL_RED);
}
if ((item = (Fl_Menu_Item*)menubar->find_item("Edit/&Copy")) != NULL) {

item->labelcolor(FL_GREEN);
}

Parameters:

pathname The path and name of the menu item

Returns:

The item found, or NULL if not found

See also:

find_index(const char∗), find_item(Fl_Callback∗), item_pathname()

30.58.3.12 void Fl_Menu_::global ()

Make the shortcuts for this menu work no matter what window has the focus when you type it.

This is done by using Fl::add_handler(). This Fl_Menu_ widget does not have to be visible (ie the window
it is in can be hidden, or it does not have to be put in a window at all).

Currently there can be only one global()menu. Setting a new one will replace the old one. There is no way
to remove the global() setting (so don’t destroy the widget!)

30.58.3.13 int Fl_Menu_::insert (int index, const char ∗ label, int shortcut, Fl_Callback ∗
callback, void ∗ userdata = 0, int flags = 0)

Inserts a new menu item at the specified index position.

If index is -1, the menu item is appended; same behavior as add().

To properly insert a menu item, label must be the name of the item (eg. "Quit"), and not a ’menu
pathname’ (eg. "File/Quit"). If a menu pathname is specified, the value of index is ignored, the new
item’s position defined by the pathname.

For more details, see add(). Except for the index parameter, add() has more detailed information on
parameters and behavior, and is functionally equivalent.

Parameters:

← index The menu array’s index position where the new item is inserted. If -1, behavior is the same
as add().

← label The text label for the menu item. If the label is a menu pathname, index is ignored, and the
pathname indicates the position of the new item.

← shortcut Optional keyboard shortcut. Can be an int (FL_CTRL+’a’) or a string ("∧a"). Default is
0.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

584 Class Documentation

← callback Optional callback invoked when user clicks the item. Default 0 if none.
← userdata Optional user data passed as an argument to the callback. Default 0 if none.
← flags Optional flags that control the type of menu item; see add() for more info. Default is 0 for

none.

Returns:

The index into the menu() array, where the entry was added.

See also:

add()

Reimplemented in Fl_Sys_Menu_Bar.

30.58.3.14 int Fl_Menu_::item_pathname (char ∗ name, int namelen, const Fl_Menu_Item ∗
finditem = 0) const

Get the menu ’pathname’ for the specified menuitem.

If finditem==NULL, mvalue() is used (the most recently picked menuitem).

Example:

Fl_Menu_Bar *menubar = 0;
void my_menu_callback(Fl_Widget*,void*) {

char name[80];
if (menubar->item_pathname(name, sizeof(name)-1) == 0) { // recently picked item

if (strcmp(name, "File/&Open") == 0) { .. } // open invoked
if (strcmp(name, "File/&Save") == 0) { .. } // save invoked
if (strcmp(name, "Edit/&Copy") == 0) { .. } // copy invoked

}
}
int main() {

[..]
menubar = new Fl_Menu_Bar(..);
menubar->add("File/&Open", 0, my_menu_callback);
menubar->add("File/&Save", 0, my_menu_callback);
menubar->add("Edit/&Copy", 0, my_menu_callback);
[..]

}

Returns:

• 0 : OK (name has menuitem’s pathname)
• -1 : item not found (name="")
• -2 : ’name’ not large enough (name="")

See also:

find_item()

30.58.3.15 void Fl_Menu_::menu (const Fl_Menu_Item ∗ m)

Sets the menu array pointer directly.

If the old menu is private it is deleted. NULL is allowed and acts the same as a zero-length menu. If you
try to modify the array (with add(), replace(), or remove()) a private copy is automatically done.

Reimplemented in Fl_Sys_Menu_Bar.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.58 Fl_Menu_ Class Reference 585

30.58.3.16 const Fl_Menu_Item∗ Fl_Menu_::menu () const [inline]

Returns a pointer to the array of Fl_Menu_Items.

This will either be the value passed to menu(value) or the private copy.

30.58.3.17 int Fl_Menu_::mode (int i) const [inline]

Gets the flags of item i.

For a list of the flags, see Fl_Menu_Item.

30.58.3.18 void Fl_Menu_::mode (int i, int fl) [inline]

Sets the flags of item i.

For a list of the flags, see Fl_Menu_Item.

30.58.3.19 const Fl_Menu_Item∗ Fl_Menu_::mvalue () const [inline]

Returns a pointer to the last menu item that was picked.

30.58.3.20 const Fl_Menu_Item ∗ Fl_Menu_::picked (const Fl_Menu_Item ∗ v)

When user picks a menu item, call this.

It will do the callback. Unfortunately this also casts away const for the checkboxes, but this was necessary
so non-checkbox menus can really be declared const...

30.58.3.21 void Fl_Menu_::remove (int i)

Deletes item i from the menu.

If the menu array was directly set with menu(x) then copy() is done to make a private array.

No items must be removed from a menu during a callback to the same menu.

Parameters:

i index into menu array

Reimplemented in Fl_Sys_Menu_Bar.

30.58.3.22 void Fl_Menu_::replace (int i, const char ∗ str)

Changes the text of item i.

This is the only way to get slash into an add()’ed menu item. If the menu array was directly set with
menu(x) then copy() is done to make a private array.

Parameters:

i index into menu array

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

586 Class Documentation

str new label for menu item at index i

Reimplemented in Fl_Sys_Menu_Bar.

30.58.3.23 void Fl_Menu_::shortcut (int i, int s) [inline]

Changes the shortcut of item i to n.

30.58.3.24 void Fl_Menu_::size (int W, int H) [inline]

Changes the size of the widget.

size(W, H) is a shortcut for resize(x(), y(), W, H).

Parameters:

←W,H new size

See also:

position(int,int), resize(int,int,int,int)

Reimplemented from Fl_Widget.

30.58.3.25 int Fl_Menu_::size () const

This returns the number of Fl_Menu_Item structures that make up the menu, correctly counting submenus.

This includes the "terminator" item at the end. To copy a menu array you need to copy size()∗sizeof(Fl_-
Menu_Item) bytes. If the menu is NULL this returns zero (an empty menu will return 1).

30.58.3.26 const Fl_Menu_Item∗ Fl_Menu_::test_shortcut () [inline]

Returns the menu item with the entered shortcut (key value).

This searches the complete menu() for a shortcut that matches the entered key value. It must be called for
a FL_KEYBOARD or FL_SHORTCUT event.

If a match is found, the menu’s callback will be called.

Returns:

matched Fl_Menu_Item or NULL.

Reimplemented from Fl_Widget.

30.58.3.27 const char∗ Fl_Menu_::text (int i) const [inline]

Returns the title of item i.

30.58.3.28 const char∗ Fl_Menu_::text () const [inline]

Returns the title of the last item chosen.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.58 Fl_Menu_ Class Reference 587

30.58.3.29 void Fl_Menu_::textcolor (Fl_Color c) [inline]

Sets the current color of menu item labels.

30.58.3.30 Fl_Color Fl_Menu_::textcolor () const [inline]

Get the current color of menu item labels.

30.58.3.31 void Fl_Menu_::textfont (Fl_Font c) [inline]

Sets the current font of menu item labels.

30.58.3.32 Fl_Font Fl_Menu_::textfont () const [inline]

Gets the current font of menu item labels.

30.58.3.33 void Fl_Menu_::textsize (Fl_Fontsize c) [inline]

Sets the font size of menu item labels.

30.58.3.34 Fl_Fontsize Fl_Menu_::textsize () const [inline]

Gets the font size of menu item labels.

30.58.3.35 int Fl_Menu_::value (int i) [inline]

The value is the index into menu() of the last item chosen by the user.

It is zero initially. You can set it as an integer, or set it with a pointer to a menu item. The set routines
return non-zero if the new value is different than the old one.

Reimplemented in Fl_Choice.

30.58.3.36 int Fl_Menu_::value (const Fl_Menu_Item ∗ m)

The value is the index into menu() of the last item chosen by the user.

It is zero initially. You can set it as an integer, or set it with a pointer to a menu item. The set routines
return non-zero if the new value is different than the old one.

Reimplemented in Fl_Choice.

30.58.3.37 int Fl_Menu_::value () const [inline]

Returns the index into menu() of the last item chosen by the user.

It is zero initially.

Reimplemented in Fl_Choice.

The documentation for this class was generated from the following files:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

588 Class Documentation

• Fl_Menu_.H
• Fl_Menu_.cxx
• Fl_Menu_add.cxx
• Fl_Menu_global.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.59 Fl_Menu_Bar Class Reference 589

30.59 Fl_Menu_Bar Class Reference

This widget provides a standard menubar interface.

#include <Fl_Menu_Bar.H>

Inheritance diagram for Fl_Menu_Bar::

Fl_Menu_Bar

Fl_Menu_

Fl_Widget

Fl_Sys_Menu_Bar

Public Member Functions

• Fl_Menu_Bar (int X, int Y, int W, int H, const char ∗l=0)

Creates a new Fl_Menu_Bar widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

Protected Member Functions

• void draw ()

Draws the widget.

30.59.1 Detailed Description

This widget provides a standard menubar interface.

Usually you will put this widget along the top edge of your window. The height of the widget should be 30
for the menu titles to draw correctly with the default font.

The items on the bar and the menus they bring up are defined by a single Fl_Menu_Item array. Because
a Fl_Menu_Item array defines a hierarchy, the top level menu defines the items in the menubar, while the
submenus define the pull-down menus. Sub-sub menus and lower pop up to the right of the submenus.

Figure 30.18: menubar

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

590 Class Documentation

If there is an item in the top menu that is not a title of a submenu, then it acts like a "button" in the menubar.
Clicking on it will pick it.

When the user picks an item off the menu, the item’s callback is done with the menubar as the Fl_Widget∗
argument. If the item does not have a callback the menubar’s callback is done instead.

Submenus will also pop up in response to shortcuts indicated by putting a ’&’ character in the name field
of the menu item. If you put a ’&’ character in a top-level "button" then the shortcut picks it. The ’&’
character in submenus is ignored until the menu is popped up.

Typing the shortcut() of any of the menu items will cause callbacks exactly the same as when you pick the
item with the mouse.

30.59.2 Constructor & Destructor Documentation

30.59.2.1 Fl_Menu_Bar::Fl_Menu_Bar (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Menu_Bar widget using the given position, size, and label string.

The default boxtype is FL_UP_BOX.

The constructor sets menu() to NULL. See Fl_Menu_ for the methods to set or change the menu.

labelsize(), labelfont(), and labelcolor() are used to control how the menubar items are drawn. They are
initialized from the Fl_Menu static variables, but you can change them if desired.

label() is ignored unless you change align() to put it outside the menubar.

The destructor removes the Fl_Menu_Bar widget and all of its menu items.

30.59.3 Member Function Documentation

30.59.3.1 void Fl_Menu_Bar::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

Reimplemented in Fl_Sys_Menu_Bar.

30.59.3.2 int Fl_Menu_Bar::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.59 Fl_Menu_Bar Class Reference 591

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

The documentation for this class was generated from the following files:

• Fl_Menu_Bar.H
• Fl_Menu_Bar.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

592 Class Documentation

30.60 Fl_Menu_Button Class Reference

This is a button that when pushed pops up a menu (or hierarchy of menus) defined by an array of Fl_-
Menu_Item objects.

#include <Fl_Menu_Button.H>

Inheritance diagram for Fl_Menu_Button::

Fl_Menu_Button

Fl_Menu_

Fl_Widget

Public Types

• enum popup_buttons {

POPUP1 = 1, POPUP2, POPUP12, POPUP3,

POPUP13, POPUP23, POPUP123 }

indicate what mouse buttons pop up the menu.

Public Member Functions

• Fl_Menu_Button (int, int, int, int, const char ∗=0)

Creates a new Fl_Menu_Button widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

• const Fl_Menu_Item ∗ popup ()

Act exactly as though the user clicked the button or typed the shortcut key.

Protected Member Functions

• void draw ()

Draws the widget.

30.60.1 Detailed Description

This is a button that when pushed pops up a menu (or hierarchy of menus) defined by an array of Fl_-
Menu_Item objects.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.60 Fl_Menu_Button Class Reference 593

Figure 30.19: menu_button

Normally any mouse button will pop up a menu and it is lined up below the button as shown in the picture.
However an Fl_Menu_Button may also control a pop-up menu. This is done by setting the type(). If type()
is zero a normal menu button is produced. If it is nonzero then this is a pop-up menu. The bits in type()
indicate what mouse buttons pop up the menu (see Fl_Menu_Button::popup_buttons).

The menu will also pop up in response to shortcuts indicated by putting a ’&’ character in the label().

Typing the shortcut() of any of the menu items will cause callbacks exactly the same as when you pick the
item with the mouse. The ’&’ character in menu item names are only looked at when the menu is popped
up, however.

When the user picks an item off the menu, the item’s callback is done with the menu_button as the Fl_-
Widget∗ argument. If the item does not have a callback the menu_button’s callback is done instead.

30.60.2 Member Enumeration Documentation

30.60.2.1 enum Fl_Menu_Button::popup_buttons

indicate what mouse buttons pop up the menu.

Values for type() used to indicate what mouse buttons pop up the menu. Fl_Menu_Button::POPUP3 is
usually what you want.

Enumerator:

POPUP1 pops up with the mouse 1st button.

POPUP2 pops up with the mouse 2nd button.

POPUP12 pops up with the mouse 1st or 2nd buttons.

POPUP3 pops up with the mouse 3rd button.

POPUP13 pops up with the mouse 1st or 3rd buttons.

POPUP23 pops up with the mouse 2nd or 3rd buttons.

POPUP123 pops up with any mouse button.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

594 Class Documentation

30.60.3 Constructor & Destructor Documentation

30.60.3.1 Fl_Menu_Button::Fl_Menu_Button (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Menu_Button widget using the given position, size, and label string.

The default boxtype is FL_UP_BOX.

The constructor sets menu() to NULL. See Fl_Menu_ for the methods to set or change the menu.

30.60.4 Member Function Documentation

30.60.4.1 void Fl_Menu_Button::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.60.4.2 int Fl_Menu_Button::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.60 Fl_Menu_Button Class Reference 595

30.60.4.3 const Fl_Menu_Item ∗ Fl_Menu_Button::popup ()

Act exactly as though the user clicked the button or typed the shortcut key.

The menu appears, it waits for the user to pick an item, and if they pick one it sets value() and does the
callback or sets changed() as described above. The menu item is returned or NULL if the user dismisses
the menu.

The documentation for this class was generated from the following files:

• Fl_Menu_Button.H
• Fl_Menu_Button.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

596 Class Documentation

30.61 Fl_Menu_Item Struct Reference

The Fl_Menu_Item structure defines a single menu item that is used by the Fl_Menu_ class.

#include <Fl_Menu_Item.H>

Public Member Functions

• void activate ()
Allows a menu item to be picked.

• int active () const
Gets whether or not the item can be picked.

• int activevisible () const
Returns non 0 if FL_INACTIVE and FL_INVISIBLE are cleared, 0 otherwise.

• int add (const char ∗a, const char ∗b, Fl_Callback ∗c, void ∗d=0, int e=0)
See int add(const char∗, int shortcut, Fl_Callback∗, void∗, int).

• int add (const char ∗, int shortcut, Fl_Callback ∗, void ∗=0, int=0)
Adds an item.

• void argument (long v)
Sets the user_data() argument that is sent to the callback function.

• long argument () const
Gets the user_data() argument that is sent to the callback function.

• void callback (Fl_Callback1 ∗c, long p=0)
Sets the menu item’s callback function and userdata() argument.

• void callback (Fl_Callback0 ∗c)
Sets the menu item’s callback function.

• void callback (Fl_Callback ∗c)
Sets the menu item’s callback function.

• void callback (Fl_Callback ∗c, void ∗p)
Sets the menu item’s callback function and userdata() argument.

• Fl_Callback_p callback () const
Returns the callback function that is set for the menu item.

• void check ()
back compatibility only

• int checkbox () const
Returns true if a checkbox will be drawn next to this item.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.61 Fl_Menu_Item Struct Reference 597

• int checked () const
back compatibility only

• void clear ()
Turns the check or radio item "off" for the menu item.

• void deactivate ()
Prevents a menu item from being picked.

• void do_callback (Fl_Widget ∗o, long arg) const
Calls the Fl_Menu_Item item’s callback, and provides the Fl_Widget argument.

• void do_callback (Fl_Widget ∗o, void ∗arg) const
Calls the Fl_Menu_Item item’s callback, and provides the Fl_Widget argument.

• void do_callback (Fl_Widget ∗o) const
Calls the Fl_Menu_Item item’s callback, and provides the Fl_Widget argument.

• void draw (int x, int y, int w, int h, const Fl_Menu_ ∗, int t=0) const
Draws the menu item in bounding box x,y,w,h, optionally selects the item.

• const Fl_Menu_Item ∗ find_shortcut (int ∗ip=0, const bool require_alt=false) const
Search only the top level menu for a shortcut.

• Fl_Menu_Item ∗ first ()
Returns the first menu item, same as next(0).

• const Fl_Menu_Item ∗ first () const
Returns the first menu item, same as next(0).

• void hide ()
Hides an item in the menu.

• void image (Fl_Image &a)
compatibility api for FLUID, same as a.label(this)

• void image (Fl_Image ∗a)
compatibility api for FLUID, same as a->label(this)

• int insert (int, const char ∗, int, Fl_Callback ∗, void ∗=0, int=0)
Inserts an item at position index.

• void label (Fl_Labeltype a, const char ∗b)
See const char∗ Fl_Menu_Item::label() const.

• void label (const char ∗a)
See const char∗ Fl_Menu_Item::label() const.

• const char ∗ label () const
Returns the title of the item.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

598 Class Documentation

• void labelcolor (Fl_Color a)
Sets the menu item’s label color.

• Fl_Color labelcolor () const
Gets the menu item’s label color.

• void labelfont (Fl_Font a)
Sets the menu item’s label font.

• Fl_Font labelfont () const
Gets the menu item’s label font.

• void labelsize (Fl_Fontsize a)
Sets the label font pixel size/height.

• Fl_Fontsize labelsize () const
Gets the label font pixel size/height.

• void labeltype (Fl_Labeltype a)
Sets the menu item’s labeltype.

• Fl_Labeltype labeltype () const
Returns the menu item’s labeltype.

• int measure (int ∗h, const Fl_Menu_ ∗) const
Measures width of label, including effect of & characters.

• Fl_Menu_Item ∗ next (int i=1)
Advances a pointer by n items through a menu array, skipping the contents of submenus and invisible items.

• const Fl_Menu_Item ∗ next (int=1) const
Advance a pointer by n items through a menu array, skipping the contents of submenus and invisible items.

• const Fl_Menu_Item ∗ popup (int X, int Y, const char ∗title=0, const Fl_Menu_Item ∗picked=0,
const Fl_Menu_ ∗=0) const

This method is called by widgets that want to display menus.

• const Fl_Menu_Item ∗ pulldown (int X, int Y, int W, int H, const Fl_Menu_Item ∗picked=0, const
Fl_Menu_ ∗=0, const Fl_Menu_Item ∗title=0, int menubar=0) const

Pulldown() is similar to popup(), but a rectangle is provided to position the menu.

• int radio () const
Returns true if this item is a radio item.

• void set ()
Turns the check or radio item "on" for the menu item.

• void setonly ()
Turns the radio item "on" for the menu item and turns off adjacent radio items set.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.61 Fl_Menu_Item Struct Reference 599

• void shortcut (int s)

Sets exactly what key combination will trigger the menu item.

• int shortcut () const

Gets what key combination shortcut will trigger the menu item.

• void show ()

Makes an item visible in the menu.

• int size () const

Size of the menu starting from this menu item.

• int submenu () const

Returns true if either FL_SUBMENU or FL_SUBMENU_POINTER is on in the flags.

• const Fl_Menu_Item ∗ test_shortcut () const

This is designed to be called by a widgets handle() method in response to a FL_SHORTCUT event.

• void uncheck ()

back compatibility only

• void user_data (void ∗v)

Sets the user_data() argument that is sent to the callback function.

• void ∗ user_data () const

Gets the user_data() argument that is sent to the callback function.

• int value () const

Returns the current value of the check or radio item.

• int visible () const

Gets the visibility of an item.

Public Attributes

• Fl_Callback ∗ callback_

menu item callback

• int flags

menu item flags like FL_MENU_TOGGLE, FL_MENU_RADIO

• Fl_Color labelcolor_

menu item text color

• Fl_Font labelfont_

which font for this menu item text

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

600 Class Documentation

• Fl_Fontsize labelsize_

size of menu item text

• uchar labeltype_

how the menu item text looks like

• int shortcut_

menu item shortcut

• const char ∗ text

menu item text, returned by label()

• void ∗ user_data_

menu item user_data for the menu’s callback

30.61.1 Detailed Description

The Fl_Menu_Item structure defines a single menu item that is used by the Fl_Menu_ class.

struct Fl_Menu_Item {
const char* text; // label()
ulong shortcut_;
Fl_Callback* callback_;
void* user_data_;
int flags;
uchar labeltype_;
uchar labelfont_;
uchar labelsize_;
uchar labelcolor_;

};

enum { // values for flags:
FL_MENU_INACTIVE = 1, // Deactivate menu item (gray out)
FL_MENU_TOGGLE = 2, // Item is a checkbox toggle (shows checkbox for on/off state)
FL_MENU_VALUE = 4, // The on/off state for checkbox/radio buttons (if set, state is ’on’)
FL_MENU_RADIO = 8, // Item is a radio button (one checkbox of many can be on)
FL_MENU_INVISIBLE = 0x10, // Item will not show up (shortcut will work)
FL_SUBMENU_POINTER = 0x20, // Indicates user_data() is a pointer to another menu array
FL_SUBMENU = 0x40, // This item is a submenu to other items
FL_MENU_DIVIDER = 0x80, // Creates divider line below this item. Also ends a group of radio buttons.
FL_MENU_HORIZONTAL = 0x100 // ??? -- reserved

};

Typically menu items are statically defined; for example:

Fl_Menu_Item popup[] = {
{"&alpha", FL_ALT+’a’, the_cb, (void*)1},
{"&beta", FL_ALT+’b’, the_cb, (void*)2},
{"gamma", FL_ALT+’c’, the_cb, (void*)3, FL_MENU_DIVIDER},
{"&strange", 0, strange_cb},
{"&charm", 0, charm_cb},
{"&truth", 0, truth_cb},
{"b&eauty", 0, beauty_cb},
{"sub&menu", 0, 0, 0, FL_SUBMENU},
{"one"},
{"two"},
{"three"},

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.61 Fl_Menu_Item Struct Reference 601

{0},
{"inactive", FL_ALT+’i’, 0, 0, FL_MENU_INACTIVE|FL_MENU_DIVIDER},
{"invisible",FL_ALT+’i’, 0, 0, FL_MENU_INVISIBLE},
{"check", FL_ALT+’i’, 0, 0, FL_MENU_TOGGLE|FL_MENU_VALUE},
{"box", FL_ALT+’i’, 0, 0, FL_MENU_TOGGLE},
{0}};

produces:

Figure 30.20: menu

A submenu title is identified by the bit FL_SUBMENU in the flags field, and ends with a label() that is
NULL. You can nest menus to any depth. A pointer to the first item in the submenu can be treated as an
Fl_Menu array itself. It is also possible to make separate submenu arrays with FL_SUBMENU_POINTER
flags.

You should use the method functions to access structure members and not access them directly to avoid
compatibility problems with future releases of FLTK.

30.61.2 Member Function Documentation

30.61.2.1 void Fl_Menu_Item::activate () [inline]

Allows a menu item to be picked.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

602 Class Documentation

30.61.2.2 int Fl_Menu_Item::active () const [inline]

Gets whether or not the item can be picked.

30.61.2.3 int Fl_Menu_Item::activevisible () const [inline]

Returns non 0 if FL_INACTIVE and FL_INVISIBLE are cleared, 0 otherwise.

30.61.2.4 int Fl_Menu_Item::add (const char ∗ mytext, int sc, Fl_Callback ∗ cb, void ∗ data = 0,
int myflags = 0)

Adds an item.

The text is split at ’/’ characters to automatically produce submenus (actually a totally unnecessary feature
as you can now add submenu titles directly by setting SUBMENU in the flags):

30.61.2.5 void Fl_Menu_Item::argument (long v) [inline]

Sets the user_data() argument that is sent to the callback function.

For convenience you can also define the callback as taking a long argument. This method casts the given
argument v to void∗ and stores it in the menu item’s userdata() member. This may not be portable to some
machines.

30.61.2.6 long Fl_Menu_Item::argument () const [inline]

Gets the user_data() argument that is sent to the callback function.

For convenience you can also define the callback as taking a long argument. This method casts the stored
userdata() argument to long and returns it as a long value.

30.61.2.7 void Fl_Menu_Item::callback (Fl_Callback1 ∗ c, long p = 0) [inline]

Sets the menu item’s callback function and userdata() argument.

This method does not set the userdata() argument. The argument is cast to void∗ and stored as the user-
data() for the menu item’s callback function.

See also:

Fl_Callback_p Fl_MenuItem::callback() const

30.61.2.8 void Fl_Menu_Item::callback (Fl_Callback0 ∗ c) [inline]

Sets the menu item’s callback function.

This method does not set the userdata() argument.

See also:

Fl_Callback_p Fl_MenuItem::callback() const

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.61 Fl_Menu_Item Struct Reference 603

30.61.2.9 void Fl_Menu_Item::callback (Fl_Callback ∗ c) [inline]

Sets the menu item’s callback function.

This method does not set the userdata() argument.

See also:

Fl_Callback_p Fl_MenuItem::callback() const

30.61.2.10 void Fl_Menu_Item::callback (Fl_Callback ∗ c, void ∗ p) [inline]

Sets the menu item’s callback function and userdata() argument.

See also:

Fl_Callback_p Fl_MenuItem::callback() const

30.61.2.11 Fl_Callback_p Fl_Menu_Item::callback () const [inline]

Returns the callback function that is set for the menu item.

Each item has space for a callback function and an argument for that function. Due to back compatibility,
the Fl_Menu_Item itself is not passed to the callback, instead you have to get it by calling ((Fl_Menu_-
∗)w)->mvalue() where w is the widget argument.

30.61.2.12 void Fl_Menu_Item::check () [inline]

back compatibility only

Deprecated

.

30.61.2.13 int Fl_Menu_Item::checkbox () const [inline]

Returns true if a checkbox will be drawn next to this item.

This is true if FL_MENU_TOGGLE or FL_MENU_RADIO is set in the flags.

30.61.2.14 int Fl_Menu_Item::checked () const [inline]

back compatibility only

Deprecated

.

30.61.2.15 void Fl_Menu_Item::clear () [inline]

Turns the check or radio item "off" for the menu item.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

604 Class Documentation

30.61.2.16 void Fl_Menu_Item::deactivate () [inline]

Prevents a menu item from being picked.

Note that this will also cause the menu item to appear grayed-out.

30.61.2.17 void Fl_Menu_Item::do_callback (Fl_Widget ∗ o, long arg) const [inline]

Calls the Fl_Menu_Item item’s callback, and provides the Fl_Widget argument.

This call overrides the callback’s second argument with the given value arg. long arg is cast to void∗
when calling the callback. You must first check that callback() is non-zero before calling this.

30.61.2.18 void Fl_Menu_Item::do_callback (Fl_Widget ∗ o, void ∗ arg) const [inline]

Calls the Fl_Menu_Item item’s callback, and provides the Fl_Widget argument.

This call overrides the callback’s second argument with the given value arg. You must first check that
callback() is non-zero before calling this.

30.61.2.19 void Fl_Menu_Item::do_callback (Fl_Widget ∗ o) const [inline]

Calls the Fl_Menu_Item item’s callback, and provides the Fl_Widget argument.

The callback is called with the stored user_data() as its second argument. You must first check that call-
back() is non-zero before calling this.

30.61.2.20 void Fl_Menu_Item::draw (int x, int y, int w, int h, const Fl_Menu_ ∗ m, int selected
= 0) const

Draws the menu item in bounding box x,y,w,h, optionally selects the item.

30.61.2.21 const Fl_Menu_Item ∗ Fl_Menu_Item::find_shortcut (int ∗ ip = 0, const bool
require_alt = false) const

Search only the top level menu for a shortcut.

Either &x in the label or the shortcut fields are used.

This tests the current event, which must be an FL_KEYBOARD or FL_SHORTCUT, against a shortcut
value.

Parameters:

ip returns the index of the item, if ip is not NULL.
require_alt if true: match only if Alt key is pressed.

Returns:

found Fl_Menu_Item or NULL

30.61.2.22 Fl_Menu_Item∗ Fl_Menu_Item::first () [inline]

Returns the first menu item, same as next(0).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.61 Fl_Menu_Item Struct Reference 605

30.61.2.23 const Fl_Menu_Item∗ Fl_Menu_Item::first () const [inline]

Returns the first menu item, same as next(0).

30.61.2.24 void Fl_Menu_Item::hide () [inline]

Hides an item in the menu.

30.61.2.25 int Fl_Menu_Item::insert (int index, const char ∗ mytext, int sc, Fl_Callback ∗ cb,
void ∗ data = 0, int myflags = 0)

Inserts an item at position index.

If index is -1, the item is added the same way as Fl_Menu_Item::add().

If ’mytext’ contains any un-escaped front slashes (/), it’s assumed a menu pathname is being specified, and
the value of index will be ignored.

In all other aspects, the behavior of insert() is the same as add().

Parameters:

index insert new items here

mytext new label string, details see above

sc keyboard shortcut for new item

cb callback function for new item

data user data for new item

myflags menu flags as described in FL_Menu_Item

Returns:

the index into the menu() array, where the entry was added

30.61.2.26 const char∗ Fl_Menu_Item::label () const [inline]

Returns the title of the item.

A NULL here indicates the end of the menu (or of a submenu). A ’&’ in the item will print an underscore
under the next letter, and if the menu is popped up that letter will be a "shortcut" to pick that item. To get a
real ’&’ put two in a row.

30.61.2.27 void Fl_Menu_Item::labelcolor (Fl_Color a) [inline]

Sets the menu item’s label color.

See also:

Fl_Color Fl_Menu_Item::labelcolor() const

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

606 Class Documentation

30.61.2.28 Fl_Color Fl_Menu_Item::labelcolor () const [inline]

Gets the menu item’s label color.

This color is passed to the labeltype routine, and is typically the color of the label text. This defaults to
FL_BLACK. If this color is not black fltk will not use overlay bitplanes to draw the menu - this is so that
images put in the menu draw correctly.

30.61.2.29 void Fl_Menu_Item::labelfont (Fl_Font a) [inline]

Sets the menu item’s label font.

Fonts are identified by small 8-bit indexes into a table. See the enumeration list for predefined fonts. The
default value is a Helvetica font. The function Fl::set_font() can define new fonts.

30.61.2.30 Fl_Font Fl_Menu_Item::labelfont () const [inline]

Gets the menu item’s label font.

Fonts are identified by small 8-bit indexes into a table. See the enumeration list for predefined fonts. The
default value is a Helvetica font. The function Fl::set_font() can define new fonts.

30.61.2.31 void Fl_Menu_Item::labelsize (Fl_Fontsize a) [inline]

Sets the label font pixel size/height.

30.61.2.32 Fl_Fontsize Fl_Menu_Item::labelsize () const [inline]

Gets the label font pixel size/height.

30.61.2.33 void Fl_Menu_Item::labeltype (Fl_Labeltype a) [inline]

Sets the menu item’s labeltype.

A labeltype identifies a routine that draws the label of the widget. This can be used for special effects
such as emboss, or to use the label() pointer as another form of data such as a bitmap. The value FL_-
NORMAL_LABEL prints the label as text.

30.61.2.34 Fl_Labeltype Fl_Menu_Item::labeltype () const [inline]

Returns the menu item’s labeltype.

A labeltype identifies a routine that draws the label of the widget. This can be used for special effects
such as emboss, or to use the label() pointer as another form of data such as a bitmap. The value FL_-
NORMAL_LABEL prints the label as text.

30.61.2.35 int Fl_Menu_Item::measure (int ∗ hp, const Fl_Menu_ ∗ m) const

Measures width of label, including effect of & characters.

Optionally, can get height if hp is not NULL.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.61 Fl_Menu_Item Struct Reference 607

30.61.2.36 Fl_Menu_Item∗ Fl_Menu_Item::next (int i = 1) [inline]

Advances a pointer by n items through a menu array, skipping the contents of submenus and invisible items.

There are two calls so that you can advance through const and non-const data.

30.61.2.37 const Fl_Menu_Item ∗ Fl_Menu_Item::next (int n = 1) const

Advance a pointer by n items through a menu array, skipping the contents of submenus and invisible items.

There are two calls so that you can advance through const and non-const data.

30.61.2.38 const Fl_Menu_Item ∗ Fl_Menu_Item::popup (int X, int Y, const char ∗ title = 0,
const Fl_Menu_Item ∗ picked = 0, const Fl_Menu_ ∗ button = 0) const

This method is called by widgets that want to display menus.

The menu stays up until the user picks an item or dismisses it. The selected item (or NULL if none) is
returned. This does not do the callbacks or change the state of check or radio items.

X,Y is the position of the mouse cursor, relative to the window that got the most recent event (usually you
can pass Fl::event_x() and Fl::event_y() unchanged here).

title is a character string title for the menu. If non-zero a small box appears above the menu with the
title in it.

The menu is positioned so the cursor is centered over the item picked. This will work even if picked is
in a submenu. If picked is zero or not in the menu item table the menu is positioned with the cursor in
the top-left corner.

button is a pointer to an Fl_Menu_ from which the color and boxtypes for the menu are pulled. If NULL
then defaults are used.

30.61.2.39 const Fl_Menu_Item ∗ Fl_Menu_Item::pulldown (int X, int Y, int W, int H, const
Fl_Menu_Item ∗ initial_item = 0, const Fl_Menu_ ∗ pbutton = 0, const Fl_Menu_Item
∗ t = 0, int menubar = 0) const

Pulldown() is similar to popup(), but a rectangle is provided to position the menu.

The menu is made at least W wide, and the picked item is centered over the rectangle (like Fl_Choice uses).
If picked is zero or not found, the menu is aligned just below the rectangle (like a pulldown menu).

The title and menubar arguments are used internally by the Fl_Menu_Bar widget.

30.61.2.40 int Fl_Menu_Item::radio () const [inline]

Returns true if this item is a radio item.

When a radio button is selected all "adjacent" radio buttons are turned off. A set of radio items is delimited
by an item that has radio() false, or by an item with FL_MENU_DIVIDER turned on.

30.61.2.41 void Fl_Menu_Item::set () [inline]

Turns the check or radio item "on" for the menu item.

Note that this does not turn off any adjacent radio items like set_only() does.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

608 Class Documentation

30.61.2.42 void Fl_Menu_Item::setonly ()

Turns the radio item "on" for the menu item and turns off adjacent radio items set.

30.61.2.43 void Fl_Menu_Item::shortcut (int s) [inline]

Sets exactly what key combination will trigger the menu item.

The value is a logical ’or’ of a key and a set of shift flags, for instance FL_ALT+’a’ or FL_ALT+FL_F+10
or just ’a’. A value of zero disables the shortcut.

The key can be any value returned by Fl::event_key(), but will usually be an ASCII letter. Use a lower-case
letter unless you require the shift key to be held down.

The shift flags can be any set of values accepted by Fl::event_state(). If the bit is on that shift key must
be pushed. Meta, Alt, Ctrl, and Shift must be off if they are not in the shift flags (zero for the other bits
indicates a "don’t care" setting).

30.61.2.44 int Fl_Menu_Item::shortcut () const [inline]

Gets what key combination shortcut will trigger the menu item.

30.61.2.45 void Fl_Menu_Item::show () [inline]

Makes an item visible in the menu.

30.61.2.46 int Fl_Menu_Item::submenu () const [inline]

Returns true if either FL_SUBMENU or FL_SUBMENU_POINTER is on in the flags.

FL_SUBMENU indicates an embedded submenu that goes from the next item through the next one with a
NULL label(). FL_SUBMENU_POINTER indicates that user_data() is a pointer to another menu array.

30.61.2.47 const Fl_Menu_Item ∗ Fl_Menu_Item::test_shortcut () const

This is designed to be called by a widgets handle() method in response to a FL_SHORTCUT event.

If the current event matches one of the items shortcut, that item is returned. If the keystroke does not match
any shortcuts then NULL is returned. This only matches the shortcut() fields, not the letters in the title
preceeded by ’

30.61.2.48 void Fl_Menu_Item::uncheck () [inline]

back compatibility only

Deprecated

.

30.61.2.49 int Fl_Menu_Item::value () const [inline]

Returns the current value of the check or radio item.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.61 Fl_Menu_Item Struct Reference 609

30.61.2.50 int Fl_Menu_Item::visible () const [inline]

Gets the visibility of an item.

The documentation for this struct was generated from the following files:

• Fl_Menu_Item.H
• Fl_Menu.cxx
• Fl_Menu_.cxx
• Fl_Menu_add.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

610 Class Documentation

30.62 Fl_Menu_Window Class Reference

The Fl_Menu_Window widget is a window type used for menus.

#include <Fl_Menu_Window.H>

Inheritance diagram for Fl_Menu_Window::

Fl_Menu_Window

Fl_Single_Window

Fl_Window

Fl_Group

Fl_Widget

Public Member Functions

• void clear_overlay ()
Tells FLTK to use normal drawing planes instead of overlay planes.

• void erase ()
Erases the window, does nothing if HAVE_OVERLAY is not defined config.h.

• Fl_Menu_Window (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Menu_Window widget using the given position, size, and label string.

• Fl_Menu_Window (int W, int H, const char ∗l=0)
Creates a new Fl_Menu_Window widget using the given size, and label string.

• void flush ()
Forces the window to be drawn, this window is also made current and calls draw().

• void hide ()
Removes the window from the screen.

• unsigned int overlay ()
Tells if hardware overlay mode is set.

• void set_overlay ()
Tells FLTK to use hardware overlay planes if they are available.

• void show ()
Puts the window on the screen.

• ∼Fl_Menu_Window ()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.62 Fl_Menu_Window Class Reference 611

Destroys the window and all of its children.

30.62.1 Detailed Description

The Fl_Menu_Window widget is a window type used for menus.

By default the window is drawn in the hardware overlay planes if they are available so that the menu don’t
force the rest of the window to redraw.

30.62.2 Constructor & Destructor Documentation

30.62.2.1 Fl_Menu_Window::∼Fl_Menu_Window ()

Destroys the window and all of its children.

30.62.2.2 Fl_Menu_Window::Fl_Menu_Window (int W, int H, const char ∗ l = 0) [inline]

Creates a new Fl_Menu_Window widget using the given size, and label string.

30.62.2.3 Fl_Menu_Window::Fl_Menu_Window (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Menu_Window widget using the given position, size, and label string.

30.62.3 Member Function Documentation

30.62.3.1 void Fl_Menu_Window::clear_overlay () [inline]

Tells FLTK to use normal drawing planes instead of overlay planes.

This is usually necessary if your menu contains multi-color pixmaps.

30.62.3.2 void Fl_Menu_Window::flush () [virtual]

Forces the window to be drawn, this window is also made current and calls draw().

Reimplemented from Fl_Single_Window.

30.62.3.3 void Fl_Menu_Window::hide () [virtual]

Removes the window from the screen.

If the window is already hidden or has not been shown then this does nothing and is harmless.

Reimplemented from Fl_Window.

30.62.3.4 void Fl_Menu_Window::set_overlay () [inline]

Tells FLTK to use hardware overlay planes if they are available.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

612 Class Documentation

30.62.3.5 void Fl_Menu_Window::show () [virtual]

Puts the window on the screen.

Usually (on X) this has the side effect of opening the display.

If the window is already shown then it is restored and raised to the top. This is really convenient because
your program can call show() at any time, even if the window is already up. It also means that show()
serves the purpose of raise() in other toolkits.

Fl_Window::show(int argc, char ∗∗argv) is used for top-level windows and allows standard arguments to
be parsed from the command-line.

See also:

Fl_Window::show(int argc, char ∗∗argv)

Reimplemented from Fl_Single_Window.

The documentation for this class was generated from the following files:

• Fl_Menu_Window.H
• Fl_Menu_Window.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.63 Fl_Multi_Browser Class Reference 613

30.63 Fl_Multi_Browser Class Reference

The Fl_Multi_Browser class is a subclass of Fl_Browser which lets the user select any set of the lines.

#include <Fl_Multi_Browser.H>

Inheritance diagram for Fl_Multi_Browser::

Fl_Multi_Browser

Fl_Browser

Fl_Browser_

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Multi_Browser (int X, int Y, int W, int H, const char ∗L=0)
Creates a new Fl_Multi_Browser widget using the given position, size, and label string.

30.63.1 Detailed Description

The Fl_Multi_Browser class is a subclass of Fl_Browser which lets the user select any set of the lines.

The user interface is Macintosh style: clicking an item turns off all the others and selects that one, dragging
selects all the items the mouse moves over, and shift + click toggles the items. This is different then how
forms did it. Normally the callback is done when the user releases the mouse, but you can change this with
when().

See Fl_Browser for methods to add and remove lines from the browser.

30.63.2 Constructor & Destructor Documentation

30.63.2.1 Fl_Multi_Browser::Fl_Multi_Browser (int X, int Y, int W, int H, const char ∗ L = 0)
[inline]

Creates a new Fl_Multi_Browser widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX. The constructor specializes Fl_Browser() by setting the type to
FL_MULTI_BROWSER. The destructor destroys the widget and frees all memory that has been allocated.

The documentation for this class was generated from the following file:

• Fl_Multi_Browser.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

614 Class Documentation

30.64 Fl_Multiline_Input Class Reference

This input field displays ’

’ characters as new lines rather than ∧J, and accepts the Return, Tab, and up and down arrow keys.

#include <Fl_Multiline_Input.H>

Inheritance diagram for Fl_Multiline_Input::

Fl_Multiline_Input

Fl_Input

Fl_Input_

Fl_Widget

Public Member Functions

• Fl_Multiline_Input (int X, int Y, int W, int H, const char ∗l=0)

Creates a new Fl_Multiline_Input widget using the given position, size, and label string.

30.64.1 Detailed Description

This input field displays ’

’ characters as new lines rather than ∧J, and accepts the Return, Tab, and up and down arrow keys.

This is for editing multiline text.

This is far from the nirvana of text editors, and is probably only good for small bits of text, 10 lines at most.
Note that this widget does not support scrollbars or per-character color control.

If you are presenting large amounts of text and need scrollbars or full color control of characters, you
probably want Fl_Text_Editor instead.

In FLTK 1.3.x, the default behavior of the ’Tab’ key was changed to support consistent focus navigation.
To get the older FLTK 1.1.x behavior, set Fl_Input_::tab_nav() to 0. Newer programs should consider using
Fl_Text_Editor.

30.64.2 Constructor & Destructor Documentation

30.64.2.1 Fl_Multiline_Input::Fl_Multiline_Input (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Multiline_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Inherited destructor destroys the widget and any value associated with it.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.64 Fl_Multiline_Input Class Reference 615

The documentation for this class was generated from the following file:

• Fl_Multiline_Input.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

616 Class Documentation

30.65 Fl_Multiline_Output Class Reference

This widget is a subclass of Fl_Output that displays multiple lines of text.

#include <Fl_Multiline_Output.H>

Inheritance diagram for Fl_Multiline_Output::

Fl_Multiline_Output

Fl_Output

Fl_Input

Fl_Input_

Fl_Widget

Public Member Functions

• Fl_Multiline_Output (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Multiline_Output widget using the given position, size, and label string.

30.65.1 Detailed Description

This widget is a subclass of Fl_Output that displays multiple lines of text.

It also displays tab characters as whitespace to the next column.

Note that this widget does not support scrollbars, or per-character color control.

If you are presenting large amounts of read-only text and need scrollbars, or full color control of characters,
then use Fl_Text_Display. If you want to display HTML text, use Fl_Help_View.

30.65.2 Constructor & Destructor Documentation

30.65.2.1 Fl_Multiline_Output::Fl_Multiline_Output (int X, int Y, int W, int H, const char ∗ l =
0) [inline]

Creates a new Fl_Multiline_Output widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX

Inherited destructor destroys the widget and any value associated with it.

The documentation for this class was generated from the following file:

• Fl_Multiline_Output.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.66 Fl_Native_File_Chooser Class Reference 617

30.66 Fl_Native_File_Chooser Class Reference

This class lets an FLTK application easily and consistently access the operating system’s native file chooser.

#include <Fl_Native_File_Chooser_FLTK.H>

Public Types

• enum Option { NO_OPTIONS = 0x0000, SAVEAS_CONFIRM = 0x0001, NEW_FOLDER =
0x0002, PREVIEW = 0x0004 }

• enum Type {

BROWSE_FILE = 0, BROWSE_DIRECTORY, BROWSE_MULTI_FILE, BROWSE_MULTI_-
DIRECTORY,

BROWSE_SAVE_FILE, BROWSE_SAVE_DIRECTORY }

Public Member Functions

• int count () const

Returns the number of filenames (or directory names) the user selected.

• const char ∗ directory () const

Returns the current preset directory() value.

• void directory (const char ∗val)

Preset the directory the browser will show when opened.

• const char ∗ errmsg () const

Returns a system dependent error message for the last method that failed.

• const char ∗ filename (int i) const

Return one of the filenames the user selected.

• const char ∗ filename () const

Return the filename the user choose.

• void filter (const char ∗)
Sets the filename filters used for browsing.

• const char ∗ filter () const

Returns the filter string last set.

• int filter_value () const

Returns which filter value was last selected by the user.

• void filter_value (int i)

Sets which filter will be initially selected.

• int filters () const

Gets how many filters were available, not including "All Files".

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

618 Class Documentation

• Fl_Native_File_Chooser (int val=BROWSE_FILE)
The constructor.

• int options () const
Gets the platform specific Fl_Native_File_Chooser::Option flags.

• void options (int)
Sets the platform specific chooser options to val.

• const char ∗ preset_file () const
Get the preset filename.

• void preset_file (const char ∗)
Sets the default filename for the chooser.

• int show ()
Post the chooser’s dialog.

• const char ∗ title () const
Get the title of the file chooser’s dialog window.

• void title (const char ∗)
Set the title of the file chooser’s dialog window.

• int type () const
Gets the current Fl_Native_File_Chooser::Type of browser.

• void type (int)
Sets the current Fl_Native_File_Chooser::Type of browser.

• ∼Fl_Native_File_Chooser ()
Destructor.

30.66.1 Detailed Description

This class lets an FLTK application easily and consistently access the operating system’s native file chooser.

Some operating systems have very complex and specific file choosers that many users want access to
specifically, instead of FLTK’s default file chooser(s).

In cases where there is no native file browser, FLTK’s own file browser is used instead.

To use this widget correctly, use the following include in your code:

#include <FL/Fl_Native_File_Chooser.H>

Do not include the other Fl_Native_File_Choser_XXX.H files in your code; those are platform specific
files that will be included automatically depending on your build platform.

The following example shows how to pick a single file:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.66 Fl_Native_File_Chooser Class Reference 619

// Create and post the local native file chooser
#include <FL/Fl_Native_File_Chooser.H>
[..]
Fl_Native_File_Chooser fnfc;
fnfc.title("Pick a file");
fnfc.type(Fl_Native_File_Chooser::BROWSE_FILE);
fnfc.filter("Text\t*.txt\n"

"C Files\t*.{cxx,h,c}");
fnfc.directory("/var/tmp"); // default directory to use
// Show native chooser
switch (fnfc.show()) {

case -1: printf("ERROR: %s\n", fnfc.errmsg()); break; // ERROR
case 1: printf("CANCEL\n"); break; // CANCEL
default: printf("PICKED: %s\n", fnfc.filename()); break; // FILE CHOSEN

}

Platform Specific Caveats

• Under X windows, it’s best if you call Fl_File_Icon::load_system_icons() at the start of main(), to
enable the nicer looking file browser widgets.

• Some operating systems support certain OS specific options; see Fl_Native_File_Chooser::options()
for a list.

Figure 30.21: The Fl_Native_File_Chooser on different platforms

30.66.2 Member Enumeration Documentation

30.66.2.1 enum Fl_Native_File_Chooser::Option

Enumerator:

NO_OPTIONS no options enabled

SAVEAS_CONFIRM Show native ’Save As’ overwrite confirm dialog (if supported).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

620 Class Documentation

NEW_FOLDER Show ’New Folder’ icon (if supported).

PREVIEW enable preview mode

30.66.2.2 enum Fl_Native_File_Chooser::Type

Enumerator:

BROWSE_FILE browse files (lets user choose one file)

BROWSE_DIRECTORY browse directories (lets user choose one directory)

BROWSE_MULTI_FILE browse files (lets user choose multiple files)

BROWSE_MULTI_DIRECTORY browse directories (lets user choose multiple directories)

BROWSE_SAVE_FILE browse to save a file

BROWSE_SAVE_DIRECTORY browse to save a directory

30.66.3 Constructor & Destructor Documentation

30.66.3.1 Fl_Native_File_Chooser::Fl_Native_File_Chooser (int val = BROWSE_FILE)

The constructor.

Internally allocates the native widgets. Optional val presets the type of browser this will be, which can
also be changed with type().

30.66.3.2 Fl_Native_File_Chooser::∼Fl_Native_File_Chooser ()

Destructor.

Deallocates any resources allocated to this widget.

30.66.4 Member Function Documentation

30.66.4.1 int Fl_Native_File_Chooser::count () const

Returns the number of filenames (or directory names) the user selected.

Example:

if (fnfc->show() == 0) {
// Print all filenames user selected
for (int n=0; n<fnfc->count(); n++) {

printf("%d) ’%s’\n", n, fnfc->filename(n));
}

}

30.66.4.2 void Fl_Native_File_Chooser::directory (const char ∗ val)

Preset the directory the browser will show when opened.

If val is NULL, or no directory is specified, the chooser will attempt to use the last non-cancelled folder.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.66 Fl_Native_File_Chooser Class Reference 621

30.66.4.3 const char ∗ Fl_Native_File_Chooser::errmsg () const

Returns a system dependent error message for the last method that failed.

This message should at least be flagged to the user in a dialog box, or to some kind of error log. Contents
will be valid only for methods that document errmsg() will have info on failures.

30.66.4.4 const char ∗ Fl_Native_File_Chooser::filename (int i) const

Return one of the filenames the user selected.

Use count() to determine how many filenames the user selected.

Example:

if (fnfc->show() == 0) {
// Print all filenames user selected
for (int n=0; n<fnfc->count(); n++) {

printf("%d) ’%s’\n", n, fnfc->filename(n));
}

}

30.66.4.5 const char ∗ Fl_Native_File_Chooser::filename () const

Return the filename the user choose.

Use this if only expecting a single filename. If more than one filename is expected, use filename(int)
instead. Return value may be "" if no filename was chosen (eg. user cancelled).

30.66.4.6 void Fl_Native_File_Chooser::filter (const char ∗ val)

Sets the filename filters used for browsing.

The default is NULL, which browses all files.

The filter string can be any of:

• A single wildcard (eg. "∗.txt")

• Multiple wildcards (eg. "∗.{cxx,h,H}")

• A descriptive name followed by a "\t" and a wildcard (eg. "Text Files\t∗.txt")

• A list of separate wildcards with a "\n" between each (eg. "∗.{cxx,H}\n∗.txt")

• A list of descriptive names and wildcards (eg. "C++ Files\t∗.{cxx,H}\nTxt Files\t∗.txt")

The format of each filter is a wildcard, or an optional user description followed by ’\t’ and the wildcard.

On most platforms, each filter is available to the user via a pulldown menu in the file chooser. The ’All
Files’ option is always available to the user.

30.66.4.7 const char ∗ Fl_Native_File_Chooser::filter () const

Returns the filter string last set.

Can be NULL if no filter was set.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

622 Class Documentation

30.66.4.8 int Fl_Native_File_Chooser::filter_value () const

Returns which filter value was last selected by the user.

This is only valid if the chooser returns success.

30.66.4.9 void Fl_Native_File_Chooser::filter_value (int val)

Sets which filter will be initially selected.

The first filter is indexed as 0. If filter_value()==filters(), then "All Files" was chosen. If filter_value() >
filters(), then a custom filter was set.

30.66.4.10 void Fl_Native_File_Chooser::options (int val)

Sets the platform specific chooser options to val.

val is expected to be one or more Fl_Native_File_Chooser::Option flags ORed together. Some platforms
have OS-specific functions that can be enabled/disabled via this method.

Flag Description Win Mac Other
-------------- --- ------- ------- -------
NEW_FOLDER Shows the ’New Folder’ button. Ignored Used Used
PREVIEW Enables the ’Preview’ mode by default. Ignored Ignored Used
SAVEAS_CONFIRM Confirm dialog if BROWSE_SAVE_FILE file exists. Ignored Used Used

30.66.4.11 void Fl_Native_File_Chooser::preset_file (const char ∗ val)

Sets the default filename for the chooser.

Use directory() to set the default directory. Mainly used to preset the filename for save dialogs, and on
most platforms can be used for opening files as well.

30.66.4.12 int Fl_Native_File_Chooser::show ()

Post the chooser’s dialog.

Blocks until dialog has been completed or cancelled.

Returns:

• 0 – user picked a file

• 1 – user cancelled

• -1 – failed; errmsg() has reason

30.66.4.13 const char ∗ Fl_Native_File_Chooser::title () const

Get the title of the file chooser’s dialog window.

Return value may be NULL if no title was set.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.66 Fl_Native_File_Chooser Class Reference 623

30.66.4.14 void Fl_Native_File_Chooser::title (const char ∗ val)

Set the title of the file chooser’s dialog window.

Can be NULL if no title desired. The default title varies according to the platform, so you are advised to
set the title explicitly.

The documentation for this class was generated from the following files:

• Fl_Native_File_Chooser_FLTK.H
• Fl_Native_File_Chooser_FLTK.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

624 Class Documentation

30.67 Fl_Output Class Reference

This widget displays a piece of text.

#include <Fl_Output.H>

Inheritance diagram for Fl_Output::

Fl_Output

Fl_Input

Fl_Input_

Fl_Widget

Fl_Multiline_Output

Public Member Functions

• Fl_Output (int X, int Y, int W, int H, const char ∗l=0)

Creates a new Fl_Output widget using the given position, size, and label string.

30.67.1 Detailed Description

This widget displays a piece of text.

When you set the value() , Fl_Output does a strcpy() to it’s own storage, which is useful for program-
generated values. The user may select portions of the text using the mouse and paste the contents into other
fields or programs.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.67 Fl_Output Class Reference 625

Figure 30.22: Fl_Output

There is a single subclass, Fl_Multiline_Output, which allows you to display multiple lines of text. Fl_-
Multiline_Output does not provide scroll bars. If a more complete text editing widget is needed, use
Fl_Text_Display instead.

The text may contain any characters except \0, and will correctly display anything, using ∧X notation for
unprintable control characters and \nnn notation for unprintable characters with the high bit set. It assumes
the font can draw any characters in the ISO-Latin1 character set.

30.67.2 Constructor & Destructor Documentation

30.67.2.1 Fl_Output::Fl_Output (int X, int Y, int W, int H, const char ∗ l = 0) [inline]

Creates a new Fl_Output widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Inherited destrucor destroys the widget and any value associated with it.

The documentation for this class was generated from the following file:

• Fl_Output.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

626 Class Documentation

30.68 Fl_Overlay_Window Class Reference

This window provides double buffering and also the ability to draw the "overlay" which is another picture
placed on top of the main image.

#include <Fl_Overlay_Window.H>

Inheritance diagram for Fl_Overlay_Window::

Fl_Overlay_Window

Fl_Double_Window

Fl_Window

Fl_Group

Fl_Widget

Public Member Functions

• int can_do_overlay ()
• Fl_Overlay_Window (int X, int Y, int W, int H, const char ∗l=0)

See Fl_Overlay_Window::Fl_Overlay_Window(int W, int H, const char ∗l=0).

• Fl_Overlay_Window (int W, int H, const char ∗l=0)
Creates a new Fl_Overlay_Window widget using the given position, size, and label (title) string.

• void flush ()
Forces the window to be redrawn.

• void hide ()
Removes the window from the screen.

• void redraw_overlay ()
Call this to indicate that the overlay data has changed and needs to be redrawn.

• void resize (int, int, int, int)
Changes the size and position of the window.

• void show (int a, char ∗∗b)
Puts the window on the screen and parses command-line arguments.

• void show ()
Puts the window on the screen.

• ∼Fl_Overlay_Window ()
Destroys the window and all child widgets.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.68 Fl_Overlay_Window Class Reference 627

Friends

• class _Fl_Overlay

30.68.1 Detailed Description

This window provides double buffering and also the ability to draw the "overlay" which is another picture
placed on top of the main image.

The overlay is designed to be a rapidly-changing but simple graphic such as a mouse selection box. Fl_-
Overlay_Window uses the overlay planes provided by your graphics hardware if they are available.

If no hardware support is found the overlay is simulated by drawing directly into the on-screen copy of
the double-buffered window, and "erased" by copying the backbuffer over it again. This means the overlay
will blink if you change the image in the window.

30.68.2 Constructor & Destructor Documentation

30.68.2.1 Fl_Overlay_Window::Fl_Overlay_Window (int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Overlay_Window widget using the given position, size, and label (title) string.

If the positions (x,y) are not given, then the window manager will choose them.

30.68.3 Member Function Documentation

30.68.3.1 void Fl_Overlay_Window::hide () [virtual]

Removes the window from the screen.

If the window is already hidden or has not been shown then this does nothing and is harmless.

Reimplemented from Fl_Double_Window.

30.68.3.2 void Fl_Overlay_Window::redraw_overlay ()

Call this to indicate that the overlay data has changed and needs to be redrawn.

The overlay will be clear until the first time this is called, so if you want an initial display you must call
this after calling show().

30.68.3.3 void Fl_Overlay_Window::resize (int, int, int, int) [virtual]

Changes the size and position of the window.

If shown() is true, these changes are communicated to the window server (which may refuse that size and
cause a further resize). If shown() is false, the size and position are used when show() is called. See
Fl_Group for the effect of resizing on the child widgets.

You can also call the Fl_Widget methods size(x,y) and position(w,h), which are inline wrappers for this
virtual function.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

628 Class Documentation

A top-level window can not force, but merely suggest a position and size to the operating system. The
window manager may not be willing or able to display a window at the desired position or with the given
dimensions. It is up to the application developer to verify window parameters after the resize request.

Reimplemented from Fl_Double_Window.

30.68.3.4 void Fl_Overlay_Window::show (int argc, char ∗∗ argv) [inline]

Puts the window on the screen and parses command-line arguments.

Usually (on X) this has the side effect of opening the display.

This form should be used for top-level windows, at least for the first (main) window. It allows standard
arguments to be parsed from the command-line. You can use argc and argv from main(int argc, char
∗∗argv) for this call.

The first call also sets up some system-specific internal variables like the system colors.

Todo

explain which system parameters are set up.

Parameters:

argc command-line argument count, usually from main()

argv command-line argument vector, usually from main()

See also:

virtual void Fl_Window::show()

Reimplemented from Fl_Double_Window.

30.68.3.5 void Fl_Overlay_Window::show () [virtual]

Puts the window on the screen.

Usually (on X) this has the side effect of opening the display.

If the window is already shown then it is restored and raised to the top. This is really convenient because
your program can call show() at any time, even if the window is already up. It also means that show()
serves the purpose of raise() in other toolkits.

Fl_Window::show(int argc, char ∗∗argv) is used for top-level windows and allows standard arguments to
be parsed from the command-line.

See also:

Fl_Window::show(int argc, char ∗∗argv)

Reimplemented from Fl_Double_Window.

The documentation for this class was generated from the following files:

• Fl_Overlay_Window.H
• Fl_Overlay_Window.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.69 Fl_Pack Class Reference 629

30.69 Fl_Pack Class Reference

This widget was designed to add the functionality of compressing and aligning widgets.

#include <Fl_Pack.H>

Inheritance diagram for Fl_Pack::

Fl_Pack

Fl_Group

Fl_Widget

Public Types

• enum { VERTICAL = 0, HORIZONTAL = 1 }

Public Member Functions

• Fl_Pack (int x, int y, int w, int h, const char ∗l=0)

Creates a new Fl_Pack widget using the given position, size, and label string.

• uchar horizontal () const

Same as Fl_Group::type().

• void spacing (int i)

Sets the number of extra pixels of blank space that are added between the children.

• int spacing () const

Gets the number of extra pixels of blank space that are added between the children.

Protected Member Functions

• void draw ()

Draws the widget.

30.69.1 Detailed Description

This widget was designed to add the functionality of compressing and aligning widgets.

If type() is Fl_Pack::HORIZONTAL all the children are resized to the height of the Fl_Pack, and are moved
next to each other horizontally. If type() is not Fl_Pack::HORIZONTAL then the children are resized to
the width and are stacked below each other. Then the Fl_Pack resizes itself to surround the child widgets.

This widget is needed for the Fl_Tabs. In addition you may want to put the Fl_Pack inside an Fl_Scroll.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

630 Class Documentation

The resizable for Fl_Pack is set to NULL by default.

See also: Fl_Group::resizable()

30.69.2 Constructor & Destructor Documentation

30.69.2.1 Fl_Pack::Fl_Pack (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Pack widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having
to keep a pointer to all the children in the user code. A kludge has been done so the Fl_Pack and all of it’s
children can be automatic (local) variables, but you must declare the Fl_Packfirst, so that it is destroyed
last.

30.69.3 Member Function Documentation

30.69.3.1 void Fl_Pack::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Group.

The documentation for this class was generated from the following files:

• Fl_Pack.H
• Fl_Pack.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.70 Fl_Paged_Device Class Reference 631

30.70 Fl_Paged_Device Class Reference

Represents page-structured drawing surfaces.

#include <Fl_Paged_Device.H>

Inheritance diagram for Fl_Paged_Device::

Fl_Paged_Device

Fl_Surface_Device

Fl_Device

Fl_PostScript_File_Device Fl_System_Printer

Fl_PostScript_Printer Fl_Printer

Fl_Printer

Classes

• struct page_format

width, height and name of a page format

Public Types

• enum Page_Format {

A0 = 0, A1, A2, A3,

A4, A5, A6, A7,

A8, A9, B0, B1,

B2, B3, B4, B5,

B6, B7, B8, B9,

B10, C5E, DLE, EXECUTIVE,

FOLIO, LEDGER, LEGAL, LETTER,

TABLOID, ENVELOPE, MEDIA = 0x1000 }

Possible page formats.

• enum Page_Layout { PORTRAIT = 0, LANDSCAPE = 0x100, REVERSED = 0x200, ORIENTA-
TION = 0x300 }

Possible page layouts.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

632 Class Documentation

Public Member Functions

• virtual void end_job (void)
To be called at the end of a print job.

• virtual int end_page (void)
To be called at the end of each page.

• virtual void margins (int ∗left, int ∗top, int ∗right, int ∗bottom)
Computes the dimensions of margins that lie between the printable page area and the full page.

• void origin (int ∗x, int ∗y)
Computes the page coordinates of the current origin of graphics functions.

• virtual void origin (int x, int y)
Sets the position in page coordinates of the origin of graphics functions.

• void print_widget (Fl_Widget ∗widget, int delta_x=0, int delta_y=0)
Draws the widget on the printed page.

• void print_window_part (Fl_Window ∗win, int x, int y, int w, int h, int delta_x=0, int delta_y=0)
Prints a rectangular part of an on-screen window.

• virtual int printable_rect (int ∗w, int ∗h)
Computes the width and height of the printable area of the page.

• virtual void rotate (float angle)
Rotates the graphics operations relatively to paper.

• virtual void scale (float scale_x, float scale_y)
Changes the scaling of page coordinates.

• virtual int start_job (int pagecount, int ∗frompage=NULL, int ∗topage=NULL)
Starts a print job.

• virtual int start_page (void)
Starts a new printed page.

• virtual void translate (int x, int y)
Translates the current graphics origin accounting for the current rotation.

• virtual void untranslate (void)
Undoes the effect of a previous translate() call.

Static Public Attributes

• static const char ∗ device_type = "Fl_Paged_Device"
A string that identifies each subclass of Fl_Device.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.70 Fl_Paged_Device Class Reference 633

• static const page_format page_formats [NO_PAGE_FORMATS]

width, height and name of all elements of the enum Page_Format.

Protected Member Functions

• Fl_Paged_Device ()

The constructor.

• virtual ∼Fl_Paged_Device ()

The destructor.

Protected Attributes

• struct chain_elt ∗ image_list_

chained list of Fl_Image’s used in this page

• int x_offset

horizontal offset to the origin of graphics coordinates

• int y_offset

vertical offset to the origin of graphics coordinates

30.70.1 Detailed Description

Represents page-structured drawing surfaces.

This class has no public constructor: don’t instantiate it; use Fl_Printer or Fl_PostScript_File_Device
instead.

30.70.2 Member Enumeration Documentation

30.70.2.1 enum Fl_Paged_Device::Page_Format

Possible page formats.

All paper formats with pre-defined width and height.

Enumerator:

A0 A0 format.

A4 A4 format.

LETTER Letter format.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

634 Class Documentation

30.70.2.2 enum Fl_Paged_Device::Page_Layout

Possible page layouts.

Enumerator:

PORTRAIT Portrait orientation.

LANDSCAPE Landscape orientation.

REVERSED Reversed orientation.

ORIENTATION orientation

30.70.3 Member Function Documentation

30.70.3.1 int Fl_Paged_Device::end_page (void) [virtual]

To be called at the end of each page.

Returns:

0 iff OK.

Reimplemented in Fl_PostScript_File_Device, Fl_System_Printer, and Fl_Printer.

30.70.3.2 void Fl_Paged_Device::margins (int ∗ left, int ∗ top, int ∗ right, int ∗ bottom)
[virtual]

Computes the dimensions of margins that lie between the printable page area and the full page.

Values are in the same unit as that used by FLTK drawing functions. They are changed by scale() calls.

Parameters:

→ left If non-null, ∗left is set to the left margin size.

→ top If non-null, ∗top is set to the top margin size.

→ right If non-null, ∗right is set to the right margin size.

→ bottom If non-null, ∗bottom is set to the bottom margin size.

Reimplemented in Fl_PostScript_File_Device, Fl_System_Printer, and Fl_Printer.

30.70.3.3 void Fl_Paged_Device::origin (int ∗ x, int ∗ y)

Computes the page coordinates of the current origin of graphics functions.

Parameters:

→ x If non-null, ∗x is set to the horizontal page offset of graphics origin.

→ y Same as above, vertically.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.70 Fl_Paged_Device Class Reference 635

30.70.3.4 void Fl_Paged_Device::origin (int x, int y) [virtual]

Sets the position in page coordinates of the origin of graphics functions.

Arguments should be expressed relatively to the result of a previous printable_rect() call. That is,
printable_rect(&w, &h); origin(w/2, 0); sets the graphics origin at the top center of the
page printable area. Origin() calls are not affected by rotate() calls. Successive origin() calls don’t combine
their effects.

Parameters:

← x Horizontal position in page coordinates of the desired origin of graphics functions.

← y Same as above, vertically.

Reimplemented in Fl_PostScript_File_Device, Fl_System_Printer, and Fl_Printer.

30.70.3.5 void Fl_Paged_Device::print_widget (Fl_Widget ∗ widget, int delta_x = 0, int delta_y =
0)

Draws the widget on the printed page.

The widget’s position on the printed page is determined by the last call to origin() and by the optional
delta_x and delta_y arguments. Its dimensions are in points unless there was a previous call to scale().

Parameters:

← widget Any FLTK widget (e.g., standard, custom, window).

← delta_x Optional horizontal offset for positioning the widget relatively to the current origin of
graphics functions.

← delta_y Same as above, vertically.

30.70.3.6 void Fl_Paged_Device::print_window_part (Fl_Window ∗ win, int x, int y, int w, int h,
int delta_x = 0, int delta_y = 0)

Prints a rectangular part of an on-screen window.

Parameters:

win The window from where to capture.

x The rectangle left

y The rectangle top

w The rectangle width

h The rectangle height

delta_x Optional horizontal offset from current graphics origin where to print the captured rectangle.

delta_y As above, vertically.

30.70.3.7 int Fl_Paged_Device::printable_rect (int ∗ w, int ∗ h) [virtual]

Computes the width and height of the printable area of the page.

Values are in the same unit as that used by FLTK drawing functions, are unchanged by calls to origin(), but
are changed by scale() calls. Values account for the user-selected paper type and print orientation.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

636 Class Documentation

Returns:

0 iff OK.

Reimplemented in Fl_PostScript_File_Device, Fl_System_Printer, and Fl_Printer.

30.70.3.8 void Fl_Paged_Device::rotate (float angle) [virtual]

Rotates the graphics operations relatively to paper.

The rotation is centered on the current graphics origin. Successive rotate() calls don’t combine their ef-
fects.

Parameters:

angle Rotation angle in counterclockwise degrees.

Reimplemented in Fl_PostScript_File_Device, Fl_System_Printer, and Fl_Printer.

30.70.3.9 void Fl_Paged_Device::scale (float scale_x, float scale_y) [virtual]

Changes the scaling of page coordinates.

This function also resets the origin of graphics functions at top left of printable page area. After a scale()
call, do a printable_rect() call to get the new dimensions of the printable page area. Successive scale() calls
don’t combine their effects.

Parameters:

scale_x Horizontal dimensions of plot are multiplied by this quantity.

scale_y Same as above, vertically.

Reimplemented in Fl_PostScript_File_Device, Fl_System_Printer, and Fl_Printer.

30.70.3.10 int Fl_Paged_Device::start_job (int pagecount, int ∗ frompage = NULL, int ∗ topage =
NULL) [virtual]

Starts a print job.

Parameters:

← pagecount the total number of pages of the job

→ frompage if non-null, ∗frompage is set to the first page the user wants printed

→ topage if non-null, ∗topage is set to the last page the user wants printed

Returns:

0 iff OK

Reimplemented in Fl_System_Printer, Fl_PostScript_Printer, and Fl_Printer.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.70 Fl_Paged_Device Class Reference 637

30.70.3.11 int Fl_Paged_Device::start_page (void) [virtual]

Starts a new printed page.

The page coordinates are initially in points, i.e., 1/72 inch, and with origin at the top left of the printable
page area.

Returns:

0 iff OK

Reimplemented in Fl_PostScript_File_Device, Fl_System_Printer, and Fl_Printer.

30.70.3.12 void Fl_Paged_Device::translate (int x, int y) [virtual]

Translates the current graphics origin accounting for the current rotation.

This function is only useful after a rotate() call. Each translate() call must be matched by an untranslate()
call. Successive translate() calls add up their effects.

Reimplemented in Fl_PostScript_File_Device, Fl_System_Printer, and Fl_Printer.

30.70.4 Member Data Documentation

30.70.4.1 const char ∗ Fl_Paged_Device::device_type = "Fl_Paged_Device" [static]

A string that identifies each subclass of Fl_Device.

Function type() applied to a device of this class returns this string.

Reimplemented from Fl_Surface_Device.

Reimplemented in Fl_PostScript_File_Device, Fl_System_Printer, Fl_PostScript_Printer, and Fl_Printer.

The documentation for this class was generated from the following files:

• Fl_Paged_Device.H
• Fl_Paged_Device.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

638 Class Documentation

30.71 Fl_Paged_Device::page_format Struct Reference

width, height and name of a page format

#include <Fl_Paged_Device.H>

Public Attributes

• int height
height in points

• const char ∗ name
format name

• int width
width in points

30.71.1 Detailed Description

width, height and name of a page format

The documentation for this struct was generated from the following file:

• Fl_Paged_Device.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.72 Fl_Pixmap Class Reference 639

30.72 Fl_Pixmap Class Reference

The Fl_Pixmap class supports caching and drawing of colormap (pixmap) images, including transparency.

#include <Fl_Pixmap.H>

Inheritance diagram for Fl_Pixmap::

Fl_Pixmap

Fl_Image

Fl_GIF_Image Fl_XPM_Image

Public Member Functions

• virtual void color_average (Fl_Color c, float i)
The color_average() method averages the colors in the image with the FLTK color value c.

• Fl_Image ∗ copy ()
The copy() method creates a copy of the specified image.

• virtual Fl_Image ∗ copy (int W, int H)
The copy() method creates a copy of the specified image.

• virtual void desaturate ()
The desaturate() method converts an image to grayscale.

• void draw (int X, int Y)
The draw() methods draw the image.

• virtual void draw (int X, int Y, int W, int H, int cx=0, int cy=0)
The draw() methods draw the image.

• Fl_Pixmap (const uchar ∗const ∗D)
The constructors create a new pixmap from the specified XPM data.

• Fl_Pixmap (const char ∗const ∗D)
The constructors create a new pixmap from the specified XPM data.

• Fl_Pixmap (uchar ∗const ∗D)
The constructors create a new pixmap from the specified XPM data.

• Fl_Pixmap (char ∗const ∗D)
The constructors create a new pixmap from the specified XPM data.

• virtual void label (Fl_Menu_Item ∗m)
The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

640 Class Documentation

• virtual void label (Fl_Widget ∗w)

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• virtual void uncache ()

If the image has been cached for display, delete the cache data.

• virtual ∼Fl_Pixmap ()

The destructor free all memory and server resources that are used by the pixmap.

Public Attributes

• int alloc_data

Protected Member Functions

• void measure ()

Friends

• class Fl_GDI_Graphics_Driver
• class Fl_Quartz_Graphics_Driver
• class Fl_Xlib_Graphics_Driver

30.72.1 Detailed Description

The Fl_Pixmap class supports caching and drawing of colormap (pixmap) images, including transparency.

30.72.2 Constructor & Destructor Documentation

30.72.2.1 Fl_Pixmap::Fl_Pixmap (char ∗const ∗ D) [inline, explicit]

The constructors create a new pixmap from the specified XPM data.

30.72.2.2 Fl_Pixmap::Fl_Pixmap (uchar ∗const ∗ D) [inline, explicit]

The constructors create a new pixmap from the specified XPM data.

30.72.2.3 Fl_Pixmap::Fl_Pixmap (const char ∗const ∗ D) [inline, explicit]

The constructors create a new pixmap from the specified XPM data.

30.72.2.4 Fl_Pixmap::Fl_Pixmap (const uchar ∗const ∗ D) [inline, explicit]

The constructors create a new pixmap from the specified XPM data.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.72 Fl_Pixmap Class Reference 641

30.72.3 Member Function Documentation

30.72.3.1 void Fl_Pixmap::color_average (Fl_Color c, float i) [virtual]

The color_average() method averages the colors in the image with the FLTK color value c.

The i argument specifies the amount of the original image to combine with the color, so a value of 1.0
results in no color blend, and a value of 0.0 results in a constant image of the specified color. The original
image data is not altered by this method.

Reimplemented from Fl_Image.

30.72.3.2 Fl_Image∗ Fl_Pixmap::copy () [inline]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.72.3.3 Fl_Image ∗ Fl_Pixmap::copy (int W, int H) [virtual]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.72.3.4 void Fl_Pixmap::desaturate () [virtual]

The desaturate() method converts an image to grayscale.

If the image contains an alpha channel (depth = 4), the alpha channel is preserved. This method does not
alter the original image data.

Reimplemented from Fl_Image.

30.72.3.5 void Fl_Pixmap::draw (int X, int Y) [inline]

The draw() methods draw the image.

This form specifies the upper-lefthand corner of the image

Reimplemented from Fl_Image.

30.72.3.6 void Fl_Pixmap::draw (int X, int Y, int W, int H, int cx = 0, int cy = 0) [virtual]

The draw() methods draw the image.

This form specifies a bounding box for the image, with the origin (upper-lefthand corner) of the image
offset by the cx and cy arguments.

Reimplemented from Fl_Image.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

642 Class Documentation

30.72.3.7 void Fl_Pixmap::label (Fl_Menu_Item ∗ m) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented from Fl_Image.

30.72.3.8 void Fl_Pixmap::label (Fl_Widget ∗ widget) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented from Fl_Image.

30.72.3.9 void Fl_Pixmap::uncache () [virtual]

If the image has been cached for display, delete the cache data.

This allows you to change the data used for the image and then redraw it without recreating an image
object.

Reimplemented from Fl_Image.

The documentation for this class was generated from the following files:

• Fl_Pixmap.H
• Fl_Pixmap.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.73 Fl_Plugin Class Reference 643

30.73 Fl_Plugin Class Reference

Fl_Plugin allows link-time and run-time integration of binary modules.

#include <Fl_Plugin.H>

Inheritance diagram for Fl_Plugin::

Fl_Plugin

Fl_Device_Plugin

Public Member Functions

• Fl_Plugin (const char ∗klass, const char ∗name)

Create a plugin.

• virtual ∼Fl_Plugin ()

Clear the plugin and remove it from the database.

30.73.1 Detailed Description

Fl_Plugin allows link-time and run-time integration of binary modules.

Fl_Plugin and Fl_Plugin_Manager provide a small and simple solution for linking C++ classes at run-time,
or optionally linking modules at compile time without the need to change the main application.

Fl_Plugin_Manager uses static initialisation to create the plugin interface early during startup. Plugins are
stored in a temporary database, organized in classes.

Plugins should derive a new class from Fl_Plugin as a base:

class My_Plugin : public Fl_Plugin {
public:

My_Plugin() : Fl_Plugin("effects", "blur") { }
void do_something(...);

};
My_Plugin blur_plugin();

Plugins can be put into modules and either linked befor distribution, or loaded from dynamically linkable
files. An Fl_Plugin_Manager is used to list and access all currently loaded plugins.

Fl_Plugin_Manager mgr("effects");
int i, n = mgr.plugins();
for (i=0; i<n; i++) {

My_Plugin *pin = (My_Plugin*)mgr.plugin(i);
pin->do_something();

}

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

644 Class Documentation

30.73.2 Constructor & Destructor Documentation

30.73.2.1 Fl_Plugin::Fl_Plugin (const char ∗ klass, const char ∗ name)

Create a plugin.

Parameters:

← klass plugins are grouped in classes

← name every plugin should have a unique name

The documentation for this class was generated from the following files:

• Fl_Plugin.H
• Fl_Preferences.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.74 Fl_Plugin_Manager Class Reference 645

30.74 Fl_Plugin_Manager Class Reference

Fl_Plugin_Manager manages link-time and run-time plugin binaries.

#include <Fl_Plugin.H>

Inheritance diagram for Fl_Plugin_Manager::

Fl_Plugin_Manager

Fl_Preferences

Public Member Functions

• Fl_Preferences::ID addPlugin (const char ∗name, Fl_Plugin ∗plugin)

This function adds a new plugin to the database.

• Fl_Plugin_Manager (const char ∗klass)

Manage all plugins belonging to one class.

• Fl_Plugin ∗ plugin (const char ∗name)

Return the address of a plugin by name.

• Fl_Plugin ∗ plugin (int index)

Return the address of a plugin by index.

• int plugins ()

Return the number of plugins in the klass.

• ∼Fl_Plugin_Manager ()

Remove the plugin manager.

Static Public Member Functions

• static int load (const char ∗filename)

Load a module from disk.

• static int loadAll (const char ∗filepath, const char ∗pattern=0)

Use this function to load a whole directory full of modules.

• static void removePlugin (Fl_Preferences::ID id)

Remove any plugin.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

646 Class Documentation

30.74.1 Detailed Description

Fl_Plugin_Manager manages link-time and run-time plugin binaries.

See also:

Fl_Plugin

30.74.2 Constructor & Destructor Documentation

30.74.2.1 Fl_Plugin_Manager::∼Fl_Plugin_Manager ()

Remove the plugin manager.

Calling this does not remove the database itself or any plugins. It just removes the reference to the database.

30.74.3 Member Function Documentation

30.74.3.1 Fl_Preferences::ID Fl_Plugin_Manager::addPlugin (const char ∗ name, Fl_Plugin ∗
plugin)

This function adds a new plugin to the database.

There is no need to call this function explicitly. Every Fl_Plugin constructor will call this function at
initialization time.

30.74.3.2 int Fl_Plugin_Manager::load (const char ∗ filename) [static]

Load a module from disk.

A module must be a dynamically linkable file for the given operating system. When loading a module, its
+init function will be called which in turn calls the constructor of all statically initialized Fl_Plugin classes
and adds them to the database.

30.74.3.3 void Fl_Plugin_Manager::removePlugin (Fl_Preferences::ID id) [static]

Remove any plugin.

There is no need to call this function explicitly. Every Fl_Plugin destructor will call this function at de-
struction time.

The documentation for this class was generated from the following files:

• Fl_Plugin.H
• Fl_Preferences.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.75 Fl_PNG_Image Class Reference 647

30.75 Fl_PNG_Image Class Reference

The Fl_PNG_Image class supports loading, caching, and drawing of Portable Network Graphics (PNG)
image files.

#include <Fl_PNG_Image.H>

Inheritance diagram for Fl_PNG_Image::

Fl_PNG_Image

Fl_RGB_Image

Fl_Image

Public Member Functions

• Fl_PNG_Image (const char ∗filename)
The constructor loads the named PNG image from the given png filename.

30.75.1 Detailed Description

The Fl_PNG_Image class supports loading, caching, and drawing of Portable Network Graphics (PNG)
image files.

The class loads colormapped and full-color images and handles color- and alpha-based transparency.

30.75.2 Constructor & Destructor Documentation

30.75.2.1 Fl_PNG_Image::Fl_PNG_Image (const char ∗ png)

The constructor loads the named PNG image from the given png filename.

The destructor free all memory and server resources that are used by the image.

The documentation for this class was generated from the following files:

• Fl_PNG_Image.H
• Fl_PNG_Image.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

648 Class Documentation

30.76 Fl_PNM_Image Class Reference

The Fl_PNM_Image class supports loading, caching, and drawing of Portable Anymap (PNM, PBM, PGM,
PPM) image files.

#include <Fl_PNM_Image.H>

Inheritance diagram for Fl_PNM_Image::

Fl_PNM_Image

Fl_RGB_Image

Fl_Image

Public Member Functions

• Fl_PNM_Image (const char ∗filename)
The constructor loads the named PNM image.

30.76.1 Detailed Description

The Fl_PNM_Image class supports loading, caching, and drawing of Portable Anymap (PNM, PBM, PGM,
PPM) image files.

The class loads bitmap, grayscale, and full-color images in both ASCII and binary formats.

30.76.2 Constructor & Destructor Documentation

30.76.2.1 Fl_PNM_Image::Fl_PNM_Image (const char ∗ name)

The constructor loads the named PNM image.

The inherited destructor free all memory and server resources that are used by the image.

The documentation for this class was generated from the following files:

• Fl_PNM_Image.H
• Fl_PNM_Image.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.77 Fl_Positioner Class Reference 649

30.77 Fl_Positioner Class Reference

This class is provided for Forms compatibility.

#include <Fl_Positioner.H>

Inheritance diagram for Fl_Positioner::

Fl_Positioner

Fl_Widget

Public Member Functions

• Fl_Positioner (int x, int y, int w, int h, const char ∗l=0)

Creates a new Fl_Positioner widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

• int value (double, double)

Returns the current position in x and y.

• void xbounds (double, double)

Sets the X axis bounds.

• void xmaximum (double a)

Same as xbounds(xminimum(), a).

• double xmaximum () const

Gets the X axis maximum.

• void xminimum (double a)

Same as xbounds(a, xmaximum()).

• double xminimum () const

Gets the X axis minimum.

• void xstep (double a)

Sets the stepping value for the X axis.

• int xvalue (double)

Sets the X axis coordinate.

• double xvalue () const

Gets the X axis coordinate.

• void ybounds (double, double)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

650 Class Documentation

Sets the Y axis bounds.

• void ymaximum (double a)

Same as ybounds(ymininimum(), a).

• double ymaximum () const

Gets the Y axis maximum.

• void yminimum (double a)

Same as ybounds(a, ymaximum()).

• double yminimum () const

Gets the Y axis minimum.

• void ystep (double a)

Sets the stepping value for the Y axis.

• int yvalue (double)

Sets the Y axis coordinate.

• double yvalue () const

Gets the Y axis coordinate.

Protected Member Functions

• void draw ()

Draws the widget.

• void draw (int, int, int, int)
• int handle (int, int, int, int, int)

30.77.1 Detailed Description

This class is provided for Forms compatibility.

It provides 2D input. It would be useful if this could be put atop another widget so that the crosshairs are
on top, but this is not implemented. The color of the crosshairs is selection_color().

Figure 30.23: Fl_Positioner

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.77 Fl_Positioner Class Reference 651

30.77.2 Constructor & Destructor Documentation

30.77.2.1 Fl_Positioner::Fl_Positioner (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Positioner widget using the given position, size, and label string.

Creates a new Fl_Positioner widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

30.77.3 Member Function Documentation

30.77.3.1 void Fl_Positioner::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.77.3.2 int Fl_Positioner::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

652 Class Documentation

30.77.3.3 int Fl_Positioner::value (double X, double Y)

Returns the current position in x and y.

30.77.3.4 void Fl_Positioner::xbounds (double a, double b)

Sets the X axis bounds.

30.77.3.5 void Fl_Positioner::xstep (double a) [inline]

Sets the stepping value for the X axis.

30.77.3.6 int Fl_Positioner::xvalue (double X)

Sets the X axis coordinate.

30.77.3.7 double Fl_Positioner::xvalue () const [inline]

Gets the X axis coordinate.

30.77.3.8 void Fl_Positioner::ybounds (double a, double b)

Sets the Y axis bounds.

30.77.3.9 void Fl_Positioner::ystep (double a) [inline]

Sets the stepping value for the Y axis.

30.77.3.10 int Fl_Positioner::yvalue (double Y)

Sets the Y axis coordinate.

30.77.3.11 double Fl_Positioner::yvalue () const [inline]

Gets the Y axis coordinate.

The documentation for this class was generated from the following files:

• Fl_Positioner.H
• Fl_Positioner.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.78 Fl_PostScript_File_Device Class Reference 653

30.78 Fl_PostScript_File_Device Class Reference

To send graphical output to a PostScript file.

#include <Fl_PostScript.H>

Inheritance diagram for Fl_PostScript_File_Device::

Fl_PostScript_File_Device

Fl_Paged_Device

Fl_Surface_Device

Fl_Device

Fl_PostScript_Printer

Fl_Printer

Public Member Functions

• void end_job (void)

To be called at the end of a print job.

• int end_page (void)

To be called at the end of each page.

• Fl_PostScript_File_Device ()

The constructor.

• void margins (int ∗left, int ∗top, int ∗right, int ∗bottom)

Computes the dimensions of margins that lie between the printable page area and the full page.

• void origin (int x, int y)

Sets the position in page coordinates of the origin of graphics functions.

• int printable_rect (int ∗w, int ∗h)

Computes the width and height of the printable area of the page.

• void rotate (float angle)

Rotates the graphics operations relatively to paper.

• void scale (float scale_x, float scale_y)

Changes the scaling of page coordinates.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

654 Class Documentation

• int start_job (FILE ∗ps_output, int pagecount, enum Fl_Paged_Device::Page_Format
format=Fl_Paged_Device::A4, enum Fl_Paged_Device::Page_Layout layout=Fl_Paged_-
Device::PORTRAIT)

Begins the session where all graphics requests will go to FILE pointer.

• int start_job (int pagecount, enum Fl_Paged_Device::Page_Format format=Fl_Paged_Device::A4,
enum Fl_Paged_Device::Page_Layout layout=Fl_Paged_Device::PORTRAIT)

Begins the session where all graphics requests will go to a local PostScript file.

• int start_page (void)
Starts a new printed page.

• void translate (int x, int y)
Translates the current graphics origin accounting for the current rotation.

• void untranslate (void)
Undoes the effect of a previous translate() call.

• ∼Fl_PostScript_File_Device ()
The destructor.

Static Public Attributes

• static const char ∗ device_type = "Fl_PostScript_File_Device"
A string that identifies each subclass of Fl_Device.

• static const char ∗ file_chooser_title = "Select a .ps file"
Label of the PostScript file chooser window.

Protected Member Functions

• Fl_PostScript_Graphics_Driver ∗ driver ()
Returns the PostScript driver of this drawing surface.

30.78.1 Detailed Description

To send graphical output to a PostScript file.

30.78.2 Member Function Documentation

30.78.2.1 int Fl_PostScript_File_Device::end_page (void) [virtual]

To be called at the end of each page.

Returns:

0 iff OK.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.78 Fl_PostScript_File_Device Class Reference 655

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.78.2.2 void Fl_PostScript_File_Device::margins (int ∗ left, int ∗ top, int ∗ right, int ∗ bottom)
[virtual]

Computes the dimensions of margins that lie between the printable page area and the full page.

Values are in the same unit as that used by FLTK drawing functions. They are changed by scale() calls.

Parameters:

→ left If non-null, ∗left is set to the left margin size.

→ top If non-null, ∗top is set to the top margin size.

→ right If non-null, ∗right is set to the right margin size.

→ bottom If non-null, ∗bottom is set to the bottom margin size.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.78.2.3 void Fl_PostScript_File_Device::origin (int x, int y) [virtual]

Sets the position in page coordinates of the origin of graphics functions.

Arguments should be expressed relatively to the result of a previous printable_rect() call. That is,
printable_rect(&w, &h); origin(w/2, 0); sets the graphics origin at the top center of the
page printable area. Origin() calls are not affected by rotate() calls. Successive origin() calls don’t combine
their effects.

Parameters:

← x Horizontal position in page coordinates of the desired origin of graphics functions.

← y Same as above, vertically.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.78.2.4 int Fl_PostScript_File_Device::printable_rect (int ∗ w, int ∗ h) [virtual]

Computes the width and height of the printable area of the page.

Values are in the same unit as that used by FLTK drawing functions, are unchanged by calls to origin(), but
are changed by scale() calls. Values account for the user-selected paper type and print orientation.

Returns:

0 iff OK.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

656 Class Documentation

30.78.2.5 void Fl_PostScript_File_Device::rotate (float angle) [virtual]

Rotates the graphics operations relatively to paper.

The rotation is centered on the current graphics origin. Successive rotate() calls don’t combine their ef-
fects.

Parameters:

angle Rotation angle in counterclockwise degrees.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.78.2.6 void Fl_PostScript_File_Device::scale (float scale_x, float scale_y) [virtual]

Changes the scaling of page coordinates.

This function also resets the origin of graphics functions at top left of printable page area. After a scale()
call, do a printable_rect() call to get the new dimensions of the printable page area. Successive scale() calls
don’t combine their effects.

Parameters:

scale_x Horizontal dimensions of plot are multiplied by this quantity.

scale_y Same as above, vertically.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.78.2.7 int Fl_PostScript_File_Device::start_job (FILE ∗ ps_output, int pagecount, enum
Fl_Paged_Device::Page_Format format = Fl_Paged_Device::A4, enum
Fl_Paged_Device::Page_Layout layout = Fl_Paged_Device::PORTRAIT)

Begins the session where all graphics requests will go to FILE pointer.

Parameters:

ps_output A writable FILE pointer that will receive PostScript output and that should not be closed
until after end_job() has been called.

pagecount The total number of pages to be created.

format Desired page format.

layout Desired page layout.

Returns:

always 0.

30.78.2.8 int Fl_PostScript_File_Device::start_job (int pagecount, enum
Fl_Paged_Device::Page_Format format = Fl_Paged_Device::A4, enum
Fl_Paged_Device::Page_Layout layout = Fl_Paged_Device::PORTRAIT)

Begins the session where all graphics requests will go to a local PostScript file.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.78 Fl_PostScript_File_Device Class Reference 657

Opens a file dialog entitled with Fl_PostScript_File_Device::file_chooser_title to select an output
PostScript file.

Parameters:

pagecount The total number of pages to be created.

format Desired page format.

layout Desired page layout.

Returns:

0 iff OK, 1 if user cancelled the file dialog, 2 if fopen failed on user-selected output file.

30.78.2.9 int Fl_PostScript_File_Device::start_page (void) [virtual]

Starts a new printed page.

The page coordinates are initially in points, i.e., 1/72 inch, and with origin at the top left of the printable
page area.

Returns:

0 iff OK

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.78.2.10 void Fl_PostScript_File_Device::translate (int x, int y) [virtual]

Translates the current graphics origin accounting for the current rotation.

This function is only useful after a rotate() call. Each translate() call must be matched by an untranslate()
call. Successive translate() calls add up their effects.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.78.3 Member Data Documentation

30.78.3.1 const char ∗ Fl_PostScript_File_Device::device_type = "Fl_PostScript_File_Device"
[static]

A string that identifies each subclass of Fl_Device.

Function type() applied to a device of this class returns this string.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_PostScript_Printer, and Fl_Printer.

The documentation for this class was generated from the following files:

• Fl_PostScript.H
• Fl_PostScript.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

658 Class Documentation

30.79 Fl_PostScript_Graphics_Driver Class Reference

PostScript graphical backend.

#include <Fl_PostScript.H>

Inheritance diagram for Fl_PostScript_Graphics_Driver::

Fl_PostScript_Graphics_Driver

Fl_Graphics_Driver

Fl_Device

Public Member Functions

• void draw (Fl_RGB_Image ∗rgb, int XP, int YP, int WP, int HP, int cx, int cy)

Draws an Fl_RGB_Image object to the device.

• void draw (Fl_Bitmap ∗bitmap, int XP, int YP, int WP, int HP, int cx, int cy)

Draws an Fl_Bitmap object to the device.

• void draw (Fl_Pixmap ∗pxm, int XP, int YP, int WP, int HP, int cx, int cy)

Draws an Fl_Pixmap object to the device.

• Fl_PostScript_Graphics_Driver ()

The constructor.

• ∼Fl_PostScript_Graphics_Driver ()

The destructor.

Static Public Attributes

• static const char ∗ device_type = "Fl_PostScript_Graphics_Driver"

A string that identifies each subclass of Fl_Device.

30.79.1 Detailed Description

PostScript graphical backend.

PostScript text uses vectorial fonts for the latin alphabet (exactly: all unicode characters between U+0020
and U+017F, that is, ASCII, Latin-1 Supplement and Latin Extended-A charts) plus a few other characters:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.79 Fl_PostScript_Graphics_Driver Class Reference 659

Char Code-
point

Name Char Code-
point

Name Char Code-
point

Name

ƒ U+0192 florin ‚
U+201A quotesinglbase

™ U+2122 trade-
mark

^ U+02C6 circum-
flex

“ U+201C quoted-
blleft

U+2202 partiald-
iff

ˇ U+02C7 caron ”
U+201D

quoted-
blright

U+2206 Delta

˘
U+02D8

breve „ U+201E quoted-
blbase

U+2211 summa-
tion

·
U+02D9

dotac-
cent

† U+2020 dagger
U+221A

radical

U+02DA
ring ‡ U+2021 dag-

gerdbl
U+221E infinity

U+02DB
ogonek • U+2022 bullet U+2260 notequal

U+02DC
tilde . . . U+2026 ellipsis U+2264 lesse-

qual
´́

U+02DD
hun-
garum-
laut

% U+2030 perthou-
sand

U+2265
greaterequal

– U+2013 endash ‹ U+2039 guils-
inglleft U+25CA

lozenge

— U+2014 emdash ›
U+203A

guils-
inglright U+FB01

fi

‘ U+2018
quoteleft

/ U+2044 fraction
U+FB02

fl

’ U+2019 quo-
teright

C
U+20AC

Euro U+F8FF apple
(Mac
OS
only)

All other unicode characters are output as a bitmap.

FLTK standard fonts are output using PostScript standard fonts: Helvetica, Courier, Times (and their bold,
oblique, italic variants).

30.79.2 Constructor & Destructor Documentation

30.79.2.1 Fl_PostScript_Graphics_Driver::∼Fl_PostScript_Graphics_Driver ()

The destructor.

30.79.3 Member Function Documentation

30.79.3.1 void Fl_PostScript_Graphics_Driver::draw (Fl_RGB_Image ∗ rgb, int XP, int YP, int
WP, int HP, int cx, int cy) [virtual]

Draws an Fl_RGB_Image object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented from Fl_Graphics_Driver.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

660 Class Documentation

30.79.3.2 void Fl_PostScript_Graphics_Driver::draw (Fl_Bitmap ∗ bm, int XP, int YP, int WP,
int HP, int cx, int cy) [virtual]

Draws an Fl_Bitmap object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented from Fl_Graphics_Driver.

30.79.3.3 void Fl_PostScript_Graphics_Driver::draw (Fl_Pixmap ∗ pxm, int XP, int YP, int WP,
int HP, int cx, int cy) [virtual]

Draws an Fl_Pixmap object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented from Fl_Graphics_Driver.

30.79.4 Member Data Documentation

30.79.4.1 const char ∗ Fl_PostScript_Graphics_Driver::device_type =
"Fl_PostScript_Graphics_Driver" [static]

A string that identifies each subclass of Fl_Device.

Function type() applied to a device of this class returns this string.

Reimplemented from Fl_Graphics_Driver.

The documentation for this class was generated from the following files:

• Fl_PostScript.H
• Fl_PostScript.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.80 Fl_PostScript_Printer Class Reference 661

30.80 Fl_PostScript_Printer Class Reference

Print support under Unix/Linux.

#include <Fl_Printer.H>

Inheritance diagram for Fl_PostScript_Printer::

Fl_PostScript_Printer

Fl_PostScript_File_Device

Fl_Paged_Device

Fl_Surface_Device

Fl_Device

Fl_Printer

Public Member Functions

• int start_job (int pages, int ∗firstpage=NULL, int ∗lastpage=NULL)

Starts a print job.

Static Public Attributes

• static const char ∗ device_type

A string that identifies each subclass of Fl_Device.

30.80.1 Detailed Description

Print support under Unix/Linux.

Class Fl_PostScript_Printer is implemented only on the Unix/Linux platform. Use Fl_Printer instead that is
cross-platform and has the same API. Fl_Printer is typedef’ed to Fl_PostScript_Printer under Unix/Linux.

30.80.2 Member Function Documentation

30.80.2.1 int Fl_PostScript_Printer::start_job (int pagecount, int ∗ frompage = NULL, int ∗ topage
= NULL) [virtual]

Starts a print job.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

662 Class Documentation

Parameters:

← pagecount the total number of pages of the job

→ frompage if non-null, ∗frompage is set to the first page the user wants printed

→ topage if non-null, ∗topage is set to the last page the user wants printed

Returns:

0 iff OK

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.80.3 Member Data Documentation

30.80.3.1 const char∗ Fl_PostScript_Printer::device_type [static]

A string that identifies each subclass of Fl_Device.

Function type() applied to a device of this class returns this string.

Reimplemented from Fl_PostScript_File_Device.

Reimplemented in Fl_Printer.

The documentation for this class was generated from the following file:

• Fl_Printer.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.81 Fl_Preferences Class Reference 663

30.81 Fl_Preferences Class Reference

Fl_Preferences provides methods to store user settings between application starts.

#include <Fl_Preferences.H>

Inheritance diagram for Fl_Preferences::

Fl_Preferences

Fl_Plugin_Manager

Classes

• struct Entry
• class Name

’Name’ provides a simple method to create numerical or more complex procedural names for entries and
groups on the fly.

• class Node
• class RootNode

Public Types

• typedef void ∗ ID
Every Fl_Preferences-Group has a uniqe ID.

• enum Root { SYSTEM = 0, USER }
Define the scope of the preferences.

Public Member Functions

• char clear ()
Delete all groups and all entries.

• char deleteAllEntries ()
Delete all entries.

• char deleteAllGroups ()
Delete all groups.

• char deleteEntry (const char ∗entry)
Deletes a single name/value pair.

• char deleteGroup (const char ∗group)
Deletes a group.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

664 Class Documentation

• int entries ()
Returns the number of entries (name/value pairs) in a group.

• const char ∗ entry (int index)
Returns the name of an entry.

• char entryExists (const char ∗key)
Returns non-zero if an entry with this name exists.

• Fl_Preferences (ID id)
Create a new dataset access point using a dataset ID.

• Fl_Preferences (const Fl_Preferences &)
Create another reference to a Preferences group.

• Fl_Preferences (Fl_Preferences ∗parent, int groupIndex)
• Fl_Preferences (Fl_Preferences &parent, int groupIndex)

Open a child group using a given index.

• Fl_Preferences (Fl_Preferences ∗parent, const char ∗group)
Create or access a group of preferences using a name.

• Fl_Preferences (Fl_Preferences &parent, const char ∗group)
Generate or read a new group of entries within another group.

• Fl_Preferences (const char ∗path, const char ∗vendor, const char ∗application)
Use this constructor to create or read a preferences file at an arbitrary position in the file system.

• Fl_Preferences (Root root, const char ∗vendor, const char ∗application)
The constructor creates a group that manages name/value pairs and child groups.

• void flush ()
Writes all preferences to disk.

• char get (const char ∗entry, void ∗value, const void ∗defaultValue, int defaultSize, int maxSize)
Reads an entry from the group.

• char get (const char ∗entry, void ∗&value, const void ∗defaultValue, int defaultSize)
Reads an entry from the group.

• char get (const char ∗entry, char ∗value, const char ∗defaultValue, int maxSize)
Reads an entry from the group.

• char get (const char ∗entry, char ∗&value, const char ∗defaultValue)
Reads an entry from the group.

• char get (const char ∗entry, double &value, double defaultValue)
Reads an entry from the group.

• char get (const char ∗entry, float &value, float defaultValue)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.81 Fl_Preferences Class Reference 665

Reads an entry from the group.

• char get (const char ∗entry, int &value, int defaultValue)
Reads an entry from the group.

• char getUserdataPath (char ∗path, int pathlen)
Creates a path that is related to the preferences file and that is usable for additional application data.

• const char ∗ group (int num_group)
Returns the name of the Nth (num_group) group.

• char groupExists (const char ∗key)
Returns non-zero if a group with this name exists.

• int groups ()
Returns the number of groups that are contained within a group.

• ID id ()
Return an ID that can later be reused to open more references to this dataset.

• const char ∗ name ()
Return the name of this entry.

• const char ∗ path ()
Return the the full path to this entry.

• char set (const char ∗entry, const void ∗value, int size)
Sets an entry (name/value pair).

• char set (const char ∗entry, const char ∗value)
Sets an entry (name/value pair).

• char set (const char ∗entry, double value, int precision)
Sets an entry (name/value pair).

• char set (const char ∗entry, double value)
Sets an entry (name/value pair).

• char set (const char ∗entry, float value, int precision)
Sets an entry (name/value pair).

• char set (const char ∗entry, float value)
Sets an entry (name/value pair).

• char set (const char ∗entry, int value)
Sets an entry (name/value pair).

• int size (const char ∗entry)
Returns the size of the value part of an entry.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

666 Class Documentation

• virtual ∼Fl_Preferences ()

The destructor removes allocated resources.

Static Public Member Functions

• static const char ∗ newUUID ()

Returns a UUID as generated by the system.

• static char remove (ID id_)

Remove the group with this ID from a database.

Protected Attributes

• Node ∗ node
• RootNode ∗ rootNode

Friends

• class Node
• class RootNode

30.81.1 Detailed Description

Fl_Preferences provides methods to store user settings between application starts.

It is similar to the Registry on WIN32 and Preferences on MacOS, and provides a simple configuration
mechanism for UNIX.

Fl_Preferences uses a hierarchy to store data. It bundles similar data into groups and manages entries into
those groups as name/value pairs.

Preferences are stored in text files that can be edited manually. The file format is easy to read and relatively
forgiving. Preferences files are the same on all platforms. User comments in preference files are preserved.
Filenames are unique for each application by using a vendor/application naming scheme. The user must
provide default values for all entries to ensure proper operation should preferences be corrupted or not yet
exist.

Entries can be of any length. However, the size of each preferences file should be kept small for perfor-
mance reasons. One application can have multiple preferences files. Extensive binary data however should
be stored in separate files: see getUserdataPath().

Note:

Starting with FLTK 1.3, preference databases are expected to be in utf8 encoding. Previous databases
were stored in the current chracter set or code page which renders them incompatible for text entries
using international characters.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.81 Fl_Preferences Class Reference 667

30.81.2 Member Typedef Documentation

30.81.2.1 typedef void∗ Fl_Preferences::ID

Every Fl_Preferences-Group has a uniqe ID.

ID’s can be retrieved from an Fl_Preferences-Group and can then be used to create more Fl_Preference
references to the same data set, as long as the database remains open.

30.81.3 Member Enumeration Documentation

30.81.3.1 enum Fl_Preferences::Root

Define the scope of the preferences.

Enumerator:

SYSTEM Preferences are used system-wide.

USER Preferences apply only to the current user.

30.81.4 Constructor & Destructor Documentation

30.81.4.1 Fl_Preferences::Fl_Preferences (Root root, const char ∗ vendor, const char ∗
application)

The constructor creates a group that manages name/value pairs and child groups.

Groups are ready for reading and writing at any time. The root argument is either Fl_Preferences::USER
or Fl_Preferences::SYSTEM.

This constructor creates the base instance for all following entries and reads existing databases into mem-
ory. The vendor argument is a unique text string identifying the development team or vendor of an ap-
plication. A domain name or an EMail address are great unique names, e.g. "researchATmatthiasm.com"
or "fltk.org". The application argument can be the working title or final name of your application. Both
vendor and application must be valid relative UNIX pathnames and may contain ’/’s to create deeper file
structures.

A set of Preferences marked "run-time" exists exactly one per application and only as long as the application
runs. It can be used as a database for volatile information. FLTK uses it to register plugins at run-time.

Parameters:

← root can be USER or SYSTEM for user specific or system wide preferences

← vendor unique text describing the company or author of this file

← application unique text describing the application

30.81.4.2 Fl_Preferences::Fl_Preferences (const char ∗ path, const char ∗ vendor, const char ∗
application)

Use this constructor to create or read a preferences file at an arbitrary position in the file system.

The file name is generated in the form path/application.prefs. If application is NULL,
path must contain the full file name.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

668 Class Documentation

Parameters:

← path path to the directory that contains the preferences file
← vendor unique text describing the company or author of this file
← application unique text describing the application

30.81.4.3 Fl_Preferences::Fl_Preferences (Fl_Preferences & parent, const char ∗ group)

Generate or read a new group of entries within another group.

Use the group argument to name the group that you would like to access. Group can also contain a path
to a group further down the hierarchy by separating group names with a forward slash ’/’.

Parameters:

← parent reference object for the new group
← group name of the group to access (may contain ’/’s)

30.81.4.4 Fl_Preferences::Fl_Preferences (Fl_Preferences ∗ parent, const char ∗ group)

Create or access a group of preferences using a name.

Parameters:

← parent the parameter parent is a pointer to the parent group. Parent may be NULL. It then refers
to an application internal database which exists only once, and remains in RAM only until the
application quits. This database is used to manage plugins and other data indexes by strings.

← group a group name that is used as a key into the database

See also:

Fl_Preferences(Fl_Preferences&, const char ∗group)

30.81.4.5 Fl_Preferences::Fl_Preferences (Fl_Preferences & parent, int groupIndex)

Open a child group using a given index.

Use the groupIndex argument to find the group that you would like to access. If the given index is
invalid (negative or too high), a new group is created with a UUID as a name.

The index needs to be fixed. It is currently backward. Index 0 points to the last member in the ’list’ of
preferences.

Parameters:

← parent reference object for the new group
← groupIndex zero based index into child groups

30.81.4.6 Fl_Preferences::Fl_Preferences (Fl_Preferences ∗ parent, int groupIndex)

See also:

Fl_Preferences(Fl_Preferences&, int groupIndex)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.81 Fl_Preferences Class Reference 669

30.81.4.7 Fl_Preferences::Fl_Preferences (Fl_Preferences::ID id)

Create a new dataset access point using a dataset ID.

ID’s are a great way to remember shortcuts to database entries that are deeply nested in a preferences
database, as long as the database root is not deleted. An ID can be retrieved from any Fl_Preferences
dataset, and can then be used to create multiple new references to the same dataset.

ID’s can be put very helpful when put into the user_data() field of widget callbacks.

30.81.4.8 Fl_Preferences::∼Fl_Preferences () [virtual]

The destructor removes allocated resources.

When used on the base preferences group, the destructor flushes all changes to the preferences file and
deletes all internal databases.

The destructor does not remove any data from the database. It merely deletes your reference to the database.

30.81.5 Member Function Documentation

30.81.5.1 char Fl_Preferences::deleteEntry (const char ∗ key)

Deletes a single name/value pair.

This function removes the entry key from the database.

Parameters:

← key name of entry to delete

Returns:

0 if deleting the entry failed

30.81.5.2 char Fl_Preferences::deleteGroup (const char ∗ group)

Deletes a group.

Removes a group and all keys and groups within that group from the database.

Parameters:

← group name of the group to delete

Returns:

0 if call failed

30.81.5.3 int Fl_Preferences::entries ()

Returns the number of entries (name/value pairs) in a group.

Returns:

number of entries

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

670 Class Documentation

30.81.5.4 const char ∗ Fl_Preferences::entry (int index)

Returns the name of an entry.

There is no guaranteed order of entry names. The index must be within the range given by entries().

Parameters:

← index number indexing the requested entry

Returns:

pointer to value cstring

30.81.5.5 char Fl_Preferences::entryExists (const char ∗ key)

Returns non-zero if an entry with this name exists.

Parameters:

← key name of entry that is searched for

Returns:

0 if entry was not found

30.81.5.6 void Fl_Preferences::flush ()

Writes all preferences to disk.

This function works only with the base preferences group. This function is rarely used as deleting the base
preferences flushes automatically.

30.81.5.7 char Fl_Preferences::get (const char ∗ key, void ∗ data, const void ∗ defaultValue, int
defaultSize, int maxSize)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0). ’maxSize’ is the maximum length of text that will be read.

Parameters:

← key name of entry
→ data value returned from preferences or default value if none was set
← defaultValue default value to be used if no preference was set
← defaultSize size of default value array
← maxSize maximum length of value

Returns:

0 if the default value was used

Todo

maxSize should receive the number of bytes that were read.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.81 Fl_Preferences Class Reference 671

30.81.5.8 char Fl_Preferences::get (const char ∗ key, void ∗& data, const void ∗ defaultValue, int
defaultSize)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0). get() allocates memory of sufficient size to hold the value. The buffer must be free’d
by the developer using ’free(value)’.

Parameters:

← key name of entry

→ data returned from preferences or default value if none was set

← defaultValue default value to be used if no preference was set

← defaultSize size of default value array

Returns:

0 if the default value was used

30.81.5.9 char Fl_Preferences::get (const char ∗ key, char ∗ text, const char ∗ defaultValue, int
maxSize)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0). ’maxSize’ is the maximum length of text that will be read. The text buffer must allow
for one additional byte for a trailling zero.

Parameters:

← key name of entry

→ text returned from preferences or default value if none was set

← defaultValue default value to be used if no preference was set

← maxSize maximum length of value plus one byte for a trailing zero

Returns:

0 if the default value was used

30.81.5.10 char Fl_Preferences::get (const char ∗ key, char ∗& text, const char ∗ defaultValue)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0). get() allocates memory of sufficient size to hold the value. The buffer must be free’d
by the developer using ’free(value)’.

Parameters:

← key name of entry

→ text returned from preferences or default value if none was set

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

672 Class Documentation

← defaultValue default value to be used if no preference was set

Returns:

0 if the default value was used

30.81.5.11 char Fl_Preferences::get (const char ∗ key, double & value, double defaultValue)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0).

Parameters:

← key name of entry
→ value returned from preferences or default value if none was set
← defaultValue default value to be used if no preference was set

Returns:

0 if the default value was used

30.81.5.12 char Fl_Preferences::get (const char ∗ key, float & value, float defaultValue)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0).

Parameters:

← key name of entry
→ value returned from preferences or default value if none was set
← defaultValue default value to be used if no preference was set

Returns:

0 if the default value was used

30.81.5.13 char Fl_Preferences::get (const char ∗ key, int & value, int defaultValue)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0).

Parameters:

← key name of entry
→ value returned from preferences or default value if none was set
← defaultValue default value to be used if no preference was set

Returns:

0 if the default value was used

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.81 Fl_Preferences Class Reference 673

30.81.5.14 char Fl_Preferences::getUserdataPath (char ∗ path, int pathlen)

Creates a path that is related to the preferences file and that is usable for additional application data.

This function creates a directory that is named after the preferences database without the .prefs extension
and located in the same directory. It then fills the given buffer with the complete path name.

Exmaple:

Fl_Preferences prefs(USER, "matthiasm.com", "test");
char path[FL_PATH_MAX];
prefs.getUserdataPath(path);

creates the preferences database in (MS Windows):

c:/Documents and Settings/matt/Application Data/matthiasm.com/test.prefs

and returns the userdata path:

c:/Documents and Settings/matt/Application Data/matthiasm.com/test/

Parameters:

→ path buffer for user data path
← pathlen size of path buffer (should be at least FL_PATH_MAX)

Returns:

0 if path was not created or pathname can’t fit into buffer

30.81.5.15 const char ∗ Fl_Preferences::group (int num_group)

Returns the name of the Nth (num_group) group.

There is no guaranteed order of group names. The index must be within the range given by groups().

Parameters:

← num_group number indexing the requested group

Returns:

’C’ string pointer to the group name

30.81.5.16 char Fl_Preferences::groupExists (const char ∗ key)

Returns non-zero if a group with this name exists.

Group names are relative to the Preferences node and can contain a path. "." describes the current node,
"./" describes the topmost node. By preceding a groupname with a "./", its path becomes relative to the
topmost node.

Parameters:

← key name of group that is searched for

Returns:

0 if no group by that name was found

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

674 Class Documentation

30.81.5.17 int Fl_Preferences::groups ()

Returns the number of groups that are contained within a group.

Returns:

0 for no groups at all

30.81.5.18 const char ∗ Fl_Preferences::newUUID () [static]

Returns a UUID as generated by the system.

A UUID is a "universally unique identifier" which is commonly used in configuration files to create iden-
tities. A UUID in ASCII looks like this: 937C4900-51AA-4C11-8DD3-7AB59944F03E. It has
always 36 bytes plus a trailing zero.

Returns:

a pointer to a static buffer containing the new UUID in ASCII format. The buffer is overwritten during
every call to this function!

30.81.5.19 char Fl_Preferences::set (const char ∗ key, const void ∗ data, int dsize)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← data set this entry to value

← dsize size of data array

Returns:

0 if setting the value failed

30.81.5.20 char Fl_Preferences::set (const char ∗ key, const char ∗ text)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← text set this entry to value

Returns:

0 if setting the value failed

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.81 Fl_Preferences Class Reference 675

30.81.5.21 char Fl_Preferences::set (const char ∗ key, double value, int precision)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← value set this entry to value

← precision number of decimal digits to represent value

Returns:

0 if setting the value failed

30.81.5.22 char Fl_Preferences::set (const char ∗ key, double value)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← value set this entry to value

Returns:

0 if setting the value failed

30.81.5.23 char Fl_Preferences::set (const char ∗ key, float value, int precision)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← value set this entry to value

← precision number of decimal digits to represent value

Returns:

0 if setting the value failed

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

676 Class Documentation

30.81.5.24 char Fl_Preferences::set (const char ∗ key, float value)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← value set this entry to value

Returns:

0 if setting the value failed

30.81.5.25 char Fl_Preferences::set (const char ∗ key, int value)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← value set this entry to value

Returns:

0 if setting the value failed

30.81.5.26 int Fl_Preferences::size (const char ∗ key)

Returns the size of the value part of an entry.

Parameters:

← key name of entry

Returns:

size of value

The documentation for this class was generated from the following files:

• Fl_Preferences.H
• Fl_Preferences.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.82 Fl_Preferences::Name Class Reference 677

30.82 Fl_Preferences::Name Class Reference

’Name’ provides a simple method to create numerical or more complex procedural names for entries and
groups on the fly.

#include <Fl_Preferences.H>

Public Member Functions

• Name (const char ∗format,...)

Creates a group name or entry name on the fly.

• Name (unsigned int n)

Creates a group name or entry name on the fly.

• operator const char ∗ ()

Return the Name as a "C" string.

30.82.1 Detailed Description

’Name’ provides a simple method to create numerical or more complex procedural names for entries and
groups on the fly.

Example: prefs.set(Fl_Preferences::Name("File%d",i),file[i]);.

See test/preferences.cxx as a sample for writing arrays into preferences.

’Name’ is actually implemented as a class inside Fl_Preferences. It casts into const char∗ and gets auto-
matically destroyed after the enclosing call ends.

30.82.2 Constructor & Destructor Documentation

30.82.2.1 Fl_Preferences::Name::Name (unsigned int n)

Creates a group name or entry name on the fly.

This version creates a simple unsigned integer as an entry name.

int n, i;
Fl_Preferences prev(appPrefs, "PreviousFiles");
prev.get("n", 0);
for (i=0; i<n; i++)

prev.get(Fl_Preferences::Name(i), prevFile[i], "");

30.82.2.2 Fl_Preferences::Name::Name (const char ∗ format, ...)

Creates a group name or entry name on the fly.

This version creates entry names as in ’printf’.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

678 Class Documentation

int n, i;
Fl_Preferences prefs(USER, "matthiasm.com", "test");
prev.get("nFiles", 0);
for (i=0; i<n; i++)

prev.get(Fl_Preferences::Name("File%d", i), prevFile[i], "");

The documentation for this class was generated from the following files:

• Fl_Preferences.H
• Fl_Preferences.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.83 Fl_Printer Class Reference 679

30.83 Fl_Printer Class Reference

OS-independent print support.

#include <Fl_Printer.H>

Inheritance diagram for Fl_Printer::

Fl_Printer

Fl_System_Printer Fl_PostScript_Printer

Fl_Paged_Device

Fl_Surface_Device

Fl_Device

Public Member Functions

• void end_job (void)
To be called at the end of a print job.

• int end_page (void)
To be called at the end of each page.

• Fl_Printer (void)
The constructor.

• void margins (int ∗left, int ∗top, int ∗right, int ∗bottom)
Computes the dimensions of margins that lie between the printable page area and the full page.

• void origin (int x, int y)
Sets the position in page coordinates of the origin of graphics functions.

• int printable_rect (int ∗w, int ∗h)
Computes the width and height of the printable area of the page.

• void rotate (float angle)
Rotates the graphics operations relatively to paper.

• void scale (float scale_x, float scale_y)
Changes the scaling of page coordinates.

• int start_job (int pagecount, int ∗frompage=NULL, int ∗topage=NULL)
Starts a print job.

• int start_page (void)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

680 Class Documentation

Starts a new printed page.

• void translate (int x, int y)
Translates the current graphics origin accounting for the current rotation.

• void untranslate (void)
Undoes the effect of a previous translate() call.

• ∼Fl_Printer (void)
The destructor.

Static Public Attributes

• static const char ∗ device_type = "Fl_Printer"
A string that identifies each subclass of Fl_Device.

These attributes are effective under the Xlib platform only.

• static const char ∗ dialog_all = "All"
[this text may be customized at run-time]

• static const char ∗ dialog_cancel_button = "Cancel"
[this text may be customized at run-time]

• static const char ∗ dialog_copies = "Copies"
[this text may be customized at run-time]

• static const char ∗ dialog_copyNo = "# Copies:"
[this text may be customized at run-time]

• static const char ∗ dialog_from = "From:"
[this text may be customized at run-time]

• static const char ∗ dialog_pages = "Pages"
[this text may be customized at run-time]

• static const char ∗ dialog_print_button = "Print"
[this text may be customized at run-time]

• static const char ∗ dialog_print_to_file = "Print To File"
[this text may be customized at run-time]

• static const char ∗ dialog_printer = "Printer:"
[this text may be customized at run-time]

• static const char ∗ dialog_properties = "Properties..."
[this text may be customized at run-time]

• static const char ∗ dialog_range = "Print Range"
[this text may be customized at run-time]

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.83 Fl_Printer Class Reference 681

• static const char ∗ dialog_title = "Print"
[this text may be customized at run-time]

• static const char ∗ dialog_to = "To:"
[this text may be customized at run-time]

• static const char ∗ property_cancel = "Cancel"
[this text may be customized at run-time]

• static const char ∗ property_mode = "Output Mode:"
[this text may be customized at run-time]

• static const char ∗ property_pagesize = "Page Size:"
[this text may be customized at run-time]

• static const char ∗ property_save = "Save"
[this text may be customized at run-time]

• static const char ∗ property_title = "Printer Properties"
[this text may be customized at run-time]

• static const char ∗ property_use = "Use"
[this text may be customized at run-time]

30.83.1 Detailed Description

OS-independent print support.

Fl_Printer allows to use all FLTK drawing, color, text, and clip functions, and to have them operate on
printed page(s). There are two main, non exclusive, ways to use it.

• Print any widget (standard, custom, Fl_Window, Fl_Gl_Window) as it appears on screen, with op-
tional translation, scaling and rotation. This is done by calling print_widget() or print_window_-
part().

• Use a series of FLTK graphics commands (e.g., font, text, lines, colors, clip, image) to compose a
page appropriately shaped for printing.

In both cases, begin by start_job(), start_page(), printable_rect() and origin() calls and finish by end_page()
and end_job() calls.

Platform specifics

Fl_Printer is typedef’ed to Fl_PostScript_Printer under Unix/Linux and to Fl_System_Printer otherwise.
Both classes have the same API.

• Unix/Linux platforms: Class Fl_RGB_Image prints but loses its transparency if it has one. See class
Fl_PostScript_Graphics_Driver for a description of how UTF-8 strings appear in print. Use the static
public attributes of this class to set the print dialog to other languages than English. For example, the
"Printer:" dialog item Fl_Printer::dialog_printer can be set to French with:

Fl_Printer::dialog_printer = "Imprimante:";

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

682 Class Documentation

before creation of the Fl_Printer object. Use Fl_PostScript_File_Device::file_chooser_title to cus-
tomize the title of the file chooser dialog that opens when using the "Print To File" option of the print
dialog.

• MSWindows platform: Transparent Fl_RGB_Image ’s don’t print with exact transparency on most
printers. Fl_RGB_Image ’s don’t rotate() well. A workaround is to use the print_window_part() call.

• Mac OS X platform: all graphics requests print as on display.

30.83.2 Member Function Documentation

30.83.2.1 int Fl_Printer::end_page (void) [virtual]

To be called at the end of each page.

Returns:

0 iff OK.

Reimplemented from Fl_System_Printer.

30.83.2.2 void Fl_Printer::margins (int ∗ left, int ∗ top, int ∗ right, int ∗ bottom) [virtual]

Computes the dimensions of margins that lie between the printable page area and the full page.

Values are in the same unit as that used by FLTK drawing functions. They are changed by scale() calls.

Parameters:

→ left If non-null, ∗left is set to the left margin size.

→ top If non-null, ∗top is set to the top margin size.

→ right If non-null, ∗right is set to the right margin size.

→ bottom If non-null, ∗bottom is set to the bottom margin size.

Reimplemented from Fl_System_Printer.

30.83.2.3 void Fl_Printer::origin (int x, int y) [virtual]

Sets the position in page coordinates of the origin of graphics functions.

Arguments should be expressed relatively to the result of a previous printable_rect() call. That is,
printable_rect(&w, &h); origin(w/2, 0); sets the graphics origin at the top center of the
page printable area. Origin() calls are not affected by rotate() calls. Successive origin() calls don’t combine
their effects.

Parameters:

← x Horizontal position in page coordinates of the desired origin of graphics functions.

← y Same as above, vertically.

Reimplemented from Fl_System_Printer.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.83 Fl_Printer Class Reference 683

30.83.2.4 int Fl_Printer::printable_rect (int ∗ w, int ∗ h) [virtual]

Computes the width and height of the printable area of the page.

Values are in the same unit as that used by FLTK drawing functions, are unchanged by calls to origin(), but
are changed by scale() calls. Values account for the user-selected paper type and print orientation.

Returns:

0 iff OK.

Reimplemented from Fl_System_Printer.

30.83.2.5 void Fl_Printer::rotate (float angle) [virtual]

Rotates the graphics operations relatively to paper.

The rotation is centered on the current graphics origin. Successive rotate() calls don’t combine their ef-
fects.

Parameters:

angle Rotation angle in counterclockwise degrees.

Reimplemented from Fl_System_Printer.

30.83.2.6 void Fl_Printer::scale (float scale_x, float scale_y) [virtual]

Changes the scaling of page coordinates.

This function also resets the origin of graphics functions at top left of printable page area. After a scale()
call, do a printable_rect() call to get the new dimensions of the printable page area. Successive scale() calls
don’t combine their effects.

Parameters:

scale_x Horizontal dimensions of plot are multiplied by this quantity.
scale_y Same as above, vertically.

Reimplemented from Fl_System_Printer.

30.83.2.7 int Fl_Printer::start_job (int pagecount, int ∗ frompage = NULL, int ∗ topage = NULL)
[virtual]

Starts a print job.

Parameters:

← pagecount the total number of pages of the job
→ frompage if non-null, ∗frompage is set to the first page the user wants printed
→ topage if non-null, ∗topage is set to the last page the user wants printed

Returns:

0 iff OK

Reimplemented from Fl_System_Printer.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

684 Class Documentation

30.83.2.8 int Fl_Printer::start_page (void) [virtual]

Starts a new printed page.

The page coordinates are initially in points, i.e., 1/72 inch, and with origin at the top left of the printable
page area.

Returns:

0 iff OK

Reimplemented from Fl_System_Printer.

30.83.2.9 void Fl_Printer::translate (int x, int y) [virtual]

Translates the current graphics origin accounting for the current rotation.

This function is only useful after a rotate() call. Each translate() call must be matched by an untranslate()
call. Successive translate() calls add up their effects.

Reimplemented from Fl_System_Printer.

30.83.3 Member Data Documentation

30.83.3.1 const char ∗ Fl_Printer::device_type = "Fl_Printer" [static]

A string that identifies each subclass of Fl_Device.

Function type() applied to a device of this class returns this string.

Reimplemented from Fl_System_Printer.

The documentation for this class was generated from the following files:

• Fl_Printer.H
• Fl_Printer.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.84 Fl_Progress Class Reference 685

30.84 Fl_Progress Class Reference

Displays a progress bar for the user.

#include <Fl_Progress.H>

Inheritance diagram for Fl_Progress::

Fl_Progress

Fl_Widget

Public Member Functions

• Fl_Progress (int x, int y, int w, int h, const char ∗l=0)

The constructor creates the progress bar using the position, size, and label.

• float maximum () const

Gets the maximum value in the progress widget.

• void maximum (float v)

Sets the maximum value in the progress widget.

• float minimum () const

Gets the minimum value in the progress widget.

• void minimum (float v)

Sets the minimum value in the progress widget.

• float value () const

Gets the current value in the progress widget.

• void value (float v)

Sets the current value in the progress widget.

Protected Member Functions

• virtual void draw ()

Draws the progress bar.

30.84.1 Detailed Description

Displays a progress bar for the user.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

686 Class Documentation

30.84.2 Constructor & Destructor Documentation

30.84.2.1 Fl_Progress::Fl_Progress (int X, int Y, int W, int H, const char ∗ L = 0)

The constructor creates the progress bar using the position, size, and label.

You can set the background color with color() and the progress bar color with selection_color(), or you can
set both colors together with color(unsigned bg, unsigned sel).

The default colors are FL_BACKGROUND2_COLOR and FL_YELLOW, resp.

30.84.3 Member Function Documentation

30.84.3.1 void Fl_Progress::draw (void) [protected, virtual]

Draws the progress bar.

Implements Fl_Widget.

30.84.3.2 float Fl_Progress::maximum () const [inline]

Gets the maximum value in the progress widget.

30.84.3.3 void Fl_Progress::maximum (float v) [inline]

Sets the maximum value in the progress widget.

30.84.3.4 float Fl_Progress::minimum () const [inline]

Gets the minimum value in the progress widget.

30.84.3.5 void Fl_Progress::minimum (float v) [inline]

Sets the minimum value in the progress widget.

30.84.3.6 float Fl_Progress::value () const [inline]

Gets the current value in the progress widget.

30.84.3.7 void Fl_Progress::value (float v) [inline]

Sets the current value in the progress widget.

The documentation for this class was generated from the following files:

• Fl_Progress.H
• Fl_Progress.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.85 Fl_Quartz_Graphics_Driver Class Reference 687

30.85 Fl_Quartz_Graphics_Driver Class Reference

The Mac OS X-specific graphics class.

#include <Fl_Device.H>

Inheritance diagram for Fl_Quartz_Graphics_Driver::

Fl_Quartz_Graphics_Driver

Fl_Graphics_Driver

Fl_Device

Public Member Functions

• void draw (Fl_RGB_Image ∗img, int XP, int YP, int WP, int HP, int cx, int cy)

Draws an Fl_RGB_Image object to the device.

• void draw (Fl_Bitmap ∗pxm, int XP, int YP, int WP, int HP, int cx, int cy)

Draws an Fl_Bitmap object to the device.

• void draw (Fl_Pixmap ∗pxm, int XP, int YP, int WP, int HP, int cx, int cy)

Draws an Fl_Pixmap object to the device.

• Fl_Quartz_Graphics_Driver ()

The constructor.

Static Public Attributes

• static const char ∗ device_type = "Fl_Quartz_Graphics_Driver"

A string that identifies each subclass of Fl_Device.

30.85.1 Detailed Description

The Mac OS X-specific graphics class.

This class is implemented only on the Mac OS X platform.

30.85.2 Constructor & Destructor Documentation

30.85.2.1 Fl_Quartz_Graphics_Driver::Fl_Quartz_Graphics_Driver () [inline]

The constructor.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

688 Class Documentation

30.85.3 Member Function Documentation

30.85.3.1 void Fl_Quartz_Graphics_Driver::draw (Fl_RGB_Image ∗ rgb, int XP, int YP, int WP,
int HP, int cx, int cy) [virtual]

Draws an Fl_RGB_Image object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented from Fl_Graphics_Driver.

30.85.3.2 void Fl_Quartz_Graphics_Driver::draw (Fl_Bitmap ∗ bm, int XP, int YP, int WP, int
HP, int cx, int cy) [virtual]

Draws an Fl_Bitmap object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented from Fl_Graphics_Driver.

30.85.3.3 void Fl_Quartz_Graphics_Driver::draw (Fl_Pixmap ∗ pxm, int XP, int YP, int WP, int
HP, int cx, int cy) [virtual]

Draws an Fl_Pixmap object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented from Fl_Graphics_Driver.

30.85.4 Member Data Documentation

30.85.4.1 const char ∗ Fl_Quartz_Graphics_Driver::device_type = "Fl_Quartz_Graphics_Driver"
[static]

A string that identifies each subclass of Fl_Device.

Function type() applied to a device of this class returns this string.

Reimplemented from Fl_Graphics_Driver.

The documentation for this class was generated from the following files:

• Fl_Device.H
• Fl_Device.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.86 Fl_Repeat_Button Class Reference 689

30.86 Fl_Repeat_Button Class Reference

The Fl_Repeat_Button is a subclass of Fl_Button that generates a callback when it is pressed and then
repeatedly generates callbacks as long as it is held down.

#include <Fl_Repeat_Button.H>

Inheritance diagram for Fl_Repeat_Button::

Fl_Repeat_Button

Fl_Button

Fl_Widget

Public Member Functions

• void deactivate ()

Deactivates the widget.

• Fl_Repeat_Button (int X, int Y, int W, int H, const char ∗l=0)

Creates a new Fl_Repeat_Button widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

30.86.1 Detailed Description

The Fl_Repeat_Button is a subclass of Fl_Button that generates a callback when it is pressed and then
repeatedly generates callbacks as long as it is held down.

The speed of the repeat is fixed and depends on the implementation.

30.86.2 Constructor & Destructor Documentation

30.86.2.1 Fl_Repeat_Button::Fl_Repeat_Button (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Repeat_Button widget using the given position, size, and label string.

The default boxtype is FL_UP_BOX. Deletes the button.

30.86.3 Member Function Documentation

30.86.3.1 void Fl_Repeat_Button::deactivate () [inline]

Deactivates the widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

690 Class Documentation

Inactive widgets will be drawn "grayed out", e.g. with less contrast than the active widget. Inactive widgets
will not receive any keyboard or mouse button events. Other events (including FL_ENTER, FL_MOVE,
FL_LEAVE, FL_SHORTCUT, and others) will still be sent. A widget is only active if active() is true on it
and all of its parents.

Changing this value will send FL_DEACTIVATE to the widget if active_r() is true.

Currently you cannot deactivate Fl_Window widgets.

See also:

activate(), active(), active_r()

Reimplemented from Fl_Widget.

30.86.3.2 int Fl_Repeat_Button::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Button.

The documentation for this class was generated from the following files:

• Fl_Repeat_Button.H
• Fl_Repeat_Button.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.87 Fl_Return_Button Class Reference 691

30.87 Fl_Return_Button Class Reference

The Fl_Return_Button is a subclass of Fl_Button that generates a callback when it is pressed or when the
user presses the Enter key.

#include <Fl_Return_Button.H>

Inheritance diagram for Fl_Return_Button::

Fl_Return_Button

Fl_Button

Fl_Widget

Public Member Functions

• Fl_Return_Button (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Return_Button widget using the given position, size, and label string.

• int handle (int)
Handles the specified event.

Protected Member Functions

• void draw ()
Draws the widget.

30.87.1 Detailed Description

The Fl_Return_Button is a subclass of Fl_Button that generates a callback when it is pressed or when the
user presses the Enter key.

A carriage-return symbol is drawn next to the button label.

Figure 30.24: Fl_Return_Button

30.87.2 Constructor & Destructor Documentation

30.87.2.1 Fl_Return_Button::Fl_Return_Button (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Return_Button widget using the given position, size, and label string.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

692 Class Documentation

The default boxtype is FL_UP_BOX.

The inherited destructor deletes the button.

30.87.3 Member Function Documentation

30.87.3.1 void Fl_Return_Button::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Button.

30.87.3.2 int Fl_Return_Button::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Button.

The documentation for this class was generated from the following files:

• Fl_Return_Button.H
• Fl_Return_Button.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.88 Fl_RGB_Image Class Reference 693

30.88 Fl_RGB_Image Class Reference

The Fl_RGB_Image class supports caching and drawing of full-color images with 1 to 4 channels of color
information.

#include <Fl_Image.H>

Inheritance diagram for Fl_RGB_Image::

Fl_RGB_Image

Fl_Image

Fl_BMP_Image Fl_JPEG_Image Fl_PNG_Image Fl_PNM_Image

Public Member Functions

• virtual void color_average (Fl_Color c, float i)
The color_average() method averages the colors in the image with the FLTK color value c.

• Fl_Image ∗ copy ()
The copy() method creates a copy of the specified image.

• virtual Fl_Image ∗ copy (int W, int H)
The copy() method creates a copy of the specified image.

• virtual void desaturate ()
The desaturate() method converts an image to grayscale.

• void draw (int X, int Y)
The draw() methods draw the image.

• virtual void draw (int X, int Y, int W, int H, int cx=0, int cy=0)
The draw() methods draw the image.

• Fl_RGB_Image (const uchar ∗bits, int W, int H, int D=3, int LD=0)
The constructor creates a new image from the specified data.

• virtual void label (Fl_Menu_Item ∗m)
The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• virtual void label (Fl_Widget ∗w)
The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• virtual void uncache ()
If the image has been cached for display, delete the cache data.

• virtual ∼Fl_RGB_Image ()
The destructor free all memory and server resources that are used by the image.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

694 Class Documentation

Public Attributes

• int alloc_array
• const uchar ∗ array

Friends

• class Fl_GDI_Graphics_Driver
• class Fl_Quartz_Graphics_Driver
• class Fl_Xlib_Graphics_Driver

30.88.1 Detailed Description

The Fl_RGB_Image class supports caching and drawing of full-color images with 1 to 4 channels of color
information.

Images with an even number of channels are assumed to contain alpha information, which is used to blend
the image with the contents of the screen.

Fl_RGB_Image is defined in <FL/Fl_Image.H>, however for compatibility reasons <FL/Fl_RGB_-
Image.H> should be included.

30.88.2 Constructor & Destructor Documentation

30.88.2.1 Fl_RGB_Image::Fl_RGB_Image (const uchar ∗ bits, int W, int H, int D = 3, int LD =
0) [inline]

The constructor creates a new image from the specified data.

30.88.2.2 Fl_RGB_Image::∼Fl_RGB_Image () [virtual]

The destructor free all memory and server resources that are used by the image.

30.88.3 Member Function Documentation

30.88.3.1 void Fl_RGB_Image::color_average (Fl_Color c, float i) [virtual]

The color_average() method averages the colors in the image with the FLTK color value c.

The i argument specifies the amount of the original image to combine with the color, so a value of 1.0
results in no color blend, and a value of 0.0 results in a constant image of the specified color. The original
image data is not altered by this method.

Reimplemented from Fl_Image.

30.88.3.2 Fl_Image∗ Fl_RGB_Image::copy () [inline]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.88 Fl_RGB_Image Class Reference 695

Reimplemented from Fl_Image.

30.88.3.3 Fl_Image ∗ Fl_RGB_Image::copy (int W, int H) [virtual]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.88.3.4 void Fl_RGB_Image::desaturate () [virtual]

The desaturate() method converts an image to grayscale.

If the image contains an alpha channel (depth = 4), the alpha channel is preserved. This method does not
alter the original image data.

Reimplemented from Fl_Image.

30.88.3.5 void Fl_RGB_Image::draw (int X, int Y) [inline]

The draw() methods draw the image.

This form specifies the upper-lefthand corner of the image

Reimplemented from Fl_Image.

30.88.3.6 void Fl_RGB_Image::draw (int X, int Y, int W, int H, int cx = 0, int cy = 0)
[virtual]

The draw() methods draw the image.

This form specifies a bounding box for the image, with the origin (upper-lefthand corner) of the image
offset by the cx and cy arguments.

Reimplemented from Fl_Image.

30.88.3.7 void Fl_RGB_Image::label (Fl_Menu_Item ∗ m) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented from Fl_Image.

30.88.3.8 void Fl_RGB_Image::label (Fl_Widget ∗ widget) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented from Fl_Image.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

696 Class Documentation

30.88.3.9 void Fl_RGB_Image::uncache () [virtual]

If the image has been cached for display, delete the cache data.

This allows you to change the data used for the image and then redraw it without recreating an image
object.

Reimplemented from Fl_Image.

The documentation for this class was generated from the following files:

• Fl_Image.H
• Fl_Image.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.89 Fl_Roller Class Reference 697

30.89 Fl_Roller Class Reference

The Fl_Roller widget is a "dolly" control commonly used to move 3D objects.

#include <Fl_Roller.H>

Inheritance diagram for Fl_Roller::

Fl_Roller

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Roller (int X, int Y, int W, int H, const char ∗L=0)

Creates a new Fl_Roller widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

Protected Member Functions

• void draw ()

Draws the widget.

30.89.1 Detailed Description

The Fl_Roller widget is a "dolly" control commonly used to move 3D objects.

Figure 30.25: Fl_Roller

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

698 Class Documentation

30.89.2 Constructor & Destructor Documentation

30.89.2.1 Fl_Roller::Fl_Roller (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Roller widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

Inherited destructor destroys the valuator.

30.89.3 Member Function Documentation

30.89.3.1 void Fl_Roller::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.89.3.2 int Fl_Roller::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

The documentation for this class was generated from the following files:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.89 Fl_Roller Class Reference 699

• Fl_Roller.H
• Fl_Roller.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

700 Class Documentation

30.90 Fl_Round_Button Class Reference

Buttons generate callbacks when they are clicked by the user.

#include <Fl_Round_Button.H>

Inheritance diagram for Fl_Round_Button::

Fl_Round_Button

Fl_Light_Button

Fl_Button

Fl_Widget

Public Member Functions

• Fl_Round_Button (int x, int y, int w, int h, const char ∗l=0)
Creates a new Fl_Round_Button widget using the given position, size, and label string.

30.90.1 Detailed Description

Buttons generate callbacks when they are clicked by the user.

You control exactly when and how by changing the values for type() and when().

Figure 30.26: Fl_Round_Button

The Fl_Round_Button subclass display the "on" state by turning on a light, rather than drawing pushed in.
The shape of the "light" is initially set to FL_ROUND_DOWN_BOX. The color of the light when on is
controlled with selection_color(), which defaults to FL_RED.

The documentation for this class was generated from the following files:

• Fl_Round_Button.H
• Fl_Round_Button.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.91 Fl_Round_Clock Class Reference 701

30.91 Fl_Round_Clock Class Reference

A clock widget of type FL_ROUND_CLOCK.

#include <Fl_Round_Clock.H>

Inheritance diagram for Fl_Round_Clock::

Fl_Round_Clock

Fl_Clock

Fl_Clock_Output

Fl_Widget

Public Member Functions

• Fl_Round_Clock (int x, int y, int w, int h, const char ∗l=0)
Creates the clock widget, setting his type and box.

30.91.1 Detailed Description

A clock widget of type FL_ROUND_CLOCK.

Has no box.

30.91.2 Constructor & Destructor Documentation

30.91.2.1 Fl_Round_Clock::Fl_Round_Clock (int x, int y, int w, int h, const char ∗ l = 0)
[inline]

Creates the clock widget, setting his type and box.

The documentation for this class was generated from the following file:

• Fl_Round_Clock.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

702 Class Documentation

30.92 Fl_Scroll Class Reference

This container widget lets you maneuver around a set of widgets much larger than your window.

#include <Fl_Scroll.H>

Inheritance diagram for Fl_Scroll::

Fl_Scroll

Fl_Group

Fl_Widget

Classes

• struct ScrollInfo

Public Types

• enum {

HORIZONTAL = 1, VERTICAL = 2, BOTH = 3, ALWAYS_ON = 4,

HORIZONTAL_ALWAYS = 5, VERTICAL_ALWAYS = 6, BOTH_ALWAYS = 7 }

Public Member Functions

• void clear ()
Clear all but the scrollbars.

• Fl_Scroll (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Scroll widget using the given position, size, and label string.

• int handle (int)
Handles the specified event.

• void resize (int, int, int, int)
Resizes the Fl_Group widget and all of its children.

• void scroll_to (int, int)
Moves the contents of the scroll group to a new position.

• void scrollbar_size (int size)
Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

• int scrollbar_size () const
Gets the current size of the scrollbars’ troughs, in pixels.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.92 Fl_Scroll Class Reference 703

• int xposition () const
Gets the current horizontal scrolling position.

• int yposition () const
Gets the current vertical scrolling position.

Public Attributes

• Fl_Scrollbar hscrollbar
• Fl_Scrollbar scrollbar

Protected Member Functions

• void bbox (int &, int &, int &, int &)
Returns the bounding box for the interior of the scrolling area, inside the scrollbars.

• void draw ()
Draws the widget.

30.92.1 Detailed Description

This container widget lets you maneuver around a set of widgets much larger than your window.

If the child widgets are larger than the size of this object then scrollbars will appear so that you can scroll
over to them:

Figure 30.27: Fl_Scroll

If all of the child widgets are packed together into a solid rectangle then you want to set box() to FL_-
NO_BOX or one of the _FRAME types. This will result in the best output. However, if the child widgets
are a sparse arrangement you must set box() to a real _BOX type. This can result in some blinking during
redrawing, but that can be solved by using a Fl_Double_Window.

By default you can scroll in both directions, and the scrollbars disappear if the data will fit in the area of
the scroll.

Use Fl_Scroll::type() to change this as follows :

• 0 - No scrollbars

• Fl_Scroll::HORIZONTAL - Only a horizontal scrollbar.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

704 Class Documentation

• Fl_Scroll::VERTICAL - Only a vertical scrollbar.

• Fl_Scroll::BOTH - The default is both scrollbars.

• Fl_Scroll::HORIZONTAL_ALWAYS - Horizontal scrollbar always on, vertical always off.

• Fl_Scroll::VERTICAL_ALWAYS - Vertical scrollbar always on, horizontal always off.

• Fl_Scroll::BOTH_ALWAYS - Both always on.

Use scrollbar.align(int) (see void Fl_Widget::align(Fl_Align)) : to change what side the scrollbars are
drawn on.

If the FL_ALIGN_LEFT bit is on, the vertical scrollbar is on the left. If the FL_ALIGN_TOP bit is on, the
horizontal scrollbar is on the top. Note that only the alignment flags in scrollbar are considered. The flags
in hscrollbar however are ignored.

This widget can also be used to pan around a single child widget "canvas". This child widget should be of
your own class, with a draw() method that draws the contents. The scrolling is done by changing the x()
and y() of the widget, so this child must use the x() and y() to position its drawing. To speed up drawing it
should test fl_push_clip().

Another very useful child is a single Fl_Pack, which is itself a group that packs its children together and
changes size to surround them. Filling the Fl_Pack with Fl_Tabs groups (and then putting normal widgets
inside those) gives you a very powerful scrolling list of individually-openable panels.

Fluid lets you create these, but you can only lay out objects that fit inside the Fl_Scroll without scrolling.
Be sure to leave space for the scrollbars, as Fluid won’t show these either.

You cannot use Fl_Window as a child of this since the clipping is not conveyed to it when drawn, and it will
draw over the scrollbars and neighboring objects.

30.92.2 Constructor & Destructor Documentation

30.92.2.1 Fl_Scroll::Fl_Scroll (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Scroll widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having
to keep a pointer to all the children in the user code. A kludge has been done so the Fl_Scroll and all of it’s
children can be automatic (local) variables, but you must declare the Fl_Scrollfirst, so that it is destroyed
last.

30.92.3 Member Function Documentation

30.92.3.1 void Fl_Scroll::bbox (int & X, int & Y, int & W, int & H) [protected]

Returns the bounding box for the interior of the scrolling area, inside the scrollbars.

Currently this is only reliable after draw(), and before any resizing of the Fl_Scroll or any child widgets
occur.

Todo

The visibility of the scrollbars ought to be checked/calculated outside of the draw() method (STR
#1895).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.92 Fl_Scroll Class Reference 705

30.92.3.2 void Fl_Scroll::clear ()

Clear all but the scrollbars.

..

Reimplemented from Fl_Group.

30.92.3.3 void Fl_Scroll::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Group.

30.92.3.4 int Fl_Scroll::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood
1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Group.

30.92.3.5 void Fl_Scroll::resize (int X, int Y, int W, int H) [virtual]

Resizes the Fl_Group widget and all of its children.

The Fl_Group widget first resizes itself, and then it moves and resizes all its children according to the rules
documented for Fl_Group::resizable(Fl_Widget∗)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

706 Class Documentation

See also:

Fl_Group::resizable(Fl_Widget∗)
Fl_Group::resizable()
Fl_Widget::resize(int,int,int,int)

Reimplemented from Fl_Group.

30.92.3.6 void Fl_Scroll::scroll_to (int X, int Y)

Moves the contents of the scroll group to a new position.

30.92.3.7 void Fl_Scroll::scrollbar_size (int size) [inline]

Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

Normally you should not need this method, and should use Fl::scrollbar_size(int) instead to manage the
size of ALL your widgets’ scrollbars. This ensures your application has a consistent UI, is the default
behavior, and is normally what you want.

Only use THIS method if you really need to override the global scrollbar size. The need for this should be
rare.

Setting size to the special value of 0 causes the widget to track the global Fl::scrollbar_size(), which is
the default.

Parameters:

← size Sets the scrollbar size in pixels.
If 0 (default), scrollbar size tracks the global Fl::scrollbar_size()

See also:

Fl::scrollbar_size()

30.92.3.8 int Fl_Scroll::scrollbar_size () const [inline]

Gets the current size of the scrollbars’ troughs, in pixels.

If this value is zero (default), this widget will use the Fl::scrollbar_size() value as the scrollbar’s width.

Returns:

Scrollbar size in pixels, or 0 if the global Fl::scrollsize() is being used.

See also:

Fl::scrollbar_size(int)

30.92.3.9 int Fl_Scroll::xposition () const [inline]

Gets the current horizontal scrolling position.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.92 Fl_Scroll Class Reference 707

30.92.3.10 int Fl_Scroll::yposition () const [inline]

Gets the current vertical scrolling position.

The documentation for this class was generated from the following files:

• Fl_Scroll.H
• Fl_Scroll.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

708 Class Documentation

30.93 Fl_Scrollbar Class Reference

The Fl_Scrollbar widget displays a slider with arrow buttons at the ends of the scrollbar.

#include <Fl_Scrollbar.H>

Inheritance diagram for Fl_Scrollbar::

Fl_Scrollbar

Fl_Slider

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Scrollbar (int X, int Y, int W, int H, const char ∗L=0)
Creates a new Fl_Scrollbar widget with given position, size, and label.

• int handle (int)
Handles the specified event.

• void linesize (int i)
This number controls how big the steps are that the arrow keys do.

• int linesize () const
Get the size of step, in lines, that the arror keys move.

• int value (int pos, int size, int first, int total)
Sets the position, size and range of the slider in the scrollbar.

• int value (int p)
Sets the value (position) of the slider in the scrollbar.

• int value () const
Gets the integer value (position) of the slider in the scrollbar.

• ∼Fl_Scrollbar ()
Destroys the Scrollbar.

Protected Member Functions

• void draw ()
Draws the widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.93 Fl_Scrollbar Class Reference 709

30.93.1 Detailed Description

The Fl_Scrollbar widget displays a slider with arrow buttons at the ends of the scrollbar.

Clicking on the arrows move up/left and down/right by linesize(). Scrollbars also accept FL_SHORTCUT
events: the arrows move by linesize(), and vertical scrollbars take Page Up/Down (they move by the page
size minus linesize()) and Home/End (they jump to the top or bottom).

Scrollbars have step(1) preset (they always return integers). If desired you can set the step() to non-integer
values. You will then have to use casts to get at the floating-point versions of value() from Fl_Slider.

Figure 30.28: Fl_Scrollbar

30.93.2 Constructor & Destructor Documentation

30.93.2.1 Fl_Scrollbar::Fl_Scrollbar (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Scrollbar widget with given position, size, and label.

You need to do type(FL_HORIZONTAL) if you want a horizontal scrollbar.

30.93.2.2 Fl_Scrollbar::∼Fl_Scrollbar ()

Destroys the Scrollbar.

30.93.3 Member Function Documentation

30.93.3.1 void Fl_Scrollbar::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Slider.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

710 Class Documentation

30.93.3.2 int Fl_Scrollbar::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Slider.

30.93.3.3 void Fl_Scrollbar::linesize (int i) [inline]

This number controls how big the steps are that the arrow keys do.

In addition page up/down move by the size last sent to value() minus one linesize(). The default is 16.

30.93.3.4 int Fl_Scrollbar::value (int pos, int size, int first, int total) [inline]

Sets the position, size and range of the slider in the scrollbar.

Parameters:

← pos position, first line displayed

← size window size, number of lines displayed

← first number of first line

← total total number of lines

You should call this every time your window changes size, your data changes size, or your scroll position
changes (even if in response to a callback from this scrollbar). All necessary calls to redraw() are done.

Calls Fl_Slider::scrollvalue(int pos, int size, int first, int total).

30.93.3.5 int Fl_Scrollbar::value (int p) [inline]

Sets the value (position) of the slider in the scrollbar.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.93 Fl_Scrollbar Class Reference 711

See also:

Fl_Scrollbar::value()
Fl_Scrollbar::value(int pos, int size, int first, int total)

30.93.3.6 int Fl_Scrollbar::value () const [inline]

Gets the integer value (position) of the slider in the scrollbar.

You can get the floating point value with Fl_Slider::value().

See also:

Fl_Scrollbar::value(int p)
Fl_Scrollbar::value(int pos, int size, int first, int total)

Reimplemented from Fl_Valuator.

The documentation for this class was generated from the following files:

• Fl_Scrollbar.H
• Fl_Scrollbar.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

712 Class Documentation

30.94 Fl_Secret_Input Class Reference

The Fl_Secret_Input class is a subclass of Fl_Input that displays its input as a string of asterisks.

#include <Fl_Secret_Input.H>

Inheritance diagram for Fl_Secret_Input::

Fl_Secret_Input

Fl_Input

Fl_Input_

Fl_Widget

Public Member Functions

• Fl_Secret_Input (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Secret_Input widget using the given position, size, and label string.

30.94.1 Detailed Description

The Fl_Secret_Input class is a subclass of Fl_Input that displays its input as a string of asterisks.

This subclass is usually used to receive passwords and other "secret" information.

30.94.2 Constructor & Destructor Documentation

30.94.2.1 Fl_Secret_Input::Fl_Secret_Input (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Secret_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Inherited destructor destroys the widget and any value associated with it.

The documentation for this class was generated from the following file:

• Fl_Secret_Input.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.95 Fl_Select_Browser Class Reference 713

30.95 Fl_Select_Browser Class Reference

The class is a subclass of Fl_Browser which lets the user select a single item, or no items by clicking on
the empty space.

#include <Fl_Select_Browser.H>

Inheritance diagram for Fl_Select_Browser::

Fl_Select_Browser

Fl_Browser

Fl_Browser_

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Select_Browser (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Select_Browser widget using the given position, size, and label string.

30.95.1 Detailed Description

The class is a subclass of Fl_Browser which lets the user select a single item, or no items by clicking on
the empty space.

As long as the mouse button is held down on an unselected item it is highlighted. Normally the callback is
done when the user presses the mouse, but you can change this with when().

See Fl_Browser for methods to add and remove lines from the browser.

30.95.2 Constructor & Destructor Documentation

30.95.2.1 Fl_Select_Browser::Fl_Select_Browser (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Select_Browser widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX. The constructor specializes Fl_Browser() by setting the type to
FL_SELECT_BROWSER. The destructor destroys the widget and frees all memory that has been allocated.

The documentation for this class was generated from the following file:

• Fl_Select_Browser.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

714 Class Documentation

30.96 Fl_Shared_Image Class Reference

This class supports caching, loading, and drawing of image files.

#include <Fl_Shared_Image.H>

Inheritance diagram for Fl_Shared_Image::

Fl_Shared_Image

Fl_Image

Public Member Functions

• virtual void color_average (Fl_Color c, float i)

The color_average() method averages the colors in the image with the FLTK color value c.

• Fl_Image ∗ copy ()

The copy() method creates a copy of the specified image.

• virtual Fl_Image ∗ copy (int W, int H)

The copy() method creates a copy of the specified image.

• virtual void desaturate ()

The desaturate() method converts an image to grayscale.

• void draw (int X, int Y)

The draw() methods draw the image.

• virtual void draw (int X, int Y, int W, int H, int cx, int cy)

The draw() methods draw the image.

• const char ∗ name ()

Returns the filename of the shared image.

• int refcount ()

Returns the number of references of this shared image.

• void release ()

Releases and possibly destroys (if refcount <=0) a shared image.

• void reload ()

Reloads the shared image from disk.

• virtual void uncache ()

If the image has been cached for display, delete the cache data.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.96 Fl_Shared_Image Class Reference 715

Static Public Member Functions

• static void add_handler (Fl_Shared_Handler f)

Adds a shared image handler, which is basically a test function for adding new formats.

• static Fl_Shared_Image ∗ find (const char ∗n, int W=0, int H=0)

Finds a shared image from its named and size specifications.

• static Fl_Shared_Image ∗ get (const char ∗n, int W=0, int H=0)

Gets a shared image, if it exists already ; it will return it.

• static Fl_Shared_Image ∗∗ images ()

Returns the Fl_Shared_Image∗ array.

• static int num_images ()

Returns the total number of shared images in the array.

• static void remove_handler (Fl_Shared_Handler f)

Removes a shared image handler.

Protected Member Functions

• void add ()
• Fl_Shared_Image (const char ∗n, Fl_Image ∗img=0)

Creates a shared image from its filename and its corresponding Fl_Image∗ img.

• Fl_Shared_Image ()

Creates an empty shared image.

• void update ()
• virtual ∼Fl_Shared_Image ()

The destructor free all memory and server resources that are used by the image.

Static Protected Member Functions

• static int compare (Fl_Shared_Image ∗∗i0, Fl_Shared_Image ∗∗i1)

Protected Attributes

• int alloc_image_
• Fl_Image ∗ image_
• const char ∗ name_
• int original_
• int refcount_

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

716 Class Documentation

Static Protected Attributes

• static int alloc_handlers_ = 0
• static int alloc_images_ = 0
• static Fl_Shared_Handler ∗ handlers_ = 0
• static Fl_Shared_Image ∗∗ images_ = 0
• static int num_handlers_ = 0
• static int num_images_ = 0

30.96.1 Detailed Description

This class supports caching, loading, and drawing of image files.

Most applications will also want to link against the fltk_images library and call the fl_register_images()
function to support standard image formats such as BMP, GIF, JPEG, and PNG.

30.96.2 Constructor & Destructor Documentation

30.96.2.1 Fl_Shared_Image::Fl_Shared_Image () [protected]

Creates an empty shared image.

The constructors create a new shared image record in the image cache.

The constructors are protected and cannot be used directly from a program. Use the get() method instead.

30.96.2.2 Fl_Shared_Image::Fl_Shared_Image (const char ∗ n, Fl_Image ∗ img = 0)
[protected]

Creates a shared image from its filename and its corresponding Fl_Image∗ img.

The constructors create a new shared image record in the image cache.

The constructors are protected and cannot be used directly from a program. Use the get() method instead.

30.96.2.3 Fl_Shared_Image::∼Fl_Shared_Image () [protected, virtual]

The destructor free all memory and server resources that are used by the image.

The destructor is protected and cannot be used directly from a program. Use the Fl_Shared_-
Image::release() method instead.

30.96.3 Member Function Documentation

30.96.3.1 void Fl_Shared_Image::color_average (Fl_Color c, float i) [virtual]

The color_average() method averages the colors in the image with the FLTK color value c.

The i argument specifies the amount of the original image to combine with the color, so a value of 1.0
results in no color blend, and a value of 0.0 results in a constant image of the specified color. The original
image data is not altered by this method.

Reimplemented from Fl_Image.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.96 Fl_Shared_Image Class Reference 717

30.96.3.2 Fl_Image∗ Fl_Shared_Image::copy () [inline]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.96.3.3 Fl_Image ∗ Fl_Shared_Image::copy (int W, int H) [virtual]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.96.3.4 void Fl_Shared_Image::desaturate () [virtual]

The desaturate() method converts an image to grayscale.

If the image contains an alpha channel (depth = 4), the alpha channel is preserved. This method does not
alter the original image data.

Reimplemented from Fl_Image.

30.96.3.5 void Fl_Shared_Image::draw (int X, int Y) [inline]

The draw() methods draw the image.

This form specifies the upper-lefthand corner of the image

Reimplemented from Fl_Image.

30.96.3.6 void Fl_Shared_Image::draw (int X, int Y, int W, int H, int cx, int cy) [virtual]

The draw() methods draw the image.

This form specifies a bounding box for the image, with the origin (upper-lefthand corner) of the image
offset by the cx and cy arguments.

Reimplemented from Fl_Image.

30.96.3.7 Fl_Shared_Image ∗ Fl_Shared_Image::get (const char ∗ n, int W = 0, int H = 0)
[static]

Gets a shared image, if it exists already ; it will return it.

If it does not exist or if it exist but with other size, then the existing image is deleted and replaced by a new
image from the n filename of the proper dimension. If n is not a valid image filename, then get() will return
NULL.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

718 Class Documentation

30.96.3.8 int Fl_Shared_Image::num_images () [static]

Returns the total number of shared images in the array.

30.96.3.9 int Fl_Shared_Image::refcount () [inline]

Returns the number of references of this shared image.

When reference is below 1, the image is deleted.

30.96.3.10 void Fl_Shared_Image::release ()

Releases and possibly destroys (if refcount <=0) a shared image.

In the latter case, it will reorganize the shared image array so that no hole will occur.

30.96.3.11 void Fl_Shared_Image::uncache () [virtual]

If the image has been cached for display, delete the cache data.

This allows you to change the data used for the image and then redraw it without recreating an image
object.

Reimplemented from Fl_Image.

The documentation for this class was generated from the following files:

• Fl_Shared_Image.H
• Fl_Shared_Image.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.97 Fl_Simple_Counter Class Reference 719

30.97 Fl_Simple_Counter Class Reference

This widget creates a counter with only 2 arrow buttons.

#include <Fl_Simple_Counter.H>

Inheritance diagram for Fl_Simple_Counter::

Fl_Simple_Counter

Fl_Counter

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Simple_Counter (int x, int y, int w, int h, const char ∗l=0)

30.97.1 Detailed Description

This widget creates a counter with only 2 arrow buttons.

Figure 30.29: Fl_Simple_Counter

The documentation for this class was generated from the following file:

• Fl_Simple_Counter.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

720 Class Documentation

30.98 Fl_Single_Window Class Reference

This is the same as Fl_Window.

#include <Fl_Single_Window.H>

Inheritance diagram for Fl_Single_Window::

Fl_Single_Window

Fl_Window

Fl_Group

Fl_Widget

Fl_Menu_Window

Public Member Functions

• Fl_Single_Window (int X, int Y, int W, int H, const char ∗l=0)

Creates a new Fl_Single_Window widget using the given position, size, and label (title) string.

• Fl_Single_Window (int W, int H, const char ∗l=0)

Creates a new Fl_Single_Window widget using the given size, and label (title) string.

• void flush ()

Forces the window to be drawn, this window is also made current and calls draw().

• int make_current ()

Sets things up so that the drawing functions in <FL/fl_draw.H> will go into this window.

• void show (int a, char ∗∗b)

Puts the window on the screen and parses command-line arguments.

• void show ()

Puts the window on the screen.

30.98.1 Detailed Description

This is the same as Fl_Window.

However, it is possible that some implementations will provide double-buffered windows by default. This
subcan be used to force single-buffering. This may be useful for modifying existing programs that use
incremental update, or for some types of image data, such as a movie flipbook.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.98 Fl_Single_Window Class Reference 721

30.98.2 Member Function Documentation

30.98.2.1 void Fl_Single_Window::flush () [virtual]

Forces the window to be drawn, this window is also made current and calls draw().

Reimplemented from Fl_Window.

Reimplemented in Fl_Menu_Window.

30.98.2.2 int Fl_Single_Window::make_current ()

Sets things up so that the drawing functions in <FL/fl_draw.H> will go into this window.

This is useful for incremental update of windows, such as in an idle callback, which will make your program
behave much better if it draws a slow graphic. Danger: incremental update is very hard to debug and
maintain!

This method only works for the Fl_Window and Fl_Gl_Window derived classes.

Reimplemented from Fl_Window.

30.98.2.3 void Fl_Single_Window::show (int argc, char ∗∗ argv) [inline]

Puts the window on the screen and parses command-line arguments.

Usually (on X) this has the side effect of opening the display.

This form should be used for top-level windows, at least for the first (main) window. It allows standard
arguments to be parsed from the command-line. You can use argc and argv from main(int argc, char
∗∗argv) for this call.

The first call also sets up some system-specific internal variables like the system colors.

Todo

explain which system parameters are set up.

Parameters:

argc command-line argument count, usually from main()

argv command-line argument vector, usually from main()

See also:

virtual void Fl_Window::show()

Reimplemented from Fl_Window.

30.98.2.4 void Fl_Single_Window::show () [virtual]

Puts the window on the screen.

Usually (on X) this has the side effect of opening the display.

If the window is already shown then it is restored and raised to the top. This is really convenient because
your program can call show() at any time, even if the window is already up. It also means that show()
serves the purpose of raise() in other toolkits.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

722 Class Documentation

Fl_Window::show(int argc, char ∗∗argv) is used for top-level windows and allows standard arguments to
be parsed from the command-line.

See also:

Fl_Window::show(int argc, char ∗∗argv)

Reimplemented from Fl_Window.

Reimplemented in Fl_Menu_Window.

The documentation for this class was generated from the following files:

• Fl_Single_Window.H
• Fl_Single_Window.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.99 Fl_Slider Class Reference 723

30.99 Fl_Slider Class Reference

The Fl_Slider widget contains a sliding knob inside a box.

#include <Fl_Slider.H>

Inheritance diagram for Fl_Slider::

Fl_Slider

Fl_Valuator

Fl_Widget

Fl_Fill_Slider Fl_Scrollbar Fl_Value_Slider

Public Member Functions

• void bounds (double a, double b)

Sets the minimum (a) and maximum (b) values for the valuator widget.

• Fl_Slider (uchar t, int X, int Y, int W, int H, const char ∗L)

Creates a new Fl_Slider widget using the given box type, position, size, and label string.

• Fl_Slider (int X, int Y, int W, int H, const char ∗L=0)

Creates a new Fl_Slider widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

• int scrollvalue (int pos, int size, int first, int total)

Sets the size and position of the sliding knob in the box.

• void slider (Fl_Boxtype c)

Sets the slider box type.

• Fl_Boxtype slider () const

Gets the slider box type.

• void slider_size (double v)

Set the dimensions of the moving piece of slider.

• float slider_size () const

Get the dimensions of the moving piece of slider.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

724 Class Documentation

Protected Member Functions

• void draw ()

Draws the widget.

• void draw (int, int, int, int)

• int handle (int, int, int, int, int)

30.99.1 Detailed Description

The Fl_Slider widget contains a sliding knob inside a box.

It if often used as a scrollbar. Moving the box all the way to the top/left sets it to the minimum(), and to the
bottom/right to the maximum(). The minimum() may be greater than the maximum() to reverse the slider
direction.

Use void Fl_Widget::type(int) to set how the slider is drawn, which can be one of the following:

• FL_VERTICAL - Draws a vertical slider (this is the default).

• FL_HORIZONTAL - Draws a horizontal slider.

• FL_VERT_FILL_SLIDER - Draws a filled vertical slider, useful as a progress or value meter.

• FL_HOR_FILL_SLIDER - Draws a filled horizontal slider, useful as a progress or value meter.

• FL_VERT_NICE_SLIDER - Draws a vertical slider with a nice looking control knob.

• FL_HOR_NICE_SLIDER - Draws a horizontal slider with a nice looking control knob.

Figure 30.30: Fl_Slider

30.99.2 Constructor & Destructor Documentation

30.99.2.1 Fl_Slider::Fl_Slider (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Slider widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.99 Fl_Slider Class Reference 725

30.99.3 Member Function Documentation

30.99.3.1 void Fl_Slider::bounds (double a, double b)

Sets the minimum (a) and maximum (b) values for the valuator widget.

if at least one of the values is changed, a partial redraw is asked.

Reimplemented from Fl_Valuator.

30.99.3.2 void Fl_Slider::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

Reimplemented in Fl_Scrollbar, and Fl_Value_Slider.

30.99.3.3 int Fl_Slider::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

Reimplemented in Fl_Scrollbar, and Fl_Value_Slider.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

726 Class Documentation

30.99.3.4 int Fl_Slider::scrollvalue (int pos, int size, int first, int total)

Sets the size and position of the sliding knob in the box.

Parameters:

← pos position of first line displayed

← size size of window in lines

← first number of first line

← total total number of lines Returns Fl_Valuator::value(p)

30.99.3.5 void Fl_Slider::slider (Fl_Boxtype c) [inline]

Sets the slider box type.

30.99.3.6 Fl_Boxtype Fl_Slider::slider () const [inline]

Gets the slider box type.

30.99.3.7 void Fl_Slider::slider_size (double v)

Set the dimensions of the moving piece of slider.

This is the fraction of the size of the entire widget. If you set this to 1 then the slider cannot move. The
default value is .08.

For the "fill" sliders this is the size of the area around the end that causes a drag effect rather than causing
the slider to jump to the mouse.

The documentation for this class was generated from the following files:

• Fl_Slider.H
• Fl_Slider.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.100 Fl_Spinner Class Reference 727

30.100 Fl_Spinner Class Reference

This widget is a combination of the input widget and repeat buttons.

#include <Fl_Spinner.H>

Inheritance diagram for Fl_Spinner::

Fl_Spinner

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Spinner (int X, int Y, int W, int H, const char ∗L=0)
Creates a new Fl_Spinner widget using the given position, size, and label string.

• void format (const char ∗f)
Sets or returns the format string for the value.

• const char ∗ format ()
Sets or returns the format string for the value.

• int handle (int event)
Handles the specified event.

• void maximum (double m)
Sets the maximum value of the widget.

• double maximum () const
Gets the maximum value of the widget.

• double maxinum () const
Speling mistakes retained for source compatibility.

• void minimum (double m)
Sets the minimum value of the widget.

• double minimum () const
Gets the minimum value of the widget.

• double mininum () const
Speling mistakes retained for source compatibility.

• void range (double a, double b)
Sets the minimum and maximum values for the widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

728 Class Documentation

• void resize (int X, int Y, int W, int H)

Resizes the Fl_Group widget and all of its children.

• void step (double s)

See double Fl_Spinner::step() const.

• double step () const

Sets or returns the amount to change the value when the user clicks a button.

• void textcolor (Fl_Color c)

Sets the color of the text in the input field.

• Fl_Color textcolor () const

Gets the color of the text in the input field.

• void textfont (Fl_Font f)

Sets the font of the text in the input field.

• Fl_Font textfont () const

Gets the font of the text in the input field.

• void textsize (Fl_Fontsize s)

Sets the size of the text in the input field.

• Fl_Fontsize textsize () const

Gets the size of the text in the input field.

• void type (uchar v)

See uchar Fl_Spinner::type() const.

• uchar type () const

Sets or Gets the numeric representation in the input field.

• void value (double v)

Sets the current value of the widget.

• double value () const

Gets the current value of the widget.

30.100.1 Detailed Description

This widget is a combination of the input widget and repeat buttons.

The user can either type into the input area or use the buttons to change the value.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.100 Fl_Spinner Class Reference 729

30.100.2 Constructor & Destructor Documentation

30.100.2.1 Fl_Spinner::Fl_Spinner (int X, int Y, int W, int H, const char ∗ L = 0) [inline]

Creates a new Fl_Spinner widget using the given position, size, and label string.

Inherited destructor Destroys the widget and any value associated with it.

30.100.3 Member Function Documentation

30.100.3.1 void Fl_Spinner::format (const char ∗ f) [inline]

Sets or returns the format string for the value.

30.100.3.2 const char∗ Fl_Spinner::format () [inline]

Sets or returns the format string for the value.

30.100.3.3 int Fl_Spinner::handle (int event) [inline, virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Group.

30.100.3.4 void Fl_Spinner::maximum (double m) [inline]

Sets the maximum value of the widget.

30.100.3.5 double Fl_Spinner::maximum () const [inline]

Gets the maximum value of the widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

730 Class Documentation

30.100.3.6 double Fl_Spinner::maxinum () const [inline]

Speling mistakes retained for source compatibility.

Deprecated

30.100.3.7 void Fl_Spinner::minimum (double m) [inline]

Sets the minimum value of the widget.

30.100.3.8 double Fl_Spinner::minimum () const [inline]

Gets the minimum value of the widget.

30.100.3.9 double Fl_Spinner::mininum () const [inline]

Speling mistakes retained for source compatibility.

Deprecated

30.100.3.10 void Fl_Spinner::range (double a, double b) [inline]

Sets the minimum and maximum values for the widget.

30.100.3.11 void Fl_Spinner::resize (int X, int Y, int W, int H) [inline, virtual]

Resizes the Fl_Group widget and all of its children.

The Fl_Group widget first resizes itself, and then it moves and resizes all its children according to the rules
documented for Fl_Group::resizable(Fl_Widget∗)

See also:

Fl_Group::resizable(Fl_Widget∗)
Fl_Group::resizable()
Fl_Widget::resize(int,int,int,int)

Reimplemented from Fl_Group.

30.100.3.12 double Fl_Spinner::step () const [inline]

Sets or returns the amount to change the value when the user clicks a button.

Before setting step to a non-integer value, the spinner type() should be changed to floating point.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.100 Fl_Spinner Class Reference 731

30.100.3.13 void Fl_Spinner::textcolor (Fl_Color c) [inline]

Sets the color of the text in the input field.

30.100.3.14 Fl_Color Fl_Spinner::textcolor () const [inline]

Gets the color of the text in the input field.

30.100.3.15 void Fl_Spinner::textfont (Fl_Font f) [inline]

Sets the font of the text in the input field.

30.100.3.16 Fl_Font Fl_Spinner::textfont () const [inline]

Gets the font of the text in the input field.

30.100.3.17 void Fl_Spinner::textsize (Fl_Fontsize s) [inline]

Sets the size of the text in the input field.

30.100.3.18 Fl_Fontsize Fl_Spinner::textsize () const [inline]

Gets the size of the text in the input field.

30.100.3.19 uchar Fl_Spinner::type () const [inline]

Sets or Gets the numeric representation in the input field.

Valid values are FL_INT_INPUT and FL_FLOAT_INPUT. The first form also changes the format() tem-
plate. Setting a new spinner type via a superclass pointer will not work.

Note:

type is not a virtual function.

Reimplemented from Fl_Widget.

30.100.3.20 void Fl_Spinner::value (double v) [inline]

Sets the current value of the widget.

Before setting value to a non-integer value, the spinner type() should be changed to floating point.

30.100.3.21 double Fl_Spinner::value () const [inline]

Gets the current value of the widget.

The documentation for this class was generated from the following file:

• Fl_Spinner.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

732 Class Documentation

30.101 Fl_Surface_Device Class Reference

A surface that’s susceptible to receive graphical output.

#include <Fl_Device.H>

Inheritance diagram for Fl_Surface_Device::

Fl_Surface_Device

Fl_Device

Fl_Display_Device Fl_Paged_Device

Fl_PostScript_File_Device Fl_System_Printer

Fl_PostScript_Printer Fl_Printer

Fl_Printer

Public Member Functions

• Fl_Graphics_Driver ∗ driver ()

Returns the graphics driver of this drawing surface.

• void driver (Fl_Graphics_Driver ∗graphics_driver)

Sets the graphics driver of this drawing surface.

• virtual void set_current (void)

Use this drawing surface for future graphics requests.

• virtual ∼Fl_Surface_Device ()

The destructor.

Static Public Member Functions

• static Fl_Surface_Device ∗ surface ()

the surface that currently receives graphics output

Static Public Attributes

• static const char ∗ device_type = "Fl_Surface_Device"

A string that identifies each subclass of Fl_Device.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.101 Fl_Surface_Device Class Reference 733

Protected Member Functions

• Fl_Surface_Device (Fl_Graphics_Driver ∗graphics_driver)
Constructor that sets the graphics driver to use for the created surface.

30.101.1 Detailed Description

A surface that’s susceptible to receive graphical output.

30.101.2 Constructor & Destructor Documentation

30.101.2.1 Fl_Surface_Device::Fl_Surface_Device (Fl_Graphics_Driver ∗ graphics_driver)
[inline, protected]

Constructor that sets the graphics driver to use for the created surface.

30.101.2.2 virtual Fl_Surface_Device::∼Fl_Surface_Device () [inline, virtual]

The destructor.

30.101.3 Member Function Documentation

30.101.3.1 Fl_Graphics_Driver∗ Fl_Surface_Device::driver () [inline]

Returns the graphics driver of this drawing surface.

Reimplemented in Fl_PostScript_File_Device.

30.101.3.2 void Fl_Surface_Device::driver (Fl_Graphics_Driver ∗ graphics_driver) [inline]

Sets the graphics driver of this drawing surface.

30.101.3.3 void Fl_Surface_Device::set_current (void) [virtual]

Use this drawing surface for future graphics requests.

30.101.4 Member Data Documentation

30.101.4.1 const char ∗ Fl_Surface_Device::device_type = "Fl_Surface_Device" [static]

A string that identifies each subclass of Fl_Device.

Function type() applied to a device of this class returns this string.

Reimplemented from Fl_Device.

Reimplemented in Fl_Display_Device, Fl_Paged_Device, Fl_PostScript_File_Device, Fl_System_Printer,
Fl_PostScript_Printer, and Fl_Printer.

The documentation for this class was generated from the following files:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

734 Class Documentation

• Fl_Device.H
• Fl_Device.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.102 Fl_Sys_Menu_Bar Class Reference 735

30.102 Fl_Sys_Menu_Bar Class Reference

A class to create, modify and delete menus that appear on Mac OS X in the menu bar at the top of the
screen.

#include <Fl_Sys_Menu_Bar.H>

Inheritance diagram for Fl_Sys_Menu_Bar::

Fl_Sys_Menu_Bar

Fl_Menu_Bar

Fl_Menu_

Fl_Widget

Public Member Functions

• int add (const char ∗label, int shortcut, Fl_Callback ∗, void ∗user_data=0, int flags=0)

add to the system menu bar a new menu item

• void clear ()

Same as menu(NULL), set the array pointer to null, indicating a zero-length menu.

• int clear_submenu (int index)

Clears the specified submenu pointed to by index of all menu items.

• Fl_Sys_Menu_Bar (int x, int y, int w, int h, const char ∗l=0)

The constructor.

• int insert (int index, const char ∗label, int shortcut, Fl_Callback ∗cb, void ∗user_data=0, int
flags=0)

insert in the system menu bar a new menu item

• void menu (const Fl_Menu_Item ∗m)

create a system menu bar using the given list of menu structs

• void remove (int n)

remove an item from the system menu bar

• void replace (int rank, const char ∗name)

rename an item from the system menu bar

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

736 Class Documentation

Protected Member Functions

• void draw ()
Draws the widget.

30.102.1 Detailed Description

A class to create, modify and delete menus that appear on Mac OS X in the menu bar at the top of the
screen.

On other than Mac OS X platforms, Fl_Sys_Menu_Bar is a synonym of class Fl_Menu_Bar.

30.102.2 Constructor & Destructor Documentation

30.102.2.1 Fl_Sys_Menu_Bar::Fl_Sys_Menu_Bar (int x, int y, int w, int h, const char ∗ l = 0)
[inline]

The constructor.

On Mac OS X, all arguments are unused. On other platforms they are used as by Fl_Menu_Bar::Fl_Menu_-
Bar().

30.102.3 Member Function Documentation

30.102.3.1 int Fl_Sys_Menu_Bar::add (const char ∗ label, int shortcut, Fl_Callback ∗ cb, void ∗
user_data = 0, int flags = 0)

add to the system menu bar a new menu item

add to the system menu bar a new menu item, with a title string, shortcut int, callback, argument to the
callback, and flags.

See also:

Fl_Menu_::add(const char∗ label, int shortcut, Fl_Callback ∗cb, void ∗user_data, int flags)

Reimplemented from Fl_Menu_.

30.102.3.2 void Fl_Sys_Menu_Bar::clear ()

Same as menu(NULL), set the array pointer to null, indicating a zero-length menu.

Menus must not be cleared during a callback to the same menu.

Reimplemented from Fl_Menu_.

30.102.3.3 int Fl_Sys_Menu_Bar::clear_submenu (int index)

Clears the specified submenu pointed to by index of all menu items.

This method is useful for clearing a submenu so that it can be re-populated with new items. Example: a
"File/Recent Files/..." submenu that shows the last few files that have been opened.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.102 Fl_Sys_Menu_Bar Class Reference 737

The specified index must point to a submenu.

The submenu is cleared with remove(). If the menu array was directly set with menu(x), then copy() is
done to make a private array.

Warning:

Since this method can change the internal menu array, any menu item pointers or indecies the applica-
tion may have cached can become stale, and should be recalculated/refreshed.

Example:

int index = menubar->find_index("File/Recent"); // get index of "File/Recent" submenu
if (index != -1) menubar->clear_submenu(index); // clear the submenu
menubar->add("File/Recent/Aaa");
menubar->add("File/Recent/Bbb");
[..]

Parameters:

index The index of the submenu to be cleared

Returns:

0 on success, -1 if the index is out of range or not a submenu

See also:

remove(int)

Reimplemented from Fl_Menu_.

30.102.3.4 void Fl_Sys_Menu_Bar::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Menu_Bar.

30.102.3.5 int Fl_Sys_Menu_Bar::insert (int index, const char ∗ label, int shortcut, Fl_Callback ∗
cb, void ∗ user_data = 0, int flags = 0)

insert in the system menu bar a new menu item

insert in the system menu bar a new menu item, with a title string, shortcut int, callback, argument to the
callback, and flags.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

738 Class Documentation

See also:

Fl_Menu_::insert(int index, const char∗ label, int shortcut, Fl_Callback ∗cb, void ∗user_data, int flags)

Reimplemented from Fl_Menu_.

30.102.3.6 void Fl_Sys_Menu_Bar::menu (const Fl_Menu_Item ∗ m)

create a system menu bar using the given list of menu structs

Author:

Matthias Melcher

Parameters:

m list of Fl_Menu_Item

Reimplemented from Fl_Menu_.

30.102.3.7 void Fl_Sys_Menu_Bar::remove (int rank)

remove an item from the system menu bar

Parameters:

rank the rank of the item to remove

Reimplemented from Fl_Menu_.

30.102.3.8 void Fl_Sys_Menu_Bar::replace (int rank, const char ∗ name)

rename an item from the system menu bar

Parameters:

rank the rank of the item to rename

name the new item name as a UTF8 string

Reimplemented from Fl_Menu_.

The documentation for this class was generated from the following files:

• Fl_Sys_Menu_Bar.H
• Fl_Sys_Menu_Bar.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.103 Fl_System_Printer Class Reference 739

30.103 Fl_System_Printer Class Reference

Print support under MSWindows and Mac OS X.

#include <Fl_Printer.H>

Inheritance diagram for Fl_System_Printer::

Fl_System_Printer

Fl_Paged_Device

Fl_Surface_Device

Fl_Device

Fl_Printer

Public Member Functions

• void end_job (void)
To be called at the end of a print job.

• int end_page (void)
To be called at the end of each page.

• Fl_System_Printer (void)
The constructor.

• void margins (int ∗left, int ∗top, int ∗right, int ∗bottom)
Computes the dimensions of margins that lie between the printable page area and the full page.

• void origin (int x, int y)
Sets the position in page coordinates of the origin of graphics functions.

• int printable_rect (int ∗w, int ∗h)
Computes the width and height of the printable area of the page.

• void rotate (float angle)
Rotates the graphics operations relatively to paper.

• void scale (float scale_x, float scale_y)
Changes the scaling of page coordinates.

• int start_job (int pagecount, int ∗frompage=NULL, int ∗topage=NULL)
Starts a print job.

• int start_page (void)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

740 Class Documentation

Starts a new printed page.

• void translate (int x, int y)

Translates the current graphics origin accounting for the current rotation.

• void untranslate (void)

Undoes the effect of a previous translate() call.

• ∼Fl_System_Printer (void)

The destructor.

Static Public Attributes

• static const char ∗ device_type

A string that identifies each subclass of Fl_Device.

30.103.1 Detailed Description

Print support under MSWindows and Mac OS X.

Class Fl_System_Printer is implemented only on the MSWindows and Mac OS X platforms. Use Fl_-
Printer instead that is cross-platform and has the same API. Fl_Printer is typedef’ed to Fl_System_Printer
under MSWindows and Mac OS X.

30.103.2 Member Function Documentation

30.103.2.1 int Fl_System_Printer::end_page (void) [virtual]

To be called at the end of each page.

Returns:

0 iff OK.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.103.2.2 void Fl_System_Printer::margins (int ∗ left, int ∗ top, int ∗ right, int ∗ bottom)
[virtual]

Computes the dimensions of margins that lie between the printable page area and the full page.

Values are in the same unit as that used by FLTK drawing functions. They are changed by scale() calls.

Parameters:

→ left If non-null, ∗left is set to the left margin size.

→ top If non-null, ∗top is set to the top margin size.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.103 Fl_System_Printer Class Reference 741

→ right If non-null, ∗right is set to the right margin size.

→ bottom If non-null, ∗bottom is set to the bottom margin size.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.103.2.3 void Fl_System_Printer::origin (int x, int y) [virtual]

Sets the position in page coordinates of the origin of graphics functions.

Arguments should be expressed relatively to the result of a previous printable_rect() call. That is,
printable_rect(&w, &h); origin(w/2, 0); sets the graphics origin at the top center of the
page printable area. Origin() calls are not affected by rotate() calls. Successive origin() calls don’t combine
their effects.

Parameters:

← x Horizontal position in page coordinates of the desired origin of graphics functions.

← y Same as above, vertically.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.103.2.4 int Fl_System_Printer::printable_rect (int ∗ w, int ∗ h) [virtual]

Computes the width and height of the printable area of the page.

Values are in the same unit as that used by FLTK drawing functions, are unchanged by calls to origin(), but
are changed by scale() calls. Values account for the user-selected paper type and print orientation.

Returns:

0 iff OK.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.103.2.5 void Fl_System_Printer::rotate (float angle) [virtual]

Rotates the graphics operations relatively to paper.

The rotation is centered on the current graphics origin. Successive rotate() calls don’t combine their ef-
fects.

Parameters:

angle Rotation angle in counterclockwise degrees.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

742 Class Documentation

30.103.2.6 void Fl_System_Printer::scale (float scale_x, float scale_y) [virtual]

Changes the scaling of page coordinates.

This function also resets the origin of graphics functions at top left of printable page area. After a scale()
call, do a printable_rect() call to get the new dimensions of the printable page area. Successive scale() calls
don’t combine their effects.

Parameters:

scale_x Horizontal dimensions of plot are multiplied by this quantity.

scale_y Same as above, vertically.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.103.2.7 int Fl_System_Printer::start_job (int pagecount, int ∗ frompage = NULL, int ∗ topage =
NULL) [virtual]

Starts a print job.

Parameters:

← pagecount the total number of pages of the job

→ frompage if non-null, ∗frompage is set to the first page the user wants printed

→ topage if non-null, ∗topage is set to the last page the user wants printed

Returns:

0 iff OK

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.103.2.8 int Fl_System_Printer::start_page (void) [virtual]

Starts a new printed page.

The page coordinates are initially in points, i.e., 1/72 inch, and with origin at the top left of the printable
page area.

Returns:

0 iff OK

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.103.2.9 void Fl_System_Printer::translate (int x, int y) [virtual]

Translates the current graphics origin accounting for the current rotation.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.103 Fl_System_Printer Class Reference 743

This function is only useful after a rotate() call. Each translate() call must be matched by an untranslate()
call. Successive translate() calls add up their effects.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

30.103.3 Member Data Documentation

30.103.3.1 const char∗ Fl_System_Printer::device_type [static]

A string that identifies each subclass of Fl_Device.

Function type() applied to a device of this class returns this string.

Reimplemented from Fl_Paged_Device.

Reimplemented in Fl_Printer.

The documentation for this class was generated from the following file:

• Fl_Printer.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

744 Class Documentation

30.104 Fl_Table Class Reference

A table of widgets or other content.

#include <Fl_Table.H>

Inheritance diagram for Fl_Table::

Fl_Table

Fl_Group

Fl_Widget

Fl_Table_Row

Classes

• class IntVector

Public Types

• enum TableContext {

CONTEXT_NONE = 0, CONTEXT_STARTPAGE = 0x01, CONTEXT_ENDPAGE = 0x02,
CONTEXT_ROW_HEADER = 0x04,

CONTEXT_COL_HEADER = 0x08, CONTEXT_CELL = 0x10, CONTEXT_TABLE = 0x20,
CONTEXT_RC_RESIZE = 0x40 }

The context bit flags for Fl_Table related callbacks (eg.

Public Member Functions

• void add (Fl_Widget ∗w)
See void Fl_Group::add(Fl_Widget &w).

• void add (Fl_Widget &w)
The widget is removed from its current group (if any) and then added to the end of this group.

• Fl_Widget ∗const ∗ array ()
• void begin ()

Sets the current group so you can build the widget tree by just constructing the widgets.

• void callback (Fl_Widget ∗, void ∗)
Callbacks will be called depending on the setting of Fl_Widget::when().

• int callback_col ()
Returns the current column the event occurred on.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.104 Fl_Table Class Reference 745

• TableContext callback_context ()
Returns the current ’table context’.

• int callback_row ()
Returns the current row the event occurred on.

• Fl_Widget ∗ child (int n) const
Returns the child widget by an index.

• int children () const
Returns the number of children in the table.

• virtual void clear ()
Clears the table to zero rows, zero columns.

• void col_header (int flag)
Enable or disable column headers.

• int col_header ()
Returns if column headers are enabled or not.

• Fl_Color col_header_color ()
Gets the color for column headers.

• void col_header_color (Fl_Color val)
Sets the color for column headers and redraws the table.

• int col_header_height ()
Gets the column header height.

• void col_header_height (int height)
Sets the height in pixels for column headers and redraws the table.

• int col_position ()
Returns the current column scroll position as a column number.

• void col_position (int col)
Sets the column scroll position to column ’col’, and causes the screen to redraw.

• void col_resize (int flag)
Allows/disallows column resizing by the user.

• int col_resize ()
Returns the current value of this flag.

• void col_resize_min (int val)
Returns the current column minimum resize value.

• int col_resize_min ()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

746 Class Documentation

Sets the current column minimum resize value.

• int col_width (int col)
Returns the current width of the specified column in pixels.

• void col_width (int col, int width)
Sets the width of the specified column in pixels, and the table is redrawn.

• void col_width_all (int width)
Convenience method to set the width of all columns to the same value, in pixels.

• int cols ()
Get the number of columns in the table.

• virtual void cols (int val)
Set the number of columns in the table and redraw.

• void do_callback (TableContext context, int row, int col)
• void draw (void)

Draws the widget.

• void end ()
Exactly the same as current(this->parent()).

• int find (const Fl_Widget &w) const
See int Fl_Group::find(const Fl_Widget ∗w) const.

• int find (const Fl_Widget ∗w) const
Searches the child array for the widget and returns the index.

• Fl_Table (int X, int Y, int W, int H, const char ∗l=0)
The constructor for the Fl_Table.

• void get_selection (int &row_top, int &col_left, int &row_bot, int &col_right)
Gets the region of cells selected (highlighted).

• void init_sizes ()
Resets the internal array of widget sizes and positions.

• void insert (Fl_Widget &w, Fl_Widget ∗w2)
This does insert(w, find(before)).

• void insert (Fl_Widget &w, int n)
The widget is removed from its current group (if any) and then inserted into this group.

• int is_interactive_resize ()
Returns 1 if someone is interactively resizing a row or column.

• int is_selected (int r, int c)
See if the cell at row r and column c is selected.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.104 Fl_Table Class Reference 747

• int move_cursor (int R, int C)
• void remove (Fl_Widget &w)

Removes a widget from the group but does not delete it.

• void resize (int X, int Y, int W, int H)
Changes the size of the Fl_Table, causing it to redraw.

• void row_header (int flag)
Enables/disables showing the row headers.

• int row_header ()
Returns the value of this flag.

• Fl_Color row_header_color ()
Returns the current row header color.

• void row_header_color (Fl_Color val)
Sets the row header color and causes the screen to redraw.

• int row_header_width ()
Returns the current row header width (in pixels).

• void row_header_width (int width)
Sets the row header width to n and causes the screen to redraw.

• int row_height (int row)
Returns the current height of the specified row as a value in pixels.

• void row_height (int row, int height)
Sets the height of the specified row in pixels, and the table is redrawn.

• void row_height_all (int height)
Convenience method to set the height of all rows to the same value, in pixels.

• int row_position ()
Returns the current row scroll position as a row number.

• void row_position (int row)
Sets the row scroll position to ’row’, and causes the screen to redraw.

• void row_resize (int flag)
Allows/disallows row resizing by the user.

• int row_resize ()
Returns the current value of this flag.

• void row_resize_min (int val)
Sets the current row minimum resize value.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

748 Class Documentation

• int row_resize_min ()
Returns the current row minimum resize value.

• int rows ()
Returns the number of rows in the table.

• virtual void rows (int val)
Sets the number of rows in the table, and the table is redrawn.

• void set_selection (int row_top, int col_left, int row_bot, int col_right)
Sets the region of cells to be selected (highlighted).

• Fl_Boxtype table_box (void)
Returns the current box type used for the data table.

• void table_box (Fl_Boxtype val)
Sets the kind of box drawn around the data table, the default being FL_NO_BOX.

• int top_row ()
Returns the current top row shown in the table.

• void top_row (int row)
Sets which row should be at the top of the table, scrolling as necessary, and the table is redrawn.

• void visible_cells (int &r1, int &r2, int &c1, int &c2)
Returns the range of row and column numbers for all visible and partially visible cells in the table.

• void when (Fl_When flags)
The Fl_Widget::when() function is used to set a group of flags, determining when the widget callback is
called:.

• ∼Fl_Table ()
The destructor for the Fl_Table.

Protected Types

• enum ResizeFlag {

RESIZE_NONE = 0, RESIZE_COL_LEFT = 1, RESIZE_COL_RIGHT = 2, RESIZE_ROW_-
ABOVE = 3,

RESIZE_ROW_BELOW = 4 }

Protected Member Functions

• void change_cursor (Fl_Cursor newcursor)
• long col_scroll_position (int col)
• TableContext cursor2rowcol (int &R, int &C, ResizeFlag &resizeflag)
• void damage_zone (int r1, int c1, int r2, int c2, int r3=0, int c3=0)
• virtual void draw_cell (TableContext context, int R=0, int C=0, int X=0, int Y=0, int W=0, int H=0)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.104 Fl_Table Class Reference 749

Subclass should override this method to handle drawing the cells.

• int find_cell (TableContext context, int R, int C, int &X, int &Y, int &W, int &H)
• void get_bounds (TableContext context, int &X, int &Y, int &W, int &H)
• int handle (int e)

Handles the specified event.

• int is_fltk_container ()
• void recalc_dimensions ()
• void redraw_range (int toprow, int botrow, int leftcol, int rightcol)
• int row_col_clamp (TableContext context, int &R, int &C)
• long row_scroll_position (int row)
• void table_resized ()
• void table_scrolled ()

Static Protected Member Functions

• static void scroll_cb (Fl_Widget ∗, void ∗)

Protected Attributes

• int botrow
• int current_col
• int current_row
• Fl_Scrollbar ∗ hscrollbar
• int leftcol
• int leftcol_scrollpos
• int rightcol
• int select_col
• int select_row
• Fl_Scroll ∗ table
• int table_h
• int table_w
• int tih
• int tiw
• int tix
• int tiy
• int toh
• int toprow
• int toprow_scrollpos
• int tow
• int tox
• int toy
• Fl_Scrollbar ∗ vscrollbar
• int wih
• int wiw
• int wix
• int wiy

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

750 Class Documentation

30.104.1 Detailed Description

A table of widgets or other content.

This is the base class for table widgets.

To be useful it must be subclassed and several virtual functions defined. Normally applications use widgets
derived from this widget, and do not use this widget directly; this widget is usually too low level to be used
directly by applications.

This widget does not handle the data in the table. The draw_cell() method must be overridden by a subclass
to manage drawing the contents of the cells.

This widget can be used in several ways:

• As a custom widget; see examples/table-simple.cxx and test/table.cxx. Very optimal for even ex-
tremely large tables.

• As a table made up of a single FLTK widget instanced all over the table, simulating a numeric spread-
sheet. See examples/table-spreadsheet.cxx and examples/table-spreadsheet-with-keyboard-nav.cxx.
Optimal for large tables.

• As a regular container of FLTK widgets, one widget per cell. See examples/table-as-container.cxx.
Not recommended for large tables.

Figure 30.31: table-simple example

Figure 30.32: table-as-container example

When acting as part of a custom widget, events on the cells and/or headings generate callbacks when they
are clicked by the user. You control when events are generated based on the setting for Fl_Table::when().

When acting as a container for FLTK widgets, the FLTK widgets maintain themselves. Although the
draw_cell() method must be overridden, its contents can be very simple. See the draw_cell() code in
examples/table-simple.cxx.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.104 Fl_Table Class Reference 751

The following variables are available to classes deriving from Fl_Table:

Figure 30.33: Fl_Table Dimensions

x()/y()/w()/h() Fl_Table widget’s outer dimension. The outer
edge of the border of the Fl_Table. (Red in the
diagram above)

wix/wiy/wiw/wih Fl_Table widget’s inner dimension. The inner
edge of the border of the Fl_Table. eg. if the
Fl_Table’s box() is FL_NO_BOX, these values
are the same as x()/y()/w()/h(). (Yellow in the
diagram above)

tox/toy/tow/toh The table’s outer dimension. The outer edge of
the border around the cells, but inside the row/col
headings and scrollbars. (Green in the diagram
above)

tix/tiy/tiw/tih The table’s inner dimension. The inner edge of
the border around the cells, but inside the row/col
headings and scrollbars. AKA the table’s clip
region. eg. if the table_box() is FL_NO_BOX,
these values are the same as tox/toyy/tow/toh.
(Blue in the diagram above)

CORE DEVELOPERS

• Greg Ercolano : 12/16/2002 - initial implementation 12/16/02. Fl_Table, Fl_Table_Row, docs.

• Jean-Marc Lienher : 02/22/2004 - added keyboard nav + mouse selection, and ported Fl_Table into
fltk-utf8-1.1.4

OTHER CONTRIBUTORS

• Inspired by the Feb 2000 version of FLVW’s Flvw_Table widget. Mucho thanks to those folks.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

752 Class Documentation

• Mister Satan : 04/07/2003 - MinGW porting mods, and singleinput.cxx; a cool Fl_Input oriented
spreadsheet example

• Marek Paliwoda : 01/08/2003 - Porting mods for Borland

• Ori Berger : 03/16/2006 - Optimizations for >500k rows/cols

LICENSE

Greg added the following license to the original distribution of Fl_Table. He kindly gave his permission
to integrate Fl_Table and Fl_Table_row into FLTK, allowing FLTK license to apply while his widgets are
part of the library.

If used on its own, this is the license that applies:

Fl_Table License
December 16, 2002

The Fl_Table library and included programs are provided under the terms
of the GNU Library General Public License (LGPL) with the following
exceptions:

1. Modifications to the Fl_Table configure script, config
header file, and makefiles by themselves to support
a specific platform do not constitute a modified or
derivative work.

The authors do request that such modifications be
contributed to the Fl_Table project - send all
contributions to "erco at seriss dot com".

2. Widgets that are subclassed from Fl_Table widgets do not
constitute a derivative work.

3. Static linking of applications and widgets to the
Fl_Table library does not constitute a derivative work
and does not require the author to provide source
code for the application or widget, use the shared
Fl_Table libraries, or link their applications or
widgets against a user-supplied version of Fl_Table.

If you link the application or widget to a modified
version of Fl_Table, then the changes to Fl_Table must be
provided under the terms of the LGPL in sections
1, 2, and 4.

4. You do not have to provide a copy of the Fl_Table license
with programs that are linked to the Fl_Table library, nor
do you have to identify the Fl_Table license in your
program or documentation as required by section 6
of the LGPL.

However, programs must still identify their use of Fl_Table.
The following example statement can be included in user
documentation to satisfy this requirement:

[program/widget] is based in part on the work of
the Fl_Table project http://seriss.com/people/erco/fltk/Fl_Table/

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.104 Fl_Table Class Reference 753

30.104.2 Member Enumeration Documentation

30.104.2.1 enum Fl_Table::TableContext

The context bit flags for Fl_Table related callbacks (eg.

draw_cell(), callback(), etc)

Enumerator:

CONTEXT_NONE no known context

CONTEXT_STARTPAGE before a page is redrawn

CONTEXT_ENDPAGE after a page is redrawn

CONTEXT_ROW_HEADER in the row header

CONTEXT_COL_HEADER in the col header

CONTEXT_CELL in one of the cells

CONTEXT_TABLE in a dead zone of table

CONTEXT_RC_RESIZE column or row being resized

30.104.3 Constructor & Destructor Documentation

30.104.3.1 Fl_Table::Fl_Table (int X, int Y, int W, int H, const char ∗ l = 0)

The constructor for the Fl_Table.

This creates an empty table with no rows or columns, with headers and row/column resize behavior dis-
abled.

30.104.3.2 Fl_Table::∼Fl_Table ()

The destructor for the Fl_Table.

Destroys the table and its associated widgets.

30.104.4 Member Function Documentation

30.104.4.1 void Fl_Table::begin () [inline]

Sets the current group so you can build the widget tree by just constructing the widgets.

begin() is automatically called by the constructor for Fl_Group (and thus for Fl_Window as well). begin()
is exactly the same as current(this). Don’t forget to end() the group or window!

Reimplemented from Fl_Group.

30.104.4.2 void Fl_Table::callback (Fl_Widget ∗, void ∗)

Callbacks will be called depending on the setting of Fl_Widget::when().

Callback functions should use the following functions to determine the context/row/column:

Fl_Table::callback_row() returns current row Fl_Table::callback_col() returns current column Fl_-
Table::callback_context() returns current table context

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

754 Class Documentation

callback_row() and callback_col() will be set to the row and column number the event occurred on. If
someone clicked on a row header, col will be 0. If someone clicked on a column header, row will be 0.

callback_context() will return one of the following:

Fl_Table::CONTEXT_ROW_HEADER Someone clicked on a row header. Excludes
resizing.

Fl_Table::CONTEXT_COL_HEADER Someone clicked on a column header. Excludes
resizing.

Fl_Table::CONTEXT_CELL Someone clicked on a cell.
To receive callbacks for FL_RELEASE events,
you must set when(FL_WHEN_RELEASE).

Fl_Table::CONTEXT_RC_RESIZE Someone is resizing rows/columns either
interactively, or via the col_width() or
row_height() API.
Use is_interactive_resize() to determine
interactive resizing.
If resizing a column, R=0 and C=column being
resized.
If resizing a row, C=0 and R=row being resized.
NOTE: To receive resize events, you must set
when(FL_WHEN_CHANGED).

class MyTable : public Fl_Table {
[..]

private:
// Handle events that happen on the table
void event_callback2() {

int R = callback_row(), // row where event occurred
C = callback_col(); // column where event occurred
TableContext context = callback_context(); // which part of table
fprintf(stderr, "callback: Row=%d Col=%d Context=%d Event=%d\n",

R, C, (int)context, (int)Fl::event());
}

// Actual static callback
static void event_callback(Fl_Widget*, void* data) {

MyTable *o = (MyTable*)data;
o->event_callback2();

}

public:
// Constructor
MyTable() {

[..]
table.callback(&event_callback, (void*)this); // setup callback
table.when(FL_WHEN_CHANGED|FL_WHEN_RELEASE); // when to call it

}
};

30.104.4.3 int Fl_Table::callback_col () [inline]

Returns the current column the event occurred on.

This function should only be used from within the user’s callback function

30.104.4.4 TableContext Fl_Table::callback_context () [inline]

Returns the current ’table context’.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.104 Fl_Table Class Reference 755

This function should only be used from within the user’s callback function

30.104.4.5 int Fl_Table::callback_row () [inline]

Returns the current row the event occurred on.

This function should only be used from within the user’s callback function

30.104.4.6 Fl_Widget∗ Fl_Table::child (int n) const [inline]

Returns the child widget by an index.

When using the Fl_Table as a container for FLTK widgets, this method returns the widget pointer from the
internal array of widgets in the container.

Typically used in loops, eg:

for (int i=0; i<children(); i++) {
Fl_Widget *w = child(i);
[..]

}

Reimplemented from Fl_Group.

30.104.4.7 int Fl_Table::children () const [inline]

Returns the number of children in the table.

When using the Fl_Table as a container for FLTK widgets, this method returns how many child widgets
the table has.

See also:

child(int)

Reimplemented from Fl_Group.

30.104.4.8 virtual void Fl_Table::clear () [inline, virtual]

Clears the table to zero rows, zero columns.

Same as rows(0); cols(0);

See also:

rows(int), cols(int)

Reimplemented from Fl_Group.

Reimplemented in Fl_Table_Row.

30.104.4.9 void Fl_Table::col_header (int flag) [inline]

Enable or disable column headers.

If changed, the table is redrawn.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

756 Class Documentation

30.104.4.10 void Fl_Table::col_resize (int flag) [inline]

Allows/disallows column resizing by the user.

1=allow interactive resizing, 0=disallow interactive resizing. Since interactive resizing is done via the
column headers, col_header() must also be enabled to allow resizing.

30.104.4.11 int Fl_Table::col_resize_min () [inline]

Sets the current column minimum resize value.

This is used to prevent the user from interactively resizing any column to be smaller than ’pixels’. Must be
a value >=1.

30.104.4.12 void Fl_Table::col_width (int col, int width)

Sets the width of the specified column in pixels, and the table is redrawn.

callback() will be invoked with CONTEXT_RC_RESIZE if the column’s width was actually changed, and
when() is FL_WHEN_CHANGED.

30.104.4.13 void Fl_Table::col_width_all (int width) [inline]

Convenience method to set the width of all columns to the same value, in pixels.

The screen is redrawn.

30.104.4.14 void Fl_Table::draw (void) [virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Group.

30.104.4.15 virtual void Fl_Table::draw_cell (TableContext context, int R = 0, int C = 0, int X =
0, int Y = 0, int W = 0, int H = 0) [inline, protected, virtual]

Subclass should override this method to handle drawing the cells.

This method will be called whenever the table is redrawn, once per cell.

Only cells that are completely (or partially) visible will be told to draw.

context will be one of the following:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.104 Fl_Table Class Reference 757

Fl_Table::CONTEXT_STARTPAGE When table, or parts of the table, are about to be
redrawn.
Use to initialize static data, such as font
selections.
R/C will be zero,
X/Y/W/H will be the dimensions of the table’s
entire data area.
(Useful for locking a database before accessing;
see also visible_cells())

Fl_Table::CONTEXT_ENDPAGE When table has completed being redrawn.
R/C will be zero, X/Y/W/H dimensions of table’s
data area.
(Useful for unlocking a database after accessing)

Fl_Table::CONTEXT_ROW_HEADER Whenever a row header cell needs to be drawn.
R will be the row number of the header being
redrawn,
C will be zero,
X/Y/W/H will be the fltk drawing area of the row
header in the window

Fl_Table::CONTEXT_COL_HEADER Whenever a column header cell needs to be
drawn.
R will be zero,
C will be the column number of the header being
redrawn,
X/Y/W/H will be the fltk drawing area of the
column header in the window

Fl_Table::CONTEXT_CELL Whenever a data cell in the table needs to be
drawn.
R/C will be the row/column of the cell to be
drawn,
X/Y/W/H will be the fltk drawing area of the cell
in the window

Fl_Table::CONTEXT_RC_RESIZE Whenever table or row/column is resized or
scrolled, either interactively or via col_width() or
row_height().
R/C/X/Y/W/H will all be zero.
Useful for fltk containers that need to resize or
move the child fltk widgets.

row and col will be set to the row and column number of the cell being drawn. In the case of row headers,
col will be 0. In the case of column headers, row will be 0.

x/y/w/h will be the position and dimensions of where the cell should be drawn.

In the case of custom widgets, a minimal draw_cell() override might look like the following. With custom
widgets it is up to the caller to handle drawing everything within the dimensions of the cell, including
handling the selection color. Note all clipping must be handled as well; this allows drawing outside the
dimensions of the cell if so desired for ’custom effects’.

// This is called whenever Fl_Table wants you to draw a cell
void MyTable::draw_cell(TableContext context, int R=0, int C=0, int X=0, int Y=0, int W=0, int H=0) {

static char s[40];
sprintf(s, "%d/%d", R, C); // text for each cell
switch (context) {

case CONTEXT_STARTPAGE: // Fl_Table telling us its starting to draw page
fl_font(FL_HELVETICA, 16);
return;

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

758 Class Documentation

case CONTEXT_ROW_HEADER: // Fl_Table telling us it’s draw row/col headers
case CONTEXT_COL_HEADER:

fl_push_clip(X, Y, W, H);
{

fl_draw_box(FL_THIN_UP_BOX, X, Y, W, H, color());
fl_color(FL_BLACK);
fl_draw(s, X, Y, W, H, FL_ALIGN_CENTER);

}
fl_pop_clip();
return;

case CONTEXT_CELL: // Fl_Table telling us to draw cells
fl_push_clip(X, Y, W, H);
{

// BG COLOR
fl_color(row_selected(R) ? selection_color() : FL_WHITE);
fl_rectf(X, Y, W, H);

// TEXT
fl_color(FL_BLACK);
fl_draw(s, X, Y, W, H, FL_ALIGN_CENTER);

// BORDER
fl_color(FL_LIGHT2);
fl_rect(X, Y, W, H);

}
fl_pop_clip();
return;

default:
return;

}
//NOTREACHED

}

30.104.4.16 void Fl_Table::end () [inline]

Exactly the same as current(this->parent()).

Any new widgets added to the widget tree will be added to the parent of the group.

Reimplemented from Fl_Group.

30.104.4.17 int Fl_Table::find (const Fl_Widget ∗ o) const [inline]

Searches the child array for the widget and returns the index.

Returns children() if the widget is NULL or not found.

Reimplemented from Fl_Group.

30.104.4.18 void Fl_Table::get_selection (int & row_top, int & col_left, int & row_bot, int &
col_right)

Gets the region of cells selected (highlighted).

Parameters:

← row_top Returns the top row of selection area

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.104 Fl_Table Class Reference 759

← col_left Returns the left column of selection area

← row_bot Returns the bottom row of selection area

← col_right Returns the right column of selection area

30.104.4.19 int Fl_Table::handle (int event) [protected, virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Group.

Reimplemented in Fl_Table_Row.

30.104.4.20 void Fl_Table::init_sizes () [inline]

Resets the internal array of widget sizes and positions.

The Fl_Group widget keeps track of the original widget sizes and positions when resizing occurs so that if
you resize a window back to its original size the widgets will be in the correct places. If you rearrange the
widgets in your group, call this method to register the new arrangement with the Fl_Group that contains
them.

If you add or remove widgets, this will be done automatically.

Note:

The internal array of widget sizes and positions will be allocated and filled when the next resize()
occurs.

See also:

sizes()

Reimplemented from Fl_Group.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

760 Class Documentation

30.104.4.21 void Fl_Table::insert (Fl_Widget & o, Fl_Widget ∗ before) [inline]

This does insert(w, find(before)).

This will append the widget if before is not in the group.

Reimplemented from Fl_Group.

30.104.4.22 void Fl_Table::insert (Fl_Widget & o, int index) [inline]

The widget is removed from its current group (if any) and then inserted into this group.

It is put at index n - or at the end, if n >= children(). This can also be used to rearrange the widgets inside
a group.

Reimplemented from Fl_Group.

30.104.4.23 int Fl_Table::is_interactive_resize () [inline]

Returns 1 if someone is interactively resizing a row or column.

You can currently call this only from within your callback().

30.104.4.24 int Fl_Table::is_selected (int r, int c)

See if the cell at row r and column c is selected.

Returns:

1 if the cell is selected, 0 if not.

30.104.4.25 void Fl_Table::remove (Fl_Widget & o) [inline]

Removes a widget from the group but does not delete it.

This method does nothing if the widget is not a child of the group.

This method differs from the clear() method in that it only affects a single widget and does not delete it
from memory.

Note:

If you have the child’s index anyway, use remove(int index) instead, because this doesn’t need a child
lookup in the group’s table of children. This can be much faster, if there are lots of children.

Reimplemented from Fl_Group.

30.104.4.26 void Fl_Table::row_header (int flag) [inline]

Enables/disables showing the row headers.

1=enabled, 0=disabled. If changed, the table is redrawn.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.104 Fl_Table Class Reference 761

30.104.4.27 void Fl_Table::row_height (int row, int height)

Sets the height of the specified row in pixels, and the table is redrawn.

callback() will be invoked with CONTEXT_RC_RESIZE if the row’s height was actually changed, and
when() is FL_WHEN_CHANGED.

30.104.4.28 void Fl_Table::row_height_all (int height) [inline]

Convenience method to set the height of all rows to the same value, in pixels.

The screen is redrawn.

30.104.4.29 void Fl_Table::row_resize (int flag) [inline]

Allows/disallows row resizing by the user.

1=allow interactive resizing, 0=disallow interactive resizing. Since interactive resizing is done via the row
headers, row_header() must also be enabled to allow resizing.

30.104.4.30 void Fl_Table::row_resize_min (int val) [inline]

Sets the current row minimum resize value.

This is used to prevent the user from interactively resizing any row to be smaller than ’pixels’. Must be a
value >=1.

30.104.4.31 void Fl_Table::set_selection (int row_top, int col_left, int row_bot, int col_right)

Sets the region of cells to be selected (highlighted).

So for instance, set_selection(0,0,0,0) selects the top/left cell in the table. And set_selection(0,0,1,1) selects
the four cells in rows 0 and 1, column 0 and 1.

Parameters:

← row_top Top row of selection area

← col_left Left column of selection area

← row_bot Bottom row of selection area

← col_right Right column of selection area

30.104.4.32 void Fl_Table::table_box (Fl_Boxtype val) [inline]

Sets the kind of box drawn around the data table, the default being FL_NO_BOX.

Changing this value will cause the table to redraw.

30.104.4.33 int Fl_Table::top_row () [inline]

Returns the current top row shown in the table.

This row may be partially obscured.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

762 Class Documentation

30.104.4.34 void Fl_Table::top_row (int row) [inline]

Sets which row should be at the top of the table, scrolling as necessary, and the table is redrawn.

If the table cannot be scrolled that far, it is scrolled as far as possible.

30.104.4.35 void Fl_Table::visible_cells (int & r1, int & r2, int & c1, int & c2) [inline]

Returns the range of row and column numbers for all visible and partially visible cells in the table.

These values can be used e.g. by your draw_cell() routine during CONTEXT_STARTPAGE to figure out
what cells are about to be redrawn for the purposes of locking the data from a database before it’s drawn.

leftcol rightcol
: :

toprow .. .-------------------.
| |
| V I S I B L E |
| |
| T A B L E |
| |

botrow .. ’-------------------‘

e.g. in a table where the visible rows are 5-20, and the visible columns are 100-120, then those variables
would be:

• toprow = 5

• botrow = 20

• leftcol = 100

• rightcol = 120

30.104.4.36 void Fl_Table::when (Fl_When flags)

The Fl_Widget::when() function is used to set a group of flags, determining when the widget callback is
called:.

FL_WHEN_CHANGED callback() will be called when rows or columns
are resized (interactively or via col_width() or
row_height()), passing CONTEXT_RC_RESIZE
via callback_context().

FL_WHEN_RELEASE callback() will be called during FL_RELEASE
events, such as when someone releases a mouse
button somewhere on the table.

The callback() routine is sent a TableContext that indicates the context the event occurred in, such as in a
cell, in a header, or elsewhere on the table. When an event occurs in a cell or header, callback_row() and
callback_col() can be used to determine the row and column. The callback can also look at the regular fltk
event values (ie. Fl::event() and Fl::button()) to determine what kind of event is occurring.

The documentation for this class was generated from the following files:

• Fl_Table.H
• Fl_Table.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.105 Fl_Table_Row Class Reference 763

30.105 Fl_Table_Row Class Reference

A table with row selection capabilities.

#include <Fl_Table_Row.H>

Inheritance diagram for Fl_Table_Row::

Fl_Table_Row

Fl_Table

Fl_Group

Fl_Widget

Classes

• class CharVector

Public Types

• enum TableRowSelectMode { SELECT_NONE, SELECT_SINGLE, SELECT_MULTI }

Public Member Functions

• void clear ()

Clears the table to zero rows, zero columns.

• Fl_Table_Row (int X, int Y, int W, int H, const char ∗l=0)

The constructor for the Fl_Table_Row.

• int row_selected (int row)

Checks to see if ’row’ is selected.

• int rows ()

Returns the number of rows in the table.

• void rows (int val)

Sets the number of rows in the table, and the table is redrawn.

• void select_all_rows (int flag=1)

This convenience function changes the selection state for all rows based on ’flag’.

• int select_row (int row, int flag=1)

Changes the selection state for ’row’, depending on the value of ’flag’.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

764 Class Documentation

• TableRowSelectMode type () const

Gets the widget type.

• void type (TableRowSelectMode val)

Sets the table selection mode.

• ∼Fl_Table_Row ()

The destructor for the Fl_Table_Row.

Protected Member Functions

• int find_cell (TableContext context, int R, int C, int &X, int &Y, int &W, int &H)

• int handle (int event)

Handles the specified event.

30.105.1 Detailed Description

A table with row selection capabilities.

This class implements a simple table with the ability to select rows. This widget is similar to an Fl_Browser
with columns. Most methods of importance will be found in the Fl_Table widget, such as Fl_Table::rows()
and Fl_Table::cols().

To be useful it must be subclassed and at minimum the draw_cell() method must be overridden to provide
the content of the cells. This widget does not manage the cell’s data content; it is up to the parent class’s
draw_cell() method override to provide this.

Events on the cells and/or headings generate callbacks when they are clicked by the user. You control when
events are generated based on the values you supply for Fl_Table::when().

30.105.2 Constructor & Destructor Documentation

30.105.2.1 Fl_Table_Row::Fl_Table_Row (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

The constructor for the Fl_Table_Row.

This creates an empty table with no rows or columns, with headers and row/column resize behavior dis-
abled.

30.105.2.2 Fl_Table_Row::∼Fl_Table_Row () [inline]

The destructor for the Fl_Table_Row.

Destroys the table and its associated widgets.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.105 Fl_Table_Row Class Reference 765

30.105.3 Member Function Documentation

30.105.3.1 void Fl_Table_Row::clear () [inline, virtual]

Clears the table to zero rows, zero columns.

Same as rows(0); cols(0);

See also:

rows(int), cols(int)

Reimplemented from Fl_Table.

30.105.3.2 int Fl_Table_Row::handle (int event) [protected, virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Table.

30.105.3.3 int Fl_Table_Row::row_selected (int row)

Checks to see if ’row’ is selected.

Returns 1 if selected, 0 if not. You can change the selection of a row by clicking on it, or by using select_-
row(row, flag)

30.105.3.4 void Fl_Table_Row::select_all_rows (int flag = 1)

This convenience function changes the selection state for all rows based on ’flag’.

0=deselect, 1=select, 2=toggle existing state.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

766 Class Documentation

30.105.3.5 int Fl_Table_Row::select_row (int row, int flag = 1)

Changes the selection state for ’row’, depending on the value of ’flag’.

0=deselected, 1=select, 2=toggle existing state.

30.105.3.6 TableRowSelectMode Fl_Table_Row::type () const [inline]

Gets the widget type.

Returns the widget type value, which is used for Forms compatibility and to simulate RTTI.

Todo

Explain "simulate RTTI" (currently only used to decide if a widget is a window, i.e. type()>=FL_-
WINDOW ?). Is type() really used in a way that ensures "Forms compatibility" ?

Reimplemented from Fl_Widget.

30.105.3.7 void Fl_Table_Row::type (TableRowSelectMode val)

Sets the table selection mode.

• Fl_Table_Row::SELECT_NONE - No selection allowed

• Fl_Table_Row::SELECT_SINGLE - Only single rows can be selected

• Fl_Table_Row::SELECT_MULTI - Multiple rows can be selected

The documentation for this class was generated from the following files:

• Fl_Table_Row.H
• Fl_Table_Row.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.106 Fl_Tabs Class Reference 767

30.106 Fl_Tabs Class Reference

The Fl_Tabs widget is the "file card tabs" interface that allows you to put lots and lots of buttons and
switches in a panel, as popularized by many toolkits.

#include <Fl_Tabs.H>

Inheritance diagram for Fl_Tabs::

Fl_Tabs

Fl_Group

Fl_Widget

Public Member Functions

• void client_area (int &rx, int &ry, int &rw, int &rh, int tabh=0)

Returns the position and size available to be used by its children.

• Fl_Tabs (int, int, int, int, const char ∗=0)

Creates a new Fl_Tabs widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

• int push (Fl_Widget ∗)
• Fl_Widget ∗ push () const
• int value (Fl_Widget ∗)

Sets the widget to become the current visible widget/tab.

• Fl_Widget ∗ value ()

Gets the currently visible widget/tab.

• Fl_Widget ∗ which (int event_x, int event_y)

Protected Member Functions

• void draw ()

Draws the widget.

• void redraw_tabs ()

30.106.1 Detailed Description

The Fl_Tabs widget is the "file card tabs" interface that allows you to put lots and lots of buttons and
switches in a panel, as popularized by many toolkits.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

768 Class Documentation

Figure 30.34: Fl_Tabs

Clicking the tab makes a child visible() by calling show() on it, and all other children are made invisible by
calling hide() on them. Usually the children are Fl_Group widgets containing several widgets themselves.

Each child makes a card, and its label() is printed on the card tab, including the label font and style. The
selection color of that child is used to color the tab, while the color of the child determines the background
color of the pane.

The size of the tabs is controlled by the bounding box of the children (there should be some space between
the children and the edge of the Fl_Tabs), and the tabs may be placed "inverted" on the bottom - this is
determined by which gap is larger. It is easiest to lay this out in fluid, using the fluid browser to select each
child group and resize them until the tabs look the way you want them to.

30.106.2 Constructor & Destructor Documentation

30.106.2.1 Fl_Tabs::Fl_Tabs (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Tabs widget using the given position, size, and label string.

The default boxtype is FL_THIN_UP_BOX.

Use add(Fl_Widget∗) to add each child, which are usually Fl_Group widgets. The children should be sized
to stay away from the top or bottom edge of the Fl_Tabs widget, which is where the tabs will be drawn.

All children of Fl_Tabs should have the same size and exactly fit on top of each other. They should only
leave space above or below where that tabs will go, but not on the sides. If the first child of Fl_Tabs is set
to "resizable()", the riders will not resize when the tabs are resized.

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having
to keep a pointer to all the children in the user code. A kludge has been done so the Fl_Tabs and all of
its children can be automatic (local) variables, but you must declare the Fl_Tabs widget first so that it is
destroyed last.

30.106.3 Member Function Documentation

30.106.3.1 void Fl_Tabs::client_area (int & rx, int & ry, int & rw, int & rh, int tabh = 0)

Returns the position and size available to be used by its children.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.106 Fl_Tabs Class Reference 769

If there isn’t any child yet the tabh parameter will be used to calculate the return values. This assumes
that the children’s labelsize is the same as the Fl_Tabs’ labelsize and adds a small border.

If there are already children, the values of child(0) are returned, and tabh is ignored.

Note:

Children should always use the same positions and sizes.

tabh can be one of

• 0: calculate label size, tabs on top

• -1: calculate label size, tabs on bottom

• > 0: use given tabh value, tabs on top (height = tabh)

• < -1: use given tabh value, tabs on bottom (height = -tabh)

Parameters:

← tabh position and optional height of tabs (see above)

→ rx,ry,rw,rh (x,y,w,h) of client area for children

30.106.3.2 void Fl_Tabs::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Group.

30.106.3.3 int Fl_Tabs::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

770 Class Documentation

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Group.

30.106.3.4 int Fl_Tabs::value (Fl_Widget ∗ newvalue)

Sets the widget to become the current visible widget/tab.

Setting the value hides all other children, and makes this one visible, if it is really a child.

30.106.3.5 Fl_Widget ∗ Fl_Tabs::value ()

Gets the currently visible widget/tab.

The value() is the first visible child (or the last child if none are visible) and this also hides any other
children. This allows the tabs to be deleted, moved to other groups, and show()/hide() called without it
screwing up.

The documentation for this class was generated from the following files:

• Fl_Tabs.H
• Fl_Tabs.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.107 Fl_Text_Buffer Class Reference 771

30.107 Fl_Text_Buffer Class Reference

This class manages unicode displayed in one or more Fl_Text_Display widgets.

#include <Fl_Text_Buffer.H>

Public Member Functions

• void add_modify_callback (Fl_Text_Modify_Cb bufModifiedCB, void ∗cbArg)
Adds a callback function that is called whenever the text buffer is modified.

• void add_predelete_callback (Fl_Text_Predelete_Cb bufPredelCB, void ∗cbArg)
Adds a callback routine to be called before text is deleted from the buffer.

• char ∗ address (int pos)
Convert a byte offset in buffer into a memory address.

• const char ∗ address (int pos) const
Convert a byte offset in buffer into a memory address.

• void append (const char ∗t)
Appends the text string to the end of the buffer.

• int appendfile (const char ∗file, int buflen=128 ∗1024)
Appends the named file to the end of the buffer.

• char byte_at (int pos) const
Returns the raw byte at the specified position pos in the buffer.

• void call_modify_callbacks ()
Calls all modify callbacks that have been registered using the add_modify_callback() method.

• void call_predelete_callbacks ()
Calls the stored pre-delete callback procedure(s) for this buffer to update the changed area(s) on the screen
and any other listeners.

• void canUndo (char flag=1)
Lets the undo system know if we can undo changes.

• unsigned int char_at (int pos) const
Returns the character at the specified position pos in the buffer.

• void copy (Fl_Text_Buffer ∗fromBuf, int fromStart, int fromEnd, int toPos)
Copies text from one buffer to this one.

• int count_displayed_characters (int lineStartPos, int targetPos) const
Count the number of displayed characters between buffer position lineStartPos and targetPos.

• int count_lines (int startPos, int endPos) const
Counts the number of newlines between startPos and endPos in buffer.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

772 Class Documentation

• int findchar_backward (int startPos, unsigned int searchChar, int ∗foundPos) const

Search backwards in buffer buf for character searchChar, starting with the character BEFORE
startPos, returning the result in foundPos returns 1 if found, 0 if not.

• int findchar_forward (int startPos, unsigned searchChar, int ∗foundPos) const

Finds the next occurrence of the specified character.

• Fl_Text_Buffer (int requestedSize=0, int preferredGapSize=1024)

Create an empty text buffer of a pre-determined size.

• int highlight ()

Returns the highlighted text.

• void highlight (int start, int end)

Highlights the specified text within the buffer.

• int highlight_position (int ∗start, int ∗end)

Highlights the specified text between start and end within the buffer.

• const Fl_Text_Selection ∗ highlight_selection () const

Returns the current highlight selection.

• char ∗ highlight_text ()

Returns the highlighted text.

• void insert (int pos, const char ∗text)

Inserts null-terminated string text at position pos.

• int insertfile (const char ∗file, int pos, int buflen=128 ∗1024)

Inserts a file at the specified position.

• int length () const

Returns the number of bytes in the buffer.

• int line_end (int pos) const

Finds and returns the position of the end of the line containing position pos (which is either a pointer to
the newline character ending the line, or a pointer to one character beyond the end of the buffer).

• int line_start (int pos) const

Returns the position of the start of the line containing position pos.

• char ∗ line_text (int pos) const

Returns the text from the entire line containing the specified character position.

• int loadfile (const char ∗file, int buflen=128 ∗1024)

Loads a text file into the buffer.

• const char ∗ next_char (const char ∗c) const
• char ∗ next_char (char ∗c) const

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.107 Fl_Text_Buffer Class Reference 773

Returns a pointer to the next character.

• int next_char (int ix) const

Returns the index of the next character.

• int next_char_clipped (int ix) const
• int outputfile (const char ∗file, int start, int end, int buflen=128 ∗1024)

Writes the specified portions of the file to a file.

• const char ∗ prev_char (const char ∗c) const
• char ∗ prev_char (char ∗c) const

Returns a pointer to the previous character.

• int prev_char (int ix) const

Returns the index of the previous character.

• int prev_char_clipped (int ix) const
• Fl_Text_Selection ∗ primary_selection ()

Returns the primary selection.

• const Fl_Text_Selection ∗ primary_selection () const

Returns the primary selection.

• void remove (int start, int end)

Deletes a range of characters in the buffer.

• void remove_modify_callback (Fl_Text_Modify_Cb bufModifiedCB, void ∗cbArg)

Removes a modify callback.

• void remove_predelete_callback (Fl_Text_Predelete_Cb predelCB, void ∗cbArg)

Removes a callback routine bufPreDeleteCB associated with argument cbArg to be called before text
is deleted from the buffer.

• void remove_secondary_selection ()

Removes the text from the buffer corresponding to the secondary text selection object.

• void remove_selection ()

Removes the text in the primary selection.

• void replace (int start, int end, const char ∗text)

Deletes the characters between start and end, and inserts the null-terminated string text in their place
in the buffer.

• void replace_secondary_selection (const char ∗text)

Replaces the text from the buffer corresponding to the secondary text selection object with the new string
text.

• void replace_selection (const char ∗text)

Replaces the text in the primary selection.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

774 Class Documentation

• int rewind_lines (int startPos, int nLines)
Finds and returns the position of the first character of the line nLines backwards from startPos (not
counting the character pointed to by startpos if that is a newline) in the buffer.

• int savefile (const char ∗file, int buflen=128 ∗1024)
Saves a text file from the current buffer.

• int search_backward (int startPos, const char ∗searchString, int ∗foundPos, int matchCase=0) const
Search backwards in buffer for string searchCharssearchString, starting with the character BEFORE
startPos, returning the result in foundPos returns 1 if found, 0 if not.

• int search_forward (int startPos, const char ∗searchString, int ∗foundPos, int matchCase=0) const
Search forwards in buffer for string searchString, starting with the character startPos, and return-
ing the result in foundPos returns 1 if found, 0 if not.

• void secondary_select (int start, int end)
Selects a range of characters in the secondary selection.

• int secondary_selected ()
Returns a non 0 value if text has been selected in the secondary text selection, 0 otherwise.

• const Fl_Text_Selection ∗ secondary_selection () const
Returns the secondary selection.

• int secondary_selection_position (int ∗start, int ∗end)
Returns the current selection in the secondary text selection object.

• char ∗ secondary_selection_text ()
Returns the text in the secondary selection.

• void secondary_unselect ()
Clears any selection in the secondary text selection object.

• void select (int start, int end)
Selects a range of characters in the buffer.

• int selected () const
Returns a non 0 value if text has been selected, 0 otherwise.

• int selection_position (int ∗start, int ∗end)
Gets the selection position.

• char ∗ selection_text ()
Returns the currently selected text.

• int skip_displayed_characters (int lineStartPos, int nChars)
Count forward from buffer position startPos in displayed characters (displayed characters are the char-
acters shown on the screen to represent characters in the buffer, where tabs and control characters are
expanded).

• int skip_lines (int startPos, int nLines)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.107 Fl_Text_Buffer Class Reference 775

Finds the first character of the line nLines forward from startPos in the buffer and returns its position.

• void tab_distance (int tabDist)

Set the hardware tab distance (width) used by all displays for this buffer, and used in computing offsets for
rectangular selection operations.

• int tab_distance () const

Gets the tab width.

• void text (const char ∗text)

Replaces the entire contents of the text buffer.

• char ∗ text () const

Get a copy of the entire contents of the text buffer.

• char ∗ text_range (int start, int end) const

Get a copy of a part of the text buffer.

• int undo (int ∗cp=0)

Undo text modification according to the undo variables or insert text from the undo buffer.

• void unhighlight ()

Unhighlights text in the buffer.

• void unselect ()

Cancels any previous selection on the primary text selection object.

• int utf8_align (int) const

Align an index into the buffer to the current or previous utf8 boundary.

• int word_end (int pos) const

Returns the position corresponding to the end of the word.

• int word_start (int pos) const

Returns the position corresponding to the start of the word.

• ∼Fl_Text_Buffer ()

Frees a text buffer.

Public Attributes

• int input_file_was_transcoded

true iff the loaded file has been transcoded to UTF-8

• void(∗ transcoding_warning_action)(Fl_Text_Buffer ∗)
Pointer to a function called after reading a non UTF-8 encoded file.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

776 Class Documentation

Static Public Attributes

• static const char ∗ file_encoding_warning_message
This message may be displayed using the fl_alert() function when a file which was not UTF-8 encoded is
input.

Protected Member Functions

• void call_modify_callbacks (int pos, int nDeleted, int nInserted, int nRestyled, const char
∗deletedText) const

Calls the stored modify callback procedure(s) for this buffer to update the changed area(s) on the screen
and any other listeners.

• void call_predelete_callbacks (int pos, int nDeleted) const
Calls the stored pre-delete callback procedure(s) for this buffer to update the changed area(s) on the screen
and any other listeners.

• int insert_ (int pos, const char ∗text)
Internal (non-redisplaying) version of BufInsert.

• void move_gap (int pos)
Move the gap to start at a new position.

• void reallocate_with_gap (int newGapStart, int newGapLen)
Reallocates the text storage in the buffer to have a gap starting at newGapStart and a gap size of
newGapLen, preserving the buffer’s current contents.

• void redisplay_selection (Fl_Text_Selection ∗oldSelection, Fl_Text_Selection ∗newSelection) const

Calls the stored redisplay procedure(s) for this buffer to update the screen for a change in a selection.

• void remove_ (int start, int end)
Internal (non-redisplaying) version of BufRemove.

• void remove_selection_ (Fl_Text_Selection ∗sel)
Removes the text from the buffer corresponding to sel.

• void replace_selection_ (Fl_Text_Selection ∗sel, const char ∗text)
Replaces the text in selection sel.

• char ∗ selection_text_ (Fl_Text_Selection ∗sel) const
• void update_selections (int pos, int nDeleted, int nInserted)

Updates all of the selections in the buffer for changes in the buffer’s text.

Protected Attributes

• char ∗ mBuf
allocated memory where the text is stored

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.107 Fl_Text_Buffer Class Reference 777

• char mCanUndo
if this buffer is used for attributes, it must not do any undo calls

• void ∗∗ mCbArgs
caller arguments for modifyProcs above

• int mCursorPosHint
hint for reasonable cursor position after a buffer modification operation

• int mGapEnd
points to the first char after the gap

• int mGapStart
points to the first character of the gap

• Fl_Text_Selection mHighlight
highlighted areas

• int mLength
length of the text in the buffer (the length of the buffer itself must be calculated: gapEnd - gapStart + length)

• Fl_Text_Modify_Cb ∗ mModifyProcs
procedures to call when buffer is modified to redisplay contents

• int mNModifyProcs
number of modify-redisplay procs attached

• int mNPredeleteProcs
number of pre-delete procs attached

• void ∗∗ mPredeleteCbArgs
caller argument for pre-delete proc above

• Fl_Text_Predelete_Cb ∗ mPredeleteProcs
procedure to call before text is deleted from the buffer; at most one is supported.

• int mPreferredGapSize
the default allocation for the text gap is 1024 bytes and should only be increased if frequent and large
changes in buffer size are expected

• Fl_Text_Selection mPrimary
highlighted areas

• Fl_Text_Selection mSecondary
highlighted areas

• int mTabDist
equiv.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

778 Class Documentation

30.107.1 Detailed Description

This class manages unicode displayed in one or more Fl_Text_Display widgets.

All text in Fl_Text_Buffermust be encoded in UTF-8. All indices used in the function calls must be aligned
to the start of a UTF-8 sequence. All indices and pointers returned will be aligned. All functions that return
a single character will return that in an unsiged int in UCS-4 encoding.

The Fl_Text_Buffer class is used by the Fl_Text_Display and Fl_Text_Editor to manage complex text data
and is based upon the excellent NEdit text editor engine - see http://www.nedit.org/.

30.107.2 Constructor & Destructor Documentation

30.107.2.1 Fl_Text_Buffer::Fl_Text_Buffer (int requestedSize = 0, int preferredGapSize = 1024)

Create an empty text buffer of a pre-determined size.

Parameters:

requestedSize use this to avoid unnecessary re-allocation if you know exactly how much the buffer
will need to hold

preferredGapSize Initial size for the buffer gap (empty space in the buffer where text might be inserted
if the user is typing sequential chars)

30.107.3 Member Function Documentation

30.107.3.1 void Fl_Text_Buffer::add_modify_callback (Fl_Text_Modify_Cb bufModifiedCB, void
∗ cbArg)

Adds a callback function that is called whenever the text buffer is modified.

The callback function is declared as follows:

typedef void (*Fl_Text_Modify_Cb)(int pos, int nInserted, int nDeleted,
int nRestyled, const char* deletedText,
void* cbArg);

30.107.3.2 char∗ Fl_Text_Buffer::address (int pos) [inline]

Convert a byte offset in buffer into a memory address.

Parameters:

pos byte offset into buffer

Returns:

byte offset converted to a memory address

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://www.nedit.org/.

30.107 Fl_Text_Buffer Class Reference 779

30.107.3.3 const char∗ Fl_Text_Buffer::address (int pos) const [inline]

Convert a byte offset in buffer into a memory address.

Parameters:

pos byte offset into buffer

Returns:

byte offset converted to a memory address

30.107.3.4 void Fl_Text_Buffer::append (const char ∗ t) [inline]

Appends the text string to the end of the buffer.

Parameters:

t utf-8 encoded and nul terminated text

30.107.3.5 int Fl_Text_Buffer::appendfile (const char ∗ file, int buflen = 128∗1024) [inline]

Appends the named file to the end of the buffer.

See also insertfile().

30.107.3.6 char Fl_Text_Buffer::byte_at (int pos) const

Returns the raw byte at the specified position pos in the buffer.

Positions start at 0

Parameters:

pos byte offset into buffer

Returns:

unencoded raw byte

30.107.3.7 unsigned int Fl_Text_Buffer::char_at (int pos) const

Returns the character at the specified position pos in the buffer.

Positions start at 0

Parameters:

pos byte offset into buffer, pos must be at acharacter boundary

Returns:

Unicode UCS-4 encoded character

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

780 Class Documentation

30.107.3.8 void Fl_Text_Buffer::copy (Fl_Text_Buffer ∗ fromBuf, int fromStart, int fromEnd, int
toPos)

Copies text from one buffer to this one.

Parameters:

fromBuf source text buffer may be the same as this

fromStart byte offset into buffer

fromEnd byte offset into buffer

toPos destination byte offset into buffer

30.107.3.9 int Fl_Text_Buffer::count_displayed_characters (int lineStartPos, int targetPos) const

Count the number of displayed characters between buffer position lineStartPos and targetPos.

(displayed characters are the characters shown on the screen to represent characters in the buffer, where
tabs and control characters are expanded)

30.107.3.10 int Fl_Text_Buffer::count_lines (int startPos, int endPos) const

Counts the number of newlines between startPos and endPos in buffer.

The character at position endPos is not counted.

30.107.3.11 int Fl_Text_Buffer::findchar_backward (int startPos, unsigned int searchChar, int ∗
foundPos) const

Search backwards in buffer buf for character searchChar, starting with the character BEFORE
startPos, returning the result in foundPos returns 1 if found, 0 if not.

(The difference between this and BufSearchBackward is that it’s optimized for single characters. The
overall performance of the text widget is dependent on its ability to count lines quickly, hence searching
for a single character: newline)

Parameters:

startPos byte offset to start position

searchChar UCS-4 character that we want to find

foundPos byte offset where the character was found

Returns:

1 if found, 0 if not

30.107.3.12 int Fl_Text_Buffer::findchar_forward (int startPos, unsigned searchChar, int ∗
foundPos) const

Finds the next occurrence of the specified character.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.107 Fl_Text_Buffer Class Reference 781

Search forwards in buffer for character searchChar, starting with the character startPos, and return-
ing the result in foundPos returns 1 if found, 0 if not. (The difference between this and BufSearchFor-
ward is that it’s optimized for single characters. The overall performance of the text widget is dependent
on its ability to count lines quickly, hence searching for a single character: newline)

Parameters:

startPos byte offset to start position

searchChar UCS-4 character that we want to find

foundPos byte offset where the character was found

Returns:

1 if found, 0 if not

30.107.3.13 int Fl_Text_Buffer::highlight () [inline]

Returns the highlighted text.

When you are done with the text, free it using the free() function.

30.107.3.14 char ∗ Fl_Text_Buffer::highlight_text ()

Returns the highlighted text.

When you are done with the text, free it using the free() function.

30.107.3.15 void Fl_Text_Buffer::insert (int pos, const char ∗ text)

Inserts null-terminated string text at position pos.

Parameters:

pos insertion position as byte offset (must be utf-8 character aligned)

text utf-8 encoded and nul terminated text

30.107.3.16 int Fl_Text_Buffer::insert_ (int pos, const char ∗ text) [protected]

Internal (non-redisplaying) version of BufInsert.

Returns the length of text inserted (this is just strlen(text), however this calculation can be expensive and
the length will be required by any caller who will continue on to call redisplay). pos must be contiguous
with the existing text in the buffer (i.e. not past the end).

Returns:

the number of bytes inserted

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

782 Class Documentation

30.107.3.17 int Fl_Text_Buffer::insertfile (const char ∗ file, int pos, int buflen = 128∗1024)

Inserts a file at the specified position.

Returns 0 on success, non-zero on error (strerror() contains reason). 1 indicates open for read failed (no
data loaded). 2 indicates error occurred while reading data (data was partially loaded). File can be UTF-8
or CP1252-encoded. If the input file is not UTF-8-encoded, the Fl_Text_Buffer widget will contain UTF-
8-transcoded data. By default, the message Fl_Text_Buffer::file_encoding_warning_message will warn the
user about this.

See also:

input_file_was_transcoded and transcoding_warning_action.

30.107.3.18 int Fl_Text_Buffer::length () const [inline]

Returns the number of bytes in the buffer.

Returns:

size of text in bytes

30.107.3.19 int Fl_Text_Buffer::line_end (int pos) const

Finds and returns the position of the end of the line containing position pos (which is either a pointer to
the newline character ending the line, or a pointer to one character beyond the end of the buffer).

Parameters:

pos byte index into buffer

Returns:

byte offset to line end

30.107.3.20 int Fl_Text_Buffer::line_start (int pos) const

Returns the position of the start of the line containing position pos.

Parameters:

pos byte index into buffer

Returns:

byte offset to line start

30.107.3.21 char ∗ Fl_Text_Buffer::line_text (int pos) const

Returns the text from the entire line containing the specified character position.

When you are done with the text, free it using the free() function.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.107 Fl_Text_Buffer Class Reference 783

Parameters:

pos byte index into buffer

Returns:

copy of utf8 text, must be free’d

30.107.3.22 int Fl_Text_Buffer::loadfile (const char ∗ file, int buflen = 128∗1024) [inline]

Loads a text file into the buffer.

See also insertfile().

30.107.3.23 char∗ Fl_Text_Buffer::next_char (char ∗ c) const

Returns a pointer to the next character.

Parameters:

c pointer to the current char

30.107.3.24 int Fl_Text_Buffer::next_char (int ix) const

Returns the index of the next character.

Parameters:

ix index to the current char

30.107.3.25 int Fl_Text_Buffer::outputfile (const char ∗ file, int start, int end, int buflen =
128∗1024)

Writes the specified portions of the file to a file.

Returns 0 on success, non-zero on error (strerror() contains reason). 1 indicates open for write failed (no
data saved). 2 indicates error occurred while writing data (data was partially saved).

30.107.3.26 char∗ Fl_Text_Buffer::prev_char (char ∗ c) const

Returns a pointer to the previous character.

Parameters:

c pointer to the current char

30.107.3.27 int Fl_Text_Buffer::prev_char (int ix) const

Returns the index of the previous character.

Parameters:

ix index to the current char

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

784 Class Documentation

30.107.3.28 void Fl_Text_Buffer::remove (int start, int end)

Deletes a range of characters in the buffer.

Parameters:

start byte offset to first character to be removed

end byte offset to charcatre after last character to be removed

30.107.3.29 void Fl_Text_Buffer::remove_ (int start, int end) [protected]

Internal (non-redisplaying) version of BufRemove.

Removes the contents of the buffer between start and end (and moves the gap to the site of the delete).

30.107.3.30 void Fl_Text_Buffer::replace (int start, int end, const char ∗ text)

Deletes the characters between start and end, and inserts the null-terminated string text in their place
in the buffer.

Parameters:

start byte offset to first character to be removed and new insert position

end byte offset to charcatre after last character to be removed

text utf-8 encoded and nul terminated text

30.107.3.31 int Fl_Text_Buffer::rewind_lines (int startPos, int nLines)

Finds and returns the position of the first character of the line nLines backwards from startPos (not
counting the character pointed to by startpos if that is a newline) in the buffer.

nLines == 0 means find the beginning of the line

30.107.3.32 int Fl_Text_Buffer::search_backward (int startPos, const char ∗ searchString, int ∗
foundPos, int matchCase = 0) const

Search backwards in buffer for string searchCharssearchString, starting with the character BEFORE
startPos, returning the result in foundPos returns 1 if found, 0 if not.

Parameters:

startPos byte offset to start position

searchString utf8 string that we want to find

foundPos byte offset where the string was found

matchCase if set, match character case

Returns:

1 if found, 0 if not

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.107 Fl_Text_Buffer Class Reference 785

30.107.3.33 int Fl_Text_Buffer::search_forward (int startPos, const char ∗ searchString, int ∗
foundPos, int matchCase = 0) const

Search forwards in buffer for string searchString, starting with the character startPos, and return-
ing the result in foundPos returns 1 if found, 0 if not.

Parameters:

startPos byte offset to start position

searchString utf8 string that we want to find

foundPos byte offset where the string was found

matchCase if set, match character case

Returns:

1 if found, 0 if not

30.107.3.34 char ∗ Fl_Text_Buffer::secondary_selection_text ()

Returns the text in the secondary selection.

When you are done with the text, free it using the free() function.

30.107.3.35 char ∗ Fl_Text_Buffer::selection_text ()

Returns the currently selected text.

When you are done with the text, free it using the free() function.

30.107.3.36 int Fl_Text_Buffer::skip_displayed_characters (int lineStartPos, int nChars)

Count forward from buffer position startPos in displayed characters (displayed characters are the char-
acters shown on the screen to represent characters in the buffer, where tabs and control characters are
expanded).

Parameters:

lineStartPos byte offset into buffer

nChars number of bytes that are sent to the display

Returns:

byte offset in input after all output bytes are sent

30.107.3.37 void Fl_Text_Buffer::text (const char ∗ text)

Replaces the entire contents of the text buffer.

Parameters:

text Text must be valid utf8.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

786 Class Documentation

30.107.3.38 char ∗ Fl_Text_Buffer::text () const

Get a copy of the entire contents of the text buffer.

Memory is allocated to contain the returned string, which the caller must free.

Returns:

newly allocated text buffer - must be free’d, text is utf8

30.107.3.39 char ∗ Fl_Text_Buffer::text_range (int start, int end) const

Get a copy of a part of the text buffer.

Return a copy of the text between start and end character positions from text buffer buf. Positions
start at 0, and the range does not include the character pointed to by end. When you are done with the text,
free it using the free() function.

Parameters:

start byte offset to first character

end byte offset after last character in range

Returns:

newly allocated text buffer - must be free’d, text is utf8

30.107.3.40 int Fl_Text_Buffer::word_end (int pos) const

Returns the position corresponding to the end of the word.

Parameters:

pos byte index into buffer

Returns:

byte offset to word end

30.107.3.41 int Fl_Text_Buffer::word_start (int pos) const

Returns the position corresponding to the start of the word.

Parameters:

pos byte index into buffer

Returns:

byte offset to word start

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.107 Fl_Text_Buffer Class Reference 787

30.107.4 Member Data Documentation

30.107.4.1 const char ∗ Fl_Text_Buffer::file_encoding_warning_message [static]

Initial value:

"Displayed text contains the UTF-8 transcoding\n"
"of the input file which was not UTF-8 encoded.\n"
"Some changes may have occurred."

This message may be displayed using the fl_alert() function when a file which was not UTF-8 encoded is
input.

30.107.4.2 Fl_Text_Predelete_Cb∗ Fl_Text_Buffer::mPredeleteProcs [protected]

procedure to call before text is deleted from the buffer; at most one is supported.

30.107.4.3 int Fl_Text_Buffer::mTabDist [protected]

equiv.

number of characters in a tab

30.107.4.4 void(∗ Fl_Text_Buffer::transcoding_warning_action)(Fl_Text_Buffer ∗)

Pointer to a function called after reading a non UTF-8 encoded file.

This function is called after reading a file if the file content was transcoded to UTF-8. Its default implemen-
tation calls fl_alert() with the text of file_encoding_warning_message. No warning message is displayed if
this pointer is set to NULL. Use input_file_was_transcoded to be informed if file input required transcoding
to UTF-8.

The documentation for this class was generated from the following files:

• Fl_Text_Buffer.H
• Fl_Text_Buffer.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

788 Class Documentation

30.108 Fl_Text_Display Class Reference

Rich text display widget.

#include <Fl_Text_Display.H>

Inheritance diagram for Fl_Text_Display::

Fl_Text_Display

Fl_Group

Fl_Widget

Fl_Text_Editor

Classes

• struct Style_Table_Entry

This structure associates the color, font, andsize of a string to draw with an attribute mask matching attr.

Public Types

• enum {

NORMAL_CURSOR, CARET_CURSOR, DIM_CURSOR, BLOCK_CURSOR,

HEAVY_CURSOR }

text display cursor shapes enumeration

• enum { CURSOR_POS, CHARACTER_POS }

the character position is the left edge of a character, whereas the cursor is thought to be between the centers
of two consecutive characters.

• enum {

DRAG_NONE = -2, DRAG_START_DND = -1, DRAG_CHAR = 0, DRAG_WORD = 1,

DRAG_LINE = 2 }

drag types - they match Fl::event_clicks() so that single clicking to start a collection selects by character,
double clicking selects by word and triple clicking selects by line.

• enum { WRAP_NONE, WRAP_AT_COLUMN, WRAP_AT_PIXEL, WRAP_AT_BOUNDS }

wrap types - used in wrap_mode()

• typedef void(∗ Unfinished_Style_Cb)(int, void ∗)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 789

Public Member Functions

• Fl_Text_Buffer ∗ buffer () const
Gets the current text buffer associated with the text widget.

• void buffer (Fl_Text_Buffer &buf)
Sets the current text buffer associated with the text widget.

• void buffer (Fl_Text_Buffer ∗buf)
Attach a text buffer to display, replacing the current buffer (if any).

• double col_to_x (double col) const
Convert a column number into an x pixel position.

• int count_lines (int start, int end, bool start_pos_is_line_start) const
Count the number of lines between two positions.

• void cursor_color (Fl_Color n)
Sets the text cursor color.

• Fl_Color cursor_color () const
Gets the text cursor color.

• void cursor_style (int style)
Sets the text cursor style.

• Fl_Text_Display (int X, int Y, int W, int H, const char ∗l=0)
Creates a new text display widget.

• virtual int handle (int e)
Event handling.

• void hide_cursor ()
Hides the text cursor.

• void highlight_data (Fl_Text_Buffer ∗styleBuffer, const Style_Table_Entry ∗styleTable, int nStyles,
char unfinishedStyle, Unfinished_Style_Cb unfinishedHighlightCB, void ∗cbArg)

Attach (or remove) highlight information in text display and redisplay.

• int in_selection (int x, int y) const
Check if a pixel position is within the primary selection.

• void insert (const char ∗text)
Inserts "text" at the current cursor location.

• int insert_position () const
Gets the position of the text insertion cursor for text display.

• void insert_position (int newPos)
Sets the position of the text insertion cursor for text display.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

790 Class Documentation

• int line_end (int startPos, bool startPosIsLineStart) const
Returns the end of a line.

• int line_start (int pos) const
Return the beginning of a line.

• int move_down ()
Moves the current insert position down one line.

• int move_left ()
Moves the current insert position left one character.

• int move_right ()
Moves the current insert position right one character.

• int move_up ()
Moves the current insert position up one line.

• void next_word (void)
Moves the current insert position right one word.

• void overstrike (const char ∗text)
Replaces text at the current insert position.

• int position_style (int lineStartPos, int lineLen, int lineIndex) const
Find the correct style for a character.

• void previous_word (void)
Moves the current insert position left one word.

• void redisplay_range (int start, int end)
Marks text from start to end as needing a redraw.

• virtual void resize (int X, int Y, int W, int H)
Change the size of the displayed text area.

• int rewind_lines (int startPos, int nLines)
Skip a number of lines back.

• void scroll (int topLineNum, int horizOffset)
Scrolls the current buffer to start at the specified line and column.

• void scrollbar_align (Fl_Align a)
Sets the scrollbar alignment type.

• Fl_Align scrollbar_align () const
Gets the scrollbar alignment type.

• void scrollbar_width (int W)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 791

Sets the width/height of the scrollbars.

• int scrollbar_width () const
Gets the width/height of the scrollbars.

• void shortcut (int s)
• int shortcut () const
• void show_cursor (int b=1)

Shows the text cursor.

• void show_insert_position ()
Scrolls the text buffer to show the current insert position.

• int skip_lines (int startPos, int nLines, bool startPosIsLineStart)
Skip a number of lines forward.

• void textcolor (Fl_Color n)
Sets the default color of text in the widget.

• Fl_Color textcolor () const
Gets the default color of text in the widget.

• void textfont (Fl_Font s)
Sets the default font used when drawing text in the widget.

• Fl_Font textfont () const
Gets the default font used when drawing text in the widget.

• void textsize (Fl_Fontsize s)
Sets the default size of text in the widget.

• Fl_Fontsize textsize () const
Gets the default size of text in the widget.

• int word_end (int pos) const
Moves the insert position to the end of the current word.

• int word_start (int pos) const
Moves the insert position to the beginning of the current word.

• void wrap_mode (int wrap, int wrap_margin)
Set the new text wrap mode.

• int wrapped_column (int row, int column) const
Nobody knows what this function does.

• int wrapped_row (int row) const
Nobody knows what this function does.

• double x_to_col (double x) const

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

792 Class Documentation

Convert an x pixel position into a column number.

• ∼Fl_Text_Display ()

Free a text display and release its associated memory.

Protected Types

• enum { DRAW_LINE, FIND_INDEX, FIND_INDEX_FROM_ZERO, GET_WIDTH }

Protected Member Functions

• void absolute_top_line_number (int oldFirstChar)

Line numbering stuff, currently unused.

• void calc_last_char ()

Update last display character index.

• void calc_line_starts (int startLine, int endLine)

Update the line start arrays.

• void clear_rect (int style, int x, int y, int width, int height) const

Clear a rectangle with the appropriate background color for style.

• void display_insert ()

Scroll the display to bring insertion cursor into view.

• virtual void draw ()

Draw the widget.

• void draw_cursor (int, int)

Draw a cursor with top center at X, Y.

• void draw_line_numbers (bool clearAll)

Refresh the line number area.

• void draw_range (int start, int end)

Draw a range of text.

• void draw_string (int style, int x, int y, int toX, const char ∗string, int nChars) const

Draw a text segment in a single style.

• void draw_text (int X, int Y, int W, int H)

Refresh a rectangle of the text display.

• void draw_vline (int visLineNum, int leftClip, int rightClip, int leftCharIndex, int rightCharIndex)

Draw a single line of text.

• int empty_vlines () const

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 793

Return true if there are lines visible with no corresponding buffer text.

• void extend_range_for_styles (int ∗start, int ∗end)

I don’t know what this does!

• void find_line_end (int pos, bool start_pos_is_line_start, int ∗lineEnd, int ∗nextLineStart) const

Finds both the end of the current line and the start of the next line.

• void find_wrap_range (const char ∗deletedText, int pos, int nInserted, int nDeleted, int
∗modRangeStart, int ∗modRangeEnd, int ∗linesInserted, int ∗linesDeleted)

Wrapping calculations.

• int find_x (const char ∗s, int len, int style, int x) const

Find the index of the character that lies at the given x position.

• int get_absolute_top_line_number () const

Line numbering stuff, currently unused.

• int handle_vline (int mode, int lineStart, int lineLen, int leftChar, int rightChar, int topClip, int
bottomClip, int leftClip, int rightClip) const

Universal pixel machine.

• int longest_vline () const

Find the longest line of all visible lines.

• void maintain_absolute_top_line_number (int state)

Line numbering stuff, currently unused.

• int maintaining_absolute_top_line_number () const

Line numbering stuff, currently unused.

• void measure_deleted_lines (int pos, int nDeleted)

Wrapping calculations.

• double measure_proportional_character (const char ∗s, int colNum, int pos) const

Wrapping calculations.

• int measure_vline (int visLineNum) const

Returns the width in pixels of the displayed line pointed to by "visLineNum".

• void offset_line_starts (int newTopLineNum)

Offset line start counters for a new vertical scroll position.

• int position_to_line (int pos, int ∗lineNum) const

Convert a position index into a line number offset.

• int position_to_linecol (int pos, int ∗lineNum, int ∗column) const

Find the line and column number of position pos.

• int position_to_xy (int pos, int ∗x, int ∗y) const

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

794 Class Documentation

Convert a character index into a pixel position.

• void reset_absolute_top_line_number ()
Line numbering stuff, probably unused.

• int scroll_ (int topLineNum, int horizOffset)
Scrolls the current buffer to start at the specified line and column.

• double string_width (const char ∗string, int length, int style) const
Find the width of a string in the font of a particular style.

• void update_h_scrollbar ()
Update vertical scrollbar.

• void update_line_starts (int pos, int charsInserted, int charsDeleted, int linesInserted, int lines-
Deleted, int ∗scrolled)

Update line start arrays and variables.

• void update_v_scrollbar ()
Update vertical scrollbar.

• int vline_length (int visLineNum) const
Count number of bytes in a visible line.

• int wrap_uses_character (int lineEndPos) const
Check if the line break is caused by a \n or by line wrapping.

• void wrapped_line_counter (Fl_Text_Buffer ∗buf, int startPos, int maxPos, int maxLines, bool start-
PosIsLineStart, int styleBufOffset, int ∗retPos, int ∗retLines, int ∗retLineStart, int ∗retLineEnd, bool
countLastLineMissingNewLine=true) const

Wrapping calculations.

• int xy_to_position (int x, int y, int PosType=CHARACTER_POS) const
Translate a pixel position into a character index.

• void xy_to_rowcol (int x, int y, int ∗row, int ∗column, int PosType=CHARACTER_POS) const
Translate pixel coordinates into row and column.

Static Protected Member Functions

• static void buffer_modified_cb (int pos, int nInserted, int nDeleted, int nRestyled, const char
∗deletedText, void ∗cbArg)

This is called whenever the buffer is modified.

• static void buffer_predelete_cb (int pos, int nDeleted, void ∗cbArg)
This is called before any characters are deleted.

• static void h_scrollbar_cb (Fl_Scrollbar ∗w, Fl_Text_Display ∗d)
Callbacks for drag or valueChanged on scrollbars.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 795

• static void scroll_timer_cb (void ∗)
Timer callback for scroll events.

• static void v_scrollbar_cb (Fl_Scrollbar ∗w, Fl_Text_Display ∗d)
Callbacks for drag or valueChanged on scrollbars.

Protected Attributes

• int damage_range1_end
• int damage_range1_start
• int damage_range2_end
• int damage_range2_start
• int display_insert_position_hint
• int dragging
• int dragPos
• int dragType
• int mAbsTopLineNum
• Fl_Text_Buffer ∗ mBuffer
• double mColumnScale
• int mContinuousWrap
• Fl_Color mCursor_color
• int mCursorOldY
• int mCursorOn
• int mCursorPos
• int mCursorPreferredXPos
• int mCursorStyle
• int mCursorToHint
• int mFirstChar
• void ∗ mHighlightCBArg
• int mHorizOffset
• int mHorizOffsetHint
• Fl_Scrollbar ∗ mHScrollBar
• int mLastChar
• int mLineNumLeft
• int mLineNumWidth
• int ∗ mLineStarts
• int mMaxsize
• int mModifyingTabDistance
• int mNBufferLines
• int mNeedAbsTopLineNum
• int mNLinesDeleted
• int mNStyles
• int mNVisibleLines
• Fl_Text_Buffer ∗ mStyleBuffer
• const Style_Table_Entry ∗ mStyleTable
• int mSuppressResync
• int mTopLineNum
• int mTopLineNumHint

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

796 Class Documentation

• Unfinished_Style_Cb mUnfinishedHighlightCB
• char mUnfinishedStyle
• Fl_Scrollbar ∗ mVScrollBar
• int mWrapMarginPix
• Fl_Align scrollbar_align_
• int scrollbar_width_
• int shortcut_
• struct {

int h
int w
int x
int y

} text_area

• Fl_Color textcolor_
• Fl_Font textfont_
• Fl_Fontsize textsize_

Friends

• void fl_text_drag_me (int pos, Fl_Text_Display ∗d)

30.108.1 Detailed Description

Rich text display widget.

This is the FLTK text display widget. It allows the user to view multiple lines of text and supports high-
lighting and scrolling. The buffer that is displayed in the widget is managed by the Fl_Text_Buffer class.
A single Text Buffer can be displayed by multiple Text Displays.

30.108.2 Member Enumeration Documentation

30.108.2.1 anonymous enum

text display cursor shapes enumeration

Enumerator:

NORMAL_CURSOR I-beam.

CARET_CURSOR caret under the text

DIM_CURSOR dim I-beam

BLOCK_CURSOR unfille box under the current character

HEAVY_CURSOR thick I-beam

30.108.2.2 anonymous enum

wrap types - used in wrap_mode()

Enumerator:

WRAP_NONE don’t wrap text at all

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 797

WRAP_AT_COLUMN wrap text at the given text column

WRAP_AT_PIXEL wrap text at a pixel position

WRAP_AT_BOUNDS wrap text so that it fits into the widget width

30.108.3 Constructor & Destructor Documentation

30.108.3.1 Fl_Text_Display::Fl_Text_Display (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new text display widget.

Parameters:

X,Y,W,H position and size of widget

l label text, defaults to none

30.108.3.2 Fl_Text_Display::∼Fl_Text_Display ()

Free a text display and release its associated memory.

Note, the text BUFFER that the text display displays is a separate entity and is not freed, nor are the style
buffer or style table.

30.108.4 Member Function Documentation

30.108.4.1 void Fl_Text_Display::absolute_top_line_number (int oldFirstChar) [protected]

Line numbering stuff, currently unused.

Re-calculate absolute top line number for a change in scroll position.

30.108.4.2 Fl_Text_Buffer∗ Fl_Text_Display::buffer () const [inline]

Gets the current text buffer associated with the text widget.

Multiple text widgets can be associated with the same text buffer.

Returns:

current text buffer

30.108.4.3 void Fl_Text_Display::buffer (Fl_Text_Buffer & buf) [inline]

Sets the current text buffer associated with the text widget.

Multiple text widgets can be associated with the same text buffer.

Parameters:

buf new text buffer

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

798 Class Documentation

30.108.4.4 void Fl_Text_Display::buffer (Fl_Text_Buffer ∗ buf)

Attach a text buffer to display, replacing the current buffer (if any).

Parameters:

buf attach this text buffer

30.108.4.5 void Fl_Text_Display::buffer_modified_cb (int pos, int nInserted, int nDeleted, int
nRestyled, const char ∗ deletedText, void ∗ cbArg) [static, protected]

This is called whenever the buffer is modified.

Callback attached to the text buffer to receive modification information

Parameters:

pos starting index of modification

nInserted number of bytes we inserted (must be UTF-8 aligned!)

nDeleted number of bytes deleted (must be UTF-8 aligned!)

nRestyled ??

deletedText this is what was removed, must not be NULL if nDeleted is set

cbArg "this" pointer for static callback function

30.108.4.6 void Fl_Text_Display::buffer_predelete_cb (int pos, int nDeleted, void ∗ cbArg)
[static, protected]

This is called before any characters are deleted.

Callback attached to the text buffer to receive delete information before the modifications are actually
made.

Parameters:

pos starting index of deletion

nDeleted number of bytes we will delete (must be UTF-8 aligned!)

cbArg "this" pointer for static callback function

30.108.4.7 void Fl_Text_Display::calc_last_char () [protected]

Update last display character index.

Given a Fl_Text_Display with a complete, up-to-date lineStarts array, update the lastChar entry to point to
the last buffer position displayed.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 799

30.108.4.8 void Fl_Text_Display::calc_line_starts (int startLine, int endLine) [protected]

Update the line start arrays.

Scan through the text in the "textD"’s buffer and recalculate the line starts array values beginning at index
"startLine" and continuing through (including) "endLine". It assumes that the line starts entry preceding
"startLine" (or mFirstChar if startLine is 0) is good, and re-counts newlines to fill in the requested entries.
Out of range values for "startLine" and "endLine" are acceptable.

Parameters:

startLine,endLine range of lines to scan as line numbers

30.108.4.9 void Fl_Text_Display::clear_rect (int style, int X, int Y, int width, int height) const
[protected]

Clear a rectangle with the appropriate background color for style.

Parameters:

style index into style table
X,Y,width,height size and position of background area

30.108.4.10 double Fl_Text_Display::col_to_x (double col) const

Convert a column number into an x pixel position.

Parameters:

col an approximate column number based on the main font

Returns:

number of pixels from the left margin to the left of an average sized character

30.108.4.11 int Fl_Text_Display::count_lines (int startPos, int endPos, bool startPosIsLineStart)
const

Count the number of lines between two positions.

Same as BufCountLines, but takes into account wrapping if wrapping is turned on. If the caller knows that
startPos is at a line start, it can pass startPosIsLineStart as True to make the call more efficient
by avoiding the additional step of scanning back to the last newline.

Parameters:

startPos index to first character
endPos index after last character
startPosIsLineStart avoid scanning back to the line start

Returns:

number of lines

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

800 Class Documentation

30.108.4.12 void Fl_Text_Display::cursor_color (Fl_Color n) [inline]

Sets the text cursor color.

Parameters:

n new cursor color

30.108.4.13 Fl_Color Fl_Text_Display::cursor_color () const [inline]

Gets the text cursor color.

Returns:

cursor color

30.108.4.14 void Fl_Text_Display::cursor_style (int style)

Sets the text cursor style.

Sets the text cursor style to one of the following:

• Fl_Text_Display::NORMAL_CURSOR - Shows an I beam.

• Fl_Text_Display::CARET_CURSOR - Shows a caret under the text.

• Fl_Text_Display::DIM_CURSOR - Shows a dimmed I beam.

• Fl_Text_Display::BLOCK_CURSOR - Shows an unfilled box around the current character.

• Fl_Text_Display::HEAVY_CURSOR - Shows a thick I beam.

This call also switches the cursor on and may trigger a redraw.

Parameters:

style new cursor style

30.108.4.15 void Fl_Text_Display::display_insert () [protected]

Scroll the display to bring insertion cursor into view.

Note: it would be nice to be able to do this without counting lines twice (scroll_() counts them too) and/or
to count from the most efficient starting point, but the efficiency of this routine is not as important to the
overall performance of the text display.

Todo

Unicode?

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 801

30.108.4.16 void Fl_Text_Display::draw (void) [protected, virtual]

Draw the widget.

This function tries to limit drawing to smaller areas if possible.

Reimplemented from Fl_Group.

30.108.4.17 void Fl_Text_Display::draw_cursor (int X, int Y) [protected]

Draw a cursor with top center at X, Y.

Parameters:

X,Y cursor position in pixels

30.108.4.18 void Fl_Text_Display::draw_line_numbers (bool clearAll) [protected]

Refresh the line number area.

If clearAll is False, writes only over the character cell areas. Setting clearAll to True will clear out any stray
marks outside of the character cell area, which might have been left from before a resize or font change.

This function is not used.

30.108.4.19 void Fl_Text_Display::draw_range (int startpos, int endpos) [protected]

Draw a range of text.

Refresh all of the text between buffer positions startpos and endpos not including the character at the
position endpos.

If endpos points beyond the end of the buffer, refresh the whole display after startpos, including
blank lines which are not technically part of any range of characters.

Parameters:

startpos index of first character to draw

endpos index after last character to draw

30.108.4.20 void Fl_Text_Display::draw_string (int style, int X, int Y, int toX, const char ∗ string,
int nChars) const [protected]

Draw a text segment in a single style.

Draw a string or blank area according to parameter style, using the appropriate colors and drawing
method for that style, with top left corner at X, Y. If style says to draw text, use string as source of
characters, and draw nChars, if style is FILL, erase rectangle where text would have drawn from X to
toX and from Y to the maximum y extent of the current font(s).

Parameters:

style index into style lookup table

X,Y drawing origin

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

802 Class Documentation

toX rightmost position if this is a fill operation
string text if this is a drawing operation
nChars number of characters to draw

30.108.4.21 void Fl_Text_Display::draw_text (int left, int top, int width, int height)
[protected]

Refresh a rectangle of the text display.

Parameters:

left,top are in coordinates of the text drawing window.
width,height size in pixels

30.108.4.22 void Fl_Text_Display::draw_vline (int visLineNum, int leftClip, int rightClip, int
leftCharIndex, int rightCharIndex) [protected]

Draw a single line of text.

Draw the text on a single line represented by visLineNum (the number of lines down from the top of
the display), limited by leftClip and rightClip window coordinates and leftCharIndex and
rightCharIndex character positions (not including the character at position rightCharIndex).

Parameters:

visLineNum index of line in the visible line number lookup
leftClip,rightClip pixel position of clipped area
leftCharIndex,rightCharIndex index into line of segment that we want to draw

30.108.4.23 int Fl_Text_Display::empty_vlines () const [protected]

Return true if there are lines visible with no corresponding buffer text.

Returns:

1 if there are empty lines

30.108.4.24 void Fl_Text_Display::extend_range_for_styles (int ∗ startpos, int ∗ endpos)
[protected]

I don’t know what this does!

Extend the range of a redraw request (from ∗start to ∗end) with additional redraw requests resulting from
changes to the attached style buffer (which contains auxiliary information for coloring or styling text).

Parameters:

startpos ??
endpos ??

Todo

Unicode?

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 803

30.108.4.25 void Fl_Text_Display::find_line_end (int startPos, bool startPosIsLineStart, int ∗
lineEnd, int ∗ nextLineStart) const [protected]

Finds both the end of the current line and the start of the next line.

Why? In continuous wrap mode, if you need to know both, figuring out one from the other can be expensive
or error prone. The problem comes when there’s a trailing space or tab just before the end of the buffer. To
translate an end of line value to or from the next lines start value, you need to know whether the trailing
space or tab is being used as a line break or just a normal character, and to find that out would otherwise
require counting all the way back to the beginning of the line.

Parameters:

startPos

startPosIsLineStart

→ lineEnd

→ nextLineStart

30.108.4.26 void Fl_Text_Display::find_wrap_range (const char ∗ deletedText, int pos, int
nInserted, int nDeleted, int ∗ modRangeStart, int ∗ modRangeEnd, int ∗ linesInserted,
int ∗ linesDeleted) [protected]

Wrapping calculations.

When continuous wrap is on, and the user inserts or deletes characters, wrapping can happen before and
beyond the changed position. This routine finds the extent of the changes, and counts the deleted and in-
serted lines over that range. It also attempts to minimize the size of the range to what has to be counted and
re-displayed, so the results can be useful both for delimiting where the line starts need to be recalculated,
and for deciding what part of the text to redisplay.

Parameters:

deletedText

pos

nInserted

nDeleted

modRangeStart

modRangeEnd

linesInserted

linesDeleted

30.108.4.27 int Fl_Text_Display::find_x (const char ∗ s, int len, int style, int x) const
[protected]

Find the index of the character that lies at the given x position.

Parameters:

s UTF-8 text string

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

804 Class Documentation

len length of string

style index into style lookup table

x position in pixels

Returns:

index into buffer

30.108.4.28 int Fl_Text_Display::get_absolute_top_line_number () const [protected]

Line numbering stuff, currently unused.

Returns the absolute (non-wrapped) line number of the first line displayed. Returns 0 if the absolute top
line number is not being maintained.

30.108.4.29 int Fl_Text_Display::handle_vline (int mode, int lineStartPos, int lineLen, int
leftChar, int rightChar, int Y, int bottomClip, int leftClip, int rightClip) const
[protected]

Universal pixel machine.

We use a single function that handles all line layout, measuring, and drawing

• draw a text range

• return the width of a text range in pixels

• return the index of a character that is at a pixel position

Parameters:

← mode DRAW_LINE, GET_WIDTH, FIND_INDEX

← lineStartPos index of first character

← lineLen size of string in bytes

← leftChar,rightChar

← Y drawing position

← bottomClip,leftClip,rightClip stop work when we reach the clipped area. rightClip is the X posi-
tion that we search in FIND_INDEX.

Return values:

DRAW_LINE index of last drawn character

GET_WIDTH width in pixels of text segment if we would draw it

FIND_INDEX index of character at given x position in window coordinates

FIND_INDEX_FROM_ZERO index of character at given x position without scrolling and widget
offsets

Todo

we need to handle hidden hyphens and tabs here!

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 805

Todo

we handle all styles and selections

Todo

we must provide code to get pixel positions of the middle of a character as well

30.108.4.30 void Fl_Text_Display::highlight_data (Fl_Text_Buffer ∗ styleBuffer,
const Style_Table_Entry ∗ styleTable, int nStyles, char unfinishedStyle,
Unfinished_Style_Cb unfinishedHighlightCB, void ∗ cbArg)

Attach (or remove) highlight information in text display and redisplay.

Highlighting information consists of a style buffer which parallels the normal text buffer, but codes font
and color information for the display; a style table which translates style buffer codes (indexed by buffer
character - ’A’) into fonts and colors; and a callback mechanism for as-needed highlighting, triggered by a
style buffer entry of "unfinishedStyle". Style buffer can trigger additional redisplay during a normal buffer
modification if the buffer contains a primary Fl_Text_Selection (see extendRangeForStyleMods for more
information on this protocol).

Style buffers, tables and their associated memory are managed by the caller.

Styles are ranged from 65 (’A’) to 126.

Parameters:

styleBuffer this buffer works in parallel to the text buffer. For every character in the text buffer, the
stye buffer has a byte at the same offset that contains an index into an array of possible styles.

styleTable a list of styles indexed by the style buffer

nStyles number of styles in the style table

unfinishedStyle if this style is found, the callback below is called

unfinishedHighlightCB if a character with an unfinished style is found, this callback will be called

cbArg and optional argument for the callback above, usually a pointer to the Text Display.

30.108.4.31 int Fl_Text_Display::in_selection (int X, int Y) const

Check if a pixel position is within the primary selection.

Parameters:

X,Y pixel position to test

Returns:

1 if position (X, Y) is inside of the primary Fl_Text_Selection

30.108.4.32 void Fl_Text_Display::insert (const char ∗ text)

Inserts "text" at the current cursor location.

This has the same effect as inserting the text into the buffer using BufInsert and then moving the insert
position after the newly inserted text, except that it’s optimized to do less redrawing.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

806 Class Documentation

Parameters:

text new text in UTF-8 encoding.

30.108.4.33 int Fl_Text_Display::insert_position () const [inline]

Gets the position of the text insertion cursor for text display.

Returns:

insert position index into text buffer

30.108.4.34 void Fl_Text_Display::insert_position (int newPos)

Sets the position of the text insertion cursor for text display.

Move the insertion cursor in front of the character at newPos. This function may trigger a redraw.

Parameters:

newPos new caret position

30.108.4.35 int Fl_Text_Display::line_end (int startPos, bool startPosIsLineStart) const

Returns the end of a line.

Same as BufEndOfLine, but takes into account line breaks when wrapping is turned on. If the caller knows
that startPos is at a line start, it can pass "startPosIsLineStart" as True to make the call more efficient
by avoiding the additional step of scanning back to the last newline.

Note that the definition of the end of a line is less clear when continuous wrap is on. With continuous
wrap off, it’s just a pointer to the newline that ends the line. When it’s on, it’s the character beyond the last
displayable character on the line, where a whitespace character which has been "converted" to a newline
for wrapping is not considered displayable. Also note that a line can be wrapped at a non-whitespace
character if the line had no whitespace. In this case, this routine returns a pointer to the start of the next
line. This is also consistent with the model used by visLineLength.

Parameters:

startPos index to starting character

startPosIsLineStart avoid scanning back to the line start

Returns:

new position as index

30.108.4.36 int Fl_Text_Display::line_start (int pos) const

Return the beginning of a line.

Same as BufStartOfLine, but returns the character after last wrap point rather than the last newline.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 807

Parameters:

pos index to starting character

Returns:

new position as index

30.108.4.37 int Fl_Text_Display::longest_vline () const [protected]

Find the longest line of all visible lines.

Returns:

the width of the longest visible line in pixels

30.108.4.38 void Fl_Text_Display::maintain_absolute_top_line_number (int state)
[protected]

Line numbering stuff, currently unused.

In continuous wrap mode, internal line numbers are calculated after wrapping. A separate non-wrapped line
count is maintained when line numbering is turned on. There is some performance cost to maintaining this
line count, so normally absolute line numbers are not tracked if line numbering is off. This routine allows
callers to specify that they still want this line count maintained (for use via TextDPosToLineAndCol).
More specifically, this allows the line number reported in the statistics line to be calibrated in absolute
lines, rather than post-wrapped lines.

30.108.4.39 int Fl_Text_Display::maintaining_absolute_top_line_number () const
[protected]

Line numbering stuff, currently unused.

Return true if a separate absolute top line number is being maintained (for displaying line numbers or
showing in the statistics line).

30.108.4.40 void Fl_Text_Display::measure_deleted_lines (int pos, int nDeleted) [protected]

Wrapping calculations.

This is a stripped-down version of the findWrapRange() function above, intended to be used to calculate
the number of "deleted" lines during a buffer modification. It is called _before_ the modification takes
place.

This function should only be called in continuous wrap mode with a non-fixed font width. In that case, it
is impossible to calculate the number of deleted lines, because the necessary style information is no longer
available _after_ the modification. In other cases, we can still perform the calculation afterwards (possibly
even more efficiently).

Parameters:

pos
nDeleted

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

808 Class Documentation

30.108.4.41 double Fl_Text_Display::measure_proportional_character (const char ∗ s, int xPix,
int pos) const [protected]

Wrapping calculations.

Measure the width in pixels of the first character of string "s" at a particular column "colNum" and buffer
position "pos". This is for measuring characters in proportional or mixed-width highlighting fonts.

A note about proportional and mixed-width fonts: the mixed width and proportional font code in nedit
does not get much use in general editing, because nedit doesn’t allow per-language-mode fonts, and editing
programs in a proportional font is usually a bad idea, so very few users would choose a proportional font as a
default. There are still probably mixed- width syntax highlighting cases where things don’t redraw properly
for insertion/deletion, though static display and wrapping and resizing should now be solid because they
are now used for online help display.

Parameters:

s text string

xPix x pixel position needed for calculating tab widths

pos offset within string

Returns:

width of character in pixels

30.108.4.42 int Fl_Text_Display::measure_vline (int visLineNum) const [protected]

Returns the width in pixels of the displayed line pointed to by "visLineNum".

Parameters:

visLineNum index into visible lines array

Returns:

width of line in pixels

30.108.4.43 int Fl_Text_Display::move_down ()

Moves the current insert position down one line.

Returns:

1 if the cursor moved, 0 if the beginning of the text was reached

30.108.4.44 int Fl_Text_Display::move_left ()

Moves the current insert position left one character.

Returns:

1 if the cursor moved, 0 if the beginning of the text was reached

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 809

30.108.4.45 int Fl_Text_Display::move_right ()

Moves the current insert position right one character.

Returns:

1 if the cursor moved, 0 if the end of the text was reached

30.108.4.46 int Fl_Text_Display::move_up ()

Moves the current insert position up one line.

Returns:

1 if the cursor moved, 0 if the beginning of the text was reached

30.108.4.47 void Fl_Text_Display::offset_line_starts (int newTopLineNum) [protected]

Offset line start counters for a new vertical scroll position.

Offset the line starts array, mTopLineNum, mFirstChar and lastChar, for a new vertical scroll position
given by newTopLineNum. If any currently displayed lines will still be visible, salvage the line starts
values, otherwise, count lines from the nearest known line start (start or end of buffer, or the closest value
in the mLineStarts array)

Parameters:

newTopLineNum index into buffer

30.108.4.48 void Fl_Text_Display::overstrike (const char ∗ text)

Replaces text at the current insert position.

Parameters:

text new text in UTF-8 encoding

Todo

Unicode? Find out exactly what we do here and simplify.

30.108.4.49 int Fl_Text_Display::position_style (int lineStartPos, int lineLen, int lineIndex) const

Find the correct style for a character.

Determine the drawing method to use to draw a specific character from "buf". lineStartPos gives
the character index where the line begins, lineIndex, the number of characters past the beginning of
the line, and lineIndex the number of displayed characters past the beginning of the line. Passing
lineStartPos of -1 returns the drawing style for "no text".

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

810 Class Documentation

Why not just: position_style(pos)? Because style applies to blank areas of the window beyond the text
boundaries, and because this routine must also decide whether a position is inside of a rectangular Fl_-
Text_Selection, and do so efficiently, without re-counting character positions from the start of the line.

Note that style is a somewhat incorrect name, drawing method would be more appropriate.

Parameters:

lineStartPos beginning of this line

lineLen number of bytes in line

lineIndex position of character within line

Returns:

style for the given character

30.108.4.50 int Fl_Text_Display::position_to_line (int pos, int ∗ lineNum) const [protected]

Convert a position index into a line number offset.

Find the line number of position pos relative to the first line of displayed text. Returns 0 if the line is not
displayed.

Parameters:

pos ??

→ lineNum ??

Returns:

??

Todo

What does this do?

30.108.4.51 int Fl_Text_Display::position_to_linecol (int pos, int ∗ lineNum, int ∗ column) const
[protected]

Find the line and column number of position pos.

This only works for displayed lines. If the line is not displayed, the function returns 0 (without the mLineS-
tarts array it could turn in to very long calculation involving scanning large amounts of text in the buffer).
If continuous wrap mode is on, returns the absolute line number (as opposed to the wrapped line number
which is used for scrolling).

Parameters:

pos character index

→ lineNum absolute (unwrapped) line number

→ column character offset to the beginning of the line

Returns:

0 if pos is off screen, line number otherwise

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 811

Todo

a column number makes little sense in the UTF-8/variable font width environment. We will have
to further define what exactly we want to return. Please check the functions that call this particular
function.

30.108.4.52 int Fl_Text_Display::position_to_xy (int pos, int ∗ X, int ∗ Y) const [protected]

Convert a character index into a pixel position.

Translate a buffer text position to the XY location where the top left of the cursor would be positioned to
point to that character. Returns 0 if the position is not displayed because it is vertically out of view. If the
position is horizontally out of view, returns the X coordinate where the position would be if it were visible.

Parameters:

pos character index

→ X,Y pixel position of character on screen

Returns:

0 if character vertically out of view, X position otherwise

30.108.4.53 void Fl_Text_Display::redisplay_range (int startpos, int endpos)

Marks text from start to end as needing a redraw.

This function will trigger a damage event and later a redraw of parts of the widget.

Parameters:

startpos index of first character needing redraw

endpos index after last character needing redraw

30.108.4.54 void Fl_Text_Display::reset_absolute_top_line_number () [protected]

Line numbering stuff, probably unused.

Count lines from the beginning of the buffer to reestablish the absolute (non-wrapped) top line number. If
mode is not continuous wrap, or the number is not being maintained, does nothing.

30.108.4.55 void Fl_Text_Display::resize (int X, int Y, int W, int H) [virtual]

Change the size of the displayed text area.

Calling this function will trigger a recalculation of all lines visible and of all scrollbar sizes.

Parameters:

X,Y,W,H new position and size of this widget

Reimplemented from Fl_Group.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

812 Class Documentation

30.108.4.56 int Fl_Text_Display::rewind_lines (int startPos, int nLines)

Skip a number of lines back.

Same as BufCountBackwardNLines, but takes into account line breaks when wrapping is turned on.

Parameters:

startPos index to starting character
nLines number of lines to skip back

Returns:

new position as index

30.108.4.57 void Fl_Text_Display::scroll (int topLineNum, int horizOffset)

Scrolls the current buffer to start at the specified line and column.

Parameters:

topLineNum top line number
horizOffset column number

Todo

Column numbers make little sense here.

30.108.4.58 int Fl_Text_Display::scroll_ (int topLineNum, int horizOffset) [protected]

Scrolls the current buffer to start at the specified line and column.

Parameters:

topLineNum top line number
horizOffset in pixels

Returns:

0 if nothing changed, 1 if we scrolled

30.108.4.59 void Fl_Text_Display::scroll_timer_cb (void ∗ user_data) [static, protected]

Timer callback for scroll events.

This timer event scrolls the text view proportionally to how far the mouse pointer has left the text area.
This allows for smooth scrolling without "wiggeling" the mouse.

30.108.4.60 void Fl_Text_Display::scrollbar_align (Fl_Align a) [inline]

Sets the scrollbar alignment type.

Parameters:

a new scrollbar alignment

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 813

30.108.4.61 Fl_Align Fl_Text_Display::scrollbar_align () const [inline]

Gets the scrollbar alignment type.

Returns:

scrollbar alignment

30.108.4.62 void Fl_Text_Display::scrollbar_width (int W) [inline]

Sets the width/height of the scrollbars.

Parameters:

W width of scrollbars

30.108.4.63 int Fl_Text_Display::scrollbar_width () const [inline]

Gets the width/height of the scrollbars.

/return width of scrollbars

30.108.4.64 void Fl_Text_Display::shortcut (int s) [inline]

Todo

FIXME : get set methods pointing on shortcut_ have no effects as shortcut_ is unused in this class and
derived!

Parameters:

s the new shortcut key

30.108.4.65 int Fl_Text_Display::shortcut () const [inline]

Todo

FIXME : get set methods pointing on shortcut_ have no effects as shortcut_ is unused in this class and
derived!

Returns:

the current shortcut key

30.108.4.66 void Fl_Text_Display::show_cursor (int b = 1)

Shows the text cursor.

This function may trigger a redraw.

Parameters:

b show(1) or hide(0) the text cursor (caret).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

814 Class Documentation

30.108.4.67 void Fl_Text_Display::show_insert_position ()

Scrolls the text buffer to show the current insert position.

This function triggers a complete recalculation, ending in a call to Fl_Text_Display::display_insert()

30.108.4.68 int Fl_Text_Display::skip_lines (int startPos, int nLines, bool startPosIsLineStart)

Skip a number of lines forward.

Same as BufCountForwardNLines, but takes into account line breaks when wrapping is turned on. If the
caller knows that startPos is at a line start, it can pass "startPosIsLineStart" as True to make the call more
efficient by avoiding the additional step of scanning back to the last newline.

Parameters:

startPos index to starting character
nLines number of lines to skip ahead
startPosIsLineStart avoid scanning back to the line start

Returns:

new position as index

30.108.4.69 double Fl_Text_Display::string_width (const char ∗ string, int length, int style) const
[protected]

Find the width of a string in the font of a particular style.

Parameters:

string the text
length number of bytes in string
style index into style table

Returns:

width of text segment in pixels

30.108.4.70 void Fl_Text_Display::textcolor (Fl_Color n) [inline]

Sets the default color of text in the widget.

Parameters:

n new text color

30.108.4.71 Fl_Color Fl_Text_Display::textcolor () const [inline]

Gets the default color of text in the widget.

Returns:

text color unless overridden by a style

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 815

30.108.4.72 void Fl_Text_Display::textfont (Fl_Font s) [inline]

Sets the default font used when drawing text in the widget.

Parameters:

s default text font face

30.108.4.73 Fl_Font Fl_Text_Display::textfont () const [inline]

Gets the default font used when drawing text in the widget.

Returns:

current text font face unless overridden by a style

30.108.4.74 void Fl_Text_Display::textsize (Fl_Fontsize s) [inline]

Sets the default size of text in the widget.

Parameters:

s new text size

30.108.4.75 Fl_Fontsize Fl_Text_Display::textsize () const [inline]

Gets the default size of text in the widget.

Returns:

current text height unless overridden by a style

30.108.4.76 void Fl_Text_Display::update_h_scrollbar () [protected]

Update vertical scrollbar.

Update the minimum, maximum, slider size, page increment, and value for the horizontal scrollbar.

30.108.4.77 void Fl_Text_Display::update_line_starts (int pos, int charsInserted, int charsDeleted,
int linesInserted, int linesDeleted, int ∗ scrolled) [protected]

Update line start arrays and variables.

Update the line starts array, mTopLineNum, mFirstChar and lastChar for this text display after a modifica-
tion to the text buffer, given by the position pos where the change began, and the numbers of characters
and lines inserted and deleted.

Parameters:

pos index into buffer of recent changes

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

816 Class Documentation

charsInserted number of bytes(!) inserted

charsDeleted number of bytes(!) deleted

linesInserted number of lines

linesDeleted number of lines

→ scrolled set to 1 if the text display needs to be scrolled

30.108.4.78 void Fl_Text_Display::update_v_scrollbar () [protected]

Update vertical scrollbar.

Update the minimum, maximum, slider size, page increment, and value for vertical scrollbar.

30.108.4.79 int Fl_Text_Display::vline_length (int visLineNum) const [protected]

Count number of bytes in a visible line.

Return the length of a line (number of bytes) by examining entries in the line starts array rather than by
scanning for newlines.

Parameters:

visLineNum index of line in visible line array

Returns:

number of bytes in this line

30.108.4.80 int Fl_Text_Display::word_end (int pos) const [inline]

Moves the insert position to the end of the current word.

Parameters:

pos start calculation at this index

Returns:

index of first character after the end of the word

30.108.4.81 int Fl_Text_Display::word_start (int pos) const [inline]

Moves the insert position to the beginning of the current word.

Parameters:

pos start calculation at this index

Returns:

beginning of the words

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 817

30.108.4.82 void Fl_Text_Display::wrap_mode (int wrap, int wrapMargin)

Set the new text wrap mode.

If wrap mode is not zero, this call enables automatic word wrapping at column wrapMargin. Word-
wrapping does not change the text buffer itself, only the way the text is displayed. Different Text Displays
can have different wrap modes, even if they share the same Text Buffer.

Parameters:

wrap new wrap mode is WRAP_NONE (don’t wrap text at all), WRAP_AT_COLUMN (wrap text
at the given text column), WRAP_AT_PIXEL (wrap text at a pixel position), or WRAP_AT_-
BOUNDS (wrap text so that it fits into the widget width)

wrapMargin in WRAP_AT_COLUMN mode, text will wrap at the n’th character. For variable width
fonts, an average character width is calculated. The column width is calculated using the current
textfont or the first style when this function is called. If the font size changes, this function must
be called again. In WRAP_AT_PIXEL mode, this is the pixel position.

Todo

we need new wrap modes to wrap at the window edge and based on pixel width or average character
width.

30.108.4.83 int Fl_Text_Display::wrap_uses_character (int lineEndPos) const [protected]

Check if the line break is caused by a \n or by line wrapping.

Line breaks in continuous wrap mode usually happen at newlines or whitespace. This line-terminating
character is not included in line width measurements and has a special status as a non-visible character.
However, lines with no whitespace are wrapped without the benefit of a line terminating character, and this
distinction causes endless trouble with all of the text display code which was originally written without
continuous wrap mode and always expects to wrap at a newline character.

Given the position of the end of the line, as returned by TextDEndOfLine or BufEndOfLine, this returns
true if there is a line terminating character, and false if there’s not. On the last character in the buffer, this
function can’t tell for certain whether a trailing space was used as a wrap point, and just guesses that it
wasn’t. So if an exact accounting is necessary, don’t use this function.

Parameters:

lineEndPos index of character where the line wraps

Returns:

1 if a \n character causes the line wrap

30.108.4.84 int Fl_Text_Display::wrapped_column (int row, int column) const

Nobody knows what this function does.

Correct a column number based on an unconstrained position (as returned by TextDXYToUnconstrained-
Position) to be relative to the last actual newline in the buffer before the row and column position given,
rather than the last line start created by line wrapping. This is an adapter for rectangular selections and code
written before continuous wrap mode, which thinks that the unconstrained column is the number of char-
acters from the last newline. Obviously this is time consuming, because it invloves character re-counting.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

818 Class Documentation

Parameters:

row
column

Returns:

something unknown

Todo

What does this do and how is it useful? Column numbers mean little in this context. Which functions
depend on this one?

Todo

Unicode?

30.108.4.85 void Fl_Text_Display::wrapped_line_counter (Fl_Text_Buffer ∗ buf, int startPos, int
maxPos, int maxLines, bool startPosIsLineStart, int styleBufOffset, int ∗ retPos, int ∗
retLines, int ∗ retLineStart, int ∗ retLineEnd, bool countLastLineMissingNewLine =
true) const [protected]

Wrapping calculations.

Count forward from startPos to either maxPos or maxLines (whichever is reached first), and return all
relevant positions and line count. The provided textBuffer may differ from the actual text buffer of the
widget. In that case it must be a (partial) copy of the actual text buffer and the styleBufOffset argument
must indicate the starting position of the copy, to take into account the correct style information.

Parameters:

buf
startPos
maxPos
maxLines
startPosIsLineStart
styleBufOffset
→ retPos Position where counting ended. When counting lines, the position returned is the start of

the line "maxLines" lines beyond "startPos".
→ retLines Number of line breaks counted
→ retLineStart Start of the line where counting ended
→ retLineEnd End position of the last line traversed
→ countLastLineMissingNewLine

30.108.4.86 int Fl_Text_Display::wrapped_row (int row) const

Nobody knows what this function does.

Correct a row number from an unconstrained position (as returned by TextDXYToUnconstrainedPosition)
to a straight number of newlines from the top line of the display. Because rectangular selections are based
on newlines, rather than display wrapping, and anywhere a rectangular selection needs a row, it needs it in
terms of un-wrapped lines.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.108 Fl_Text_Display Class Reference 819

Parameters:

row

Returns:

something unknown

Todo

What does this do and how is it useful? Column numbers mean little in this context. Which functions
depend on this one?

30.108.4.87 double Fl_Text_Display::x_to_col (double x) const

Convert an x pixel position into a column number.

Parameters:

x number of pixels from the left margin

Returns:

an approximate column number based on the main font

30.108.4.88 int Fl_Text_Display::xy_to_position (int X, int Y, int posType = CHARACTER_POS)
const [protected]

Translate a pixel position into a character index.

Translate window coordinates to the nearest (insert cursor or character cell) text position. The parameter
posType specifies how to interpret the position: CURSOR_POS means translate the coordinates to the
nearest cursor position, and CHARACTER_POS means return the position of the character closest to (X,
Y).

Parameters:

X,Y pixel position

posType CURSOR_POS or CHARACTER_POS

Returns:

index into text buffer

30.108.4.89 void Fl_Text_Display::xy_to_rowcol (int X, int Y, int ∗ row, int ∗ column, int posType
= CHARACTER_POS) const [protected]

Translate pixel coordinates into row and column.

Translate window coordinates to the nearest row and column number for positioning the cursor. This, of
course, makes no sense when the font is proportional, since there are no absolute columns. The parameter
posType specifies how to interpret the position: CURSOR_POS means translate the coordinates to the
nearest position between characters, and CHARACTER_POS means translate the position to the nearest
character cell.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

820 Class Documentation

Parameters:

X,Y pixel coordinates

→ row,column neares row and column

posType CURSOR_POS or CHARACTER_POS

The documentation for this class was generated from the following files:

• Fl_Text_Display.H
• Fl_Text_Display.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.109 Fl_Text_Display::Style_Table_Entry Struct Reference 821

30.109 Fl_Text_Display::Style_Table_Entry Struct Reference

This structure associates the color, font, andsize of a string to draw with an attribute mask matching attr.

#include <Fl_Text_Display.H>

Public Attributes

• unsigned attr
• Fl_Color color
• Fl_Font font
• Fl_Fontsize size

30.109.1 Detailed Description

This structure associates the color, font, andsize of a string to draw with an attribute mask matching attr.

The documentation for this struct was generated from the following file:

• Fl_Text_Display.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

822 Class Documentation

30.110 Fl_Text_Editor Class Reference

This is the FLTK text editor widget.

#include <Fl_Text_Editor.H>

Inheritance diagram for Fl_Text_Editor::

Fl_Text_Editor

Fl_Text_Display

Fl_Group

Fl_Widget

Classes

• struct Key_Binding
Simple linked list associating a key/state to a function.

Public Types

• typedef int(∗ Key_Func)(int key, Fl_Text_Editor ∗editor)
Key function binding callback type.

Public Member Functions

• void add_default_key_bindings (Key_Binding ∗∗list)
Adds all of the default editor key bindings to the specified key binding list.

• void add_key_binding (int key, int state, Key_Func f)
Adds a key of state "state" with the function "function".

• void add_key_binding (int key, int state, Key_Func f, Key_Binding ∗∗list)
Adds a key of state "state" with the function "function".

• Key_Func bound_key_function (int key, int state)
Returns the function associated with a key binding.

• Key_Func bound_key_function (int key, int state, Key_Binding ∗list)
Returns the function associated with a key binding.

• void default_key_function (Key_Func f)
Sets the default key function for unassigned keys.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.110 Fl_Text_Editor Class Reference 823

• Fl_Text_Editor (int X, int Y, int W, int H, const char ∗l=0)

The constructor creates a new text editor widget.

• virtual int handle (int e)

Event handling.

• int insert_mode ()

Gets the current insert mode; if non-zero, new text is inserted before the current cursor position.

• void insert_mode (int b)

Sets the current insert mode; if non-zero, new text is inserted before the current cursor position.

• void remove_all_key_bindings ()

Removes all of the key bindings associated with the text editor or list.

• void remove_all_key_bindings (Key_Binding ∗∗list)

Removes all of the key bindings associated with the text editor or list.

• void remove_key_binding (int key, int state)

Removes the key binding associated with the key "key" of state "state".

• void remove_key_binding (int key, int state, Key_Binding ∗∗list)

Removes the key binding associated with the key "key" of state "state".

Static Public Member Functions

• static int kf_backspace (int c, Fl_Text_Editor ∗e)

Does a backspace in the current buffer.

• static int kf_c_s_move (int c, Fl_Text_Editor ∗e)

Extends the current selection in the direction indicated by control key c.

• static int kf_copy (int c, Fl_Text_Editor ∗e)

Does a copy of selected text or the current character in the current buffer.

• static int kf_ctrl_move (int c, Fl_Text_Editor ∗e)

Moves the current text cursor in the direction indicated by control key.

• static int kf_cut (int c, Fl_Text_Editor ∗e)

Does a cut of selected text in the current buffer.

• static int kf_default (int c, Fl_Text_Editor ∗e)

Inserts the text associated with the key.

• static int kf_delete (int c, Fl_Text_Editor ∗e)

Does a delete of selected text or the current character in the current buffer.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

824 Class Documentation

• static int kf_down (int c, Fl_Text_Editor ∗e)
Moves the text cursor one line down.

• static int kf_end (int c, Fl_Text_Editor ∗e)
Moves the text cursor to the end of the current line.

• static int kf_enter (int c, Fl_Text_Editor ∗e)
Inserts a newline at the current cursor position.

• static int kf_home (int, Fl_Text_Editor ∗e)
Moves the text cursor to the beginning of the current line.

• static int kf_ignore (int c, Fl_Text_Editor ∗e)
Ignores the keypress.

• static int kf_insert (int c, Fl_Text_Editor ∗e)
Toggles the insert mode in the text editor.

• static int kf_left (int c, Fl_Text_Editor ∗e)
Moves the text cursor one character to the left.

• static int kf_m_s_move (int c, Fl_Text_Editor ∗e)
Extends the current selection in the direction indicated by meta key c.

• static int kf_meta_move (int c, Fl_Text_Editor ∗e)
Moves the current text cursor in the direction indicated by meta key.

• static int kf_move (int c, Fl_Text_Editor ∗e)
Moves the text cursor in the direction indicated by key c.

• static int kf_page_down (int c, Fl_Text_Editor ∗e)
Moves the text cursor down one page.

• static int kf_page_up (int c, Fl_Text_Editor ∗e)
Moves the text cursor up one page.

• static int kf_paste (int c, Fl_Text_Editor ∗e)
Does a paste of selected text in the current buffer.

• static int kf_right (int c, Fl_Text_Editor ∗e)
Moves the text cursor one character to the right.

• static int kf_select_all (int c, Fl_Text_Editor ∗e)
Selects all text in the current buffer.

• static int kf_shift_move (int c, Fl_Text_Editor ∗e)
Extends the current selection in the direction of key c.

• static int kf_undo (int c, Fl_Text_Editor ∗e)
Undo last edit in the current buffer.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.110 Fl_Text_Editor Class Reference 825

• static int kf_up (int c, Fl_Text_Editor ∗e)

Moves the text cursor one line up.

Protected Member Functions

• int handle_key ()

Handles a key press in the editor.

• void maybe_do_callback ()

does or does not a callback according to changed() and when() settings

30.110.1 Detailed Description

This is the FLTK text editor widget.

It allows the user to edit multiple lines of text and supports highlighting and scrolling. The buffer that is
displayed in the widget is managed by the Fl_Text_Buffer class.

30.110.2 Constructor & Destructor Documentation

30.110.2.1 Fl_Text_Editor::Fl_Text_Editor (int X, int Y, int W, int H, const char ∗ l = 0)

The constructor creates a new text editor widget.

30.110.3 Member Function Documentation

30.110.3.1 void Fl_Text_Editor::add_default_key_bindings (Key_Binding ∗∗ list)

Adds all of the default editor key bindings to the specified key binding list.

30.110.3.2 Key_Func Fl_Text_Editor::bound_key_function (int key, int state) [inline]

Returns the function associated with a key binding.

30.110.3.3 Fl_Text_Editor::Key_Func Fl_Text_Editor::bound_key_function (int key, int state,
Key_Binding ∗ list)

Returns the function associated with a key binding.

30.110.3.4 void Fl_Text_Editor::default_key_function (Key_Func f) [inline]

Sets the default key function for unassigned keys.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

826 Class Documentation

30.110.3.5 int Fl_Text_Editor::insert_mode () [inline]

Gets the current insert mode; if non-zero, new text is inserted before the current cursor position.

Otherwise, new text replaces text at the current cursor position.

30.110.3.6 void Fl_Text_Editor::insert_mode (int b) [inline]

Sets the current insert mode; if non-zero, new text is inserted before the current cursor position.

Otherwise, new text replaces text at the current cursor position.

30.110.3.7 int Fl_Text_Editor::kf_backspace (int c, Fl_Text_Editor ∗ e) [static]

Does a backspace in the current buffer.

30.110.3.8 int Fl_Text_Editor::kf_c_s_move (int c, Fl_Text_Editor ∗ e) [static]

Extends the current selection in the direction indicated by control key c.

30.110.3.9 int Fl_Text_Editor::kf_copy (int c, Fl_Text_Editor ∗ e) [static]

Does a copy of selected text or the current character in the current buffer.

30.110.3.10 int Fl_Text_Editor::kf_cut (int c, Fl_Text_Editor ∗ e) [static]

Does a cut of selected text in the current buffer.

30.110.3.11 int Fl_Text_Editor::kf_delete (int c, Fl_Text_Editor ∗ e) [static]

Does a delete of selected text or the current character in the current buffer.

30.110.3.12 int Fl_Text_Editor::kf_down (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor one line down.

30.110.3.13 int Fl_Text_Editor::kf_end (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor to the end of the current line.

30.110.3.14 int Fl_Text_Editor::kf_home (int, Fl_Text_Editor ∗ e) [static]

Moves the text cursor to the beginning of the current line.

30.110.3.15 int Fl_Text_Editor::kf_insert (int c, Fl_Text_Editor ∗ e) [static]

Toggles the insert mode in the text editor.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.110 Fl_Text_Editor Class Reference 827

30.110.3.16 int Fl_Text_Editor::kf_left (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor one character to the left.

30.110.3.17 int Fl_Text_Editor::kf_m_s_move (int c, Fl_Text_Editor ∗ e) [static]

Extends the current selection in the direction indicated by meta key c.

30.110.3.18 int Fl_Text_Editor::kf_move (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor in the direction indicated by key c.

30.110.3.19 int Fl_Text_Editor::kf_page_down (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor down one page.

30.110.3.20 int Fl_Text_Editor::kf_page_up (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor up one page.

30.110.3.21 int Fl_Text_Editor::kf_paste (int c, Fl_Text_Editor ∗ e) [static]

Does a paste of selected text in the current buffer.

30.110.3.22 int Fl_Text_Editor::kf_right (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor one character to the right.

30.110.3.23 int Fl_Text_Editor::kf_select_all (int c, Fl_Text_Editor ∗ e) [static]

Selects all text in the current buffer.

30.110.3.24 int Fl_Text_Editor::kf_shift_move (int c, Fl_Text_Editor ∗ e) [static]

Extends the current selection in the direction of key c.

30.110.3.25 int Fl_Text_Editor::kf_undo (int c, Fl_Text_Editor ∗ e) [static]

Undo last edit in the current buffer.

Also deselect previous selection.

30.110.3.26 int Fl_Text_Editor::kf_up (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor one line up.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

828 Class Documentation

30.110.3.27 void Fl_Text_Editor::remove_all_key_bindings () [inline]

Removes all of the key bindings associated with the text editor or list.

30.110.3.28 void Fl_Text_Editor::remove_all_key_bindings (Key_Binding ∗∗ list)

Removes all of the key bindings associated with the text editor or list.

30.110.3.29 void Fl_Text_Editor::remove_key_binding (int key, int state) [inline]

Removes the key binding associated with the key "key" of state "state".

The documentation for this class was generated from the following files:

• Fl_Text_Editor.H
• Fl_Text_Editor.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.111 Fl_Text_Editor::Key_Binding Struct Reference 829

30.111 Fl_Text_Editor::Key_Binding Struct Reference

Simple linked list associating a key/state to a function.

#include <Fl_Text_Editor.H>

Public Attributes

• Key_Func function
associated function

• int key
the key pressed

• Key_Binding ∗ next
next key binding in the list

• int state
the state of key modifiers

30.111.1 Detailed Description

Simple linked list associating a key/state to a function.

The documentation for this struct was generated from the following file:

• Fl_Text_Editor.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

830 Class Documentation

30.112 Fl_Text_Selection Class Reference

This is an internal class for Fl_Text_Buffer to manage text selections.

#include <Fl_Text_Buffer.H>

Public Member Functions

• int end () const

Return the byte ofsset to the character after the last selected character.

• int includes (int pos) const

Return true if position pos with indentation dispIndex is in the Fl_Text_Selection.

• int position (int ∗start, int ∗end) const

Return the positions of this selection.

• void selected (bool b)

Modify the ’selected’ flag.

• bool selected () const

Returns true if any text is selected.

• void set (int start, int end)

Set the selection range.

• int start () const

Return the byte offset to the first selected character.

• void update (int pos, int nDeleted, int nInserted)

Updates a selection afer text was modified.

Protected Attributes

• int mEnd

byte offset to the character after the last selected character

• bool mSelected

this flag is set if any text is selected

• int mStart

byte offset to the first selected character

Friends

• class Fl_Text_Buffer

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.112 Fl_Text_Selection Class Reference 831

30.112.1 Detailed Description

This is an internal class for Fl_Text_Buffer to manage text selections.

This class works correctly with utf-8 strings assuming that the parameters for all calls are on character
boundaries.

30.112.2 Member Function Documentation

30.112.2.1 int Fl_Text_Selection::end () const [inline]

Return the byte ofsset to the character after the last selected character.

Returns:

byte offset

30.112.2.2 int Fl_Text_Selection::position (int ∗ start, int ∗ end) const

Return the positions of this selection.

Parameters:

start retrun byte offset to first selected character

end retrun byte offset pointing after last selected character

Returns:

true if selected

30.112.2.3 void Fl_Text_Selection::selected (bool b) [inline]

Modify the ’selected’ flag.

Parameters:

b new flag

30.112.2.4 bool Fl_Text_Selection::selected () const [inline]

Returns true if any text is selected.

Returns:

a non-zero number if any text has been selected, or 0 if no text is selected.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

832 Class Documentation

30.112.2.5 void Fl_Text_Selection::set (int start, int end)

Set the selection range.

Parameters:

start byte offset to first selected character

end byte offset pointing after last selected character

30.112.2.6 int Fl_Text_Selection::start () const [inline]

Return the byte offset to the first selected character.

Returns:

byte offset

30.112.2.7 void Fl_Text_Selection::update (int pos, int nDeleted, int nInserted)

Updates a selection afer text was modified.

Updates an individual selection for changes in the corresponding text

Parameters:

pos byte offset into text buffer at which the change occured

nDeleted number of bytes deleted from the buffer

nInserted number of bytes inserted into the buffer

The documentation for this class was generated from the following files:

• Fl_Text_Buffer.H
• Fl_Text_Buffer.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.113 Fl_Tile Class Reference 833

30.113 Fl_Tile Class Reference

The Fl_Tile class lets you resize the children by dragging the border between them:.

#include <Fl_Tile.H>

Inheritance diagram for Fl_Tile::

Fl_Tile

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Tile (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Tile widget using the given position, size, and label string.

• int handle (int)
Handles the specified event.

• void position (int, int, int, int)
Drag the intersection at from_x,from_y to to_x,to_y.

• void resize (int, int, int, int)
Resizes the Fl_Group widget and all of its children.

30.113.1 Detailed Description

The Fl_Tile class lets you resize the children by dragging the border between them:.

Figure 30.35: Fl_Tile

For the tiling to work correctly, the children of an Fl_Tile must cover the entire area of the widget, but not
overlap. This means that all children must touch each other at their edges, and no gaps can’t be left inside
the Fl_Tile.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

834 Class Documentation

Fl_Tile does not normailly draw any graphics of its own. The "borders" which can be seen in the snapshot
above are actually part of the children. Their boxtypes have been set to FL_DOWN_BOX creating the
impression of "ridges" where the boxes touch. What you see are actually two adjacent FL_DOWN_BOX’s
drawn next to each other. All neighboring widgets share the same edge - the widget’s thick borders make
it appear as though the widgets aren’t actually touching, but they are. If the edges of adjacent widgets do
not touch, then it will be impossible to drag the corresponding edges.

Fl_Tile allows objects to be resized to zero dimensions. To prevent this you can use the resizable() to limit
where corners can be dragged to.

Even though objects can be resized to zero sizes, they must initially have non-zero sizes so the Fl_Tile
can figure out their layout. If desired, call position() after creating the children but before displaying the
window to set the borders where you want.

Note on resizable(Fl_Widget &w) : The "resizable" child widget (which should be invisible) limits where
the border can be dragged to. If you don’t set it, it will be possible to drag the borders right to the edge, and
thus resize objects on the edge to zero width or height. The resizable() widget is not resized by dragging
any borders. See also void Fl_Group::resizable(Fl_Widget &w)

30.113.2 Constructor & Destructor Documentation

30.113.2.1 Fl_Tile::Fl_Tile (int X, int Y, int W, int H, const char ∗ l = 0) [inline]

Creates a new Fl_Tile widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having
to keep a pointer to all the children in the user code. A kludge has been done so the Fl_Tile and all of it’s
children can be automatic (local) variables, but you must declare the Fl_Tile first, so that it is destroyed
last.

30.113.3 Member Function Documentation

30.113.3.1 int Fl_Tile::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.113 Fl_Tile Class Reference 835

See also:

Fl_Event

Reimplemented from Fl_Group.

30.113.3.2 void Fl_Tile::position (int oix, int oiy, int newx, int newy)

Drag the intersection at from_x,from_y to to_x,to_y.

This redraws all the necessary children.

30.113.3.3 void Fl_Tile::resize (int X, int Y, int W, int H) [virtual]

Resizes the Fl_Group widget and all of its children.

The Fl_Group widget first resizes itself, and then it moves and resizes all its children according to the rules
documented for Fl_Group::resizable(Fl_Widget∗)

See also:

Fl_Group::resizable(Fl_Widget∗)
Fl_Group::resizable()
Fl_Widget::resize(int,int,int,int)

Reimplemented from Fl_Group.

The documentation for this class was generated from the following files:

• Fl_Tile.H
• Fl_Tile.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

836 Class Documentation

30.114 Fl_Tiled_Image Class Reference

This class supports tiling of images over a specified area.

#include <Fl_Tiled_Image.H>

Inheritance diagram for Fl_Tiled_Image::

Fl_Tiled_Image

Fl_Image

Public Member Functions

• virtual void color_average (Fl_Color c, float i)

The color_average() method averages the colors in the image with the FLTK color value c.

• Fl_Image ∗ copy ()

The copy() method creates a copy of the specified image.

• virtual Fl_Image ∗ copy (int W, int H)

The copy() method creates a copy of the specified image.

• virtual void desaturate ()

The desaturate() method converts an image to grayscale.

• void draw (int X, int Y)

The draw() methods draw the image.

• virtual void draw (int X, int Y, int W, int H, int cx, int cy)

The draw() methods draw the image.

• Fl_Tiled_Image (Fl_Image ∗i, int W=0, int H=0)

The constructors create a new tiled image containing the specified image.

• Fl_Image ∗ image ()

Gets The image that is shared.

• virtual ∼Fl_Tiled_Image ()

The destructor frees all memory and server resources that are used by the tiled image.

Protected Attributes

• int alloc_image_
• Fl_Image ∗ image_

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.114 Fl_Tiled_Image Class Reference 837

30.114.1 Detailed Description

This class supports tiling of images over a specified area.

The source (tile) image is not copied unless you call the color_average(), desaturate(), or inactive() meth-
ods.

30.114.2 Constructor & Destructor Documentation

30.114.2.1 Fl_Tiled_Image::Fl_Tiled_Image (Fl_Image ∗ i, int W = 0, int H = 0)

The constructors create a new tiled image containing the specified image.

Use a width and height of 0 to tile the whole window/widget.

30.114.3 Member Function Documentation

30.114.3.1 void Fl_Tiled_Image::color_average (Fl_Color c, float i) [virtual]

The color_average() method averages the colors in the image with the FLTK color value c.

The i argument specifies the amount of the original image to combine with the color, so a value of 1.0
results in no color blend, and a value of 0.0 results in a constant image of the specified color. The original
image data is not altered by this method.

Reimplemented from Fl_Image.

30.114.3.2 Fl_Image∗ Fl_Tiled_Image::copy () [inline]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.114.3.3 Fl_Image ∗ Fl_Tiled_Image::copy (int W, int H) [virtual]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.114.3.4 void Fl_Tiled_Image::desaturate () [virtual]

The desaturate() method converts an image to grayscale.

If the image contains an alpha channel (depth = 4), the alpha channel is preserved. This method does not
alter the original image data.

Reimplemented from Fl_Image.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

838 Class Documentation

30.114.3.5 void Fl_Tiled_Image::draw (int X, int Y) [inline]

The draw() methods draw the image.

This form specifies the upper-lefthand corner of the image

Reimplemented from Fl_Image.

30.114.3.6 void Fl_Tiled_Image::draw (int X, int Y, int W, int H, int cx, int cy) [virtual]

The draw() methods draw the image.

This form specifies a bounding box for the image, with the origin (upper-lefthand corner) of the image
offset by the cx and cy arguments.

Reimplemented from Fl_Image.

The documentation for this class was generated from the following files:

• Fl_Tiled_Image.H
• Fl_Tiled_Image.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.115 Fl_Timer Class Reference 839

30.115 Fl_Timer Class Reference

This is provided only to emulate the Forms Timer widget.

#include <Fl_Timer.H>

Inheritance diagram for Fl_Timer::

Fl_Timer

Fl_Widget

Public Member Functions

• void direction (char d)

Gets or sets the direction of the timer.

• char direction () const

Gets or sets the direction of the timer.

• Fl_Timer (uchar t, int x, int y, int w, int h, const char ∗l)
Creates a new Fl_Timer widget using the given type, position, size, and label string.

• int handle (int)

Handles the specified event.

• void suspended (char d)

Gets or sets whether the timer is suspended.

• char suspended () const

Gets or sets whether the timer is suspended.

• double value () const

See void Fl_Timer::value(double).

• void value (double)

Sets the current timer value.

• ∼Fl_Timer ()

Destroys the timer and removes the timeout.

Protected Member Functions

• void draw ()

Draws the widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

840 Class Documentation

30.115.1 Detailed Description

This is provided only to emulate the Forms Timer widget.

It works by making a timeout callback every 1/5 second. This is wasteful and inaccurate if you just want
something to happen a fixed time in the future. You should directly call Fl::add_timeout() instead.

30.115.2 Constructor & Destructor Documentation

30.115.2.1 Fl_Timer::Fl_Timer (uchar t, int X, int Y, int W, int H, const char ∗ l)

Creates a new Fl_Timer widget using the given type, position, size, and label string.

The type parameter can be any of the following symbolic constants:

• FL_NORMAL_TIMER - The timer just does the callback and displays the string "Timer" in the
widget.

• FL_VALUE_TIMER - The timer does the callback and displays the current timer value in the widget.

• FL_HIDDEN_TIMER - The timer just does the callback and does not display anything.

30.115.3 Member Function Documentation

30.115.3.1 void Fl_Timer::direction (char d) [inline]

Gets or sets the direction of the timer.

If the direction is zero then the timer will count up, otherwise it will count down from the initial value().

30.115.3.2 char Fl_Timer::direction () const [inline]

Gets or sets the direction of the timer.

If the direction is zero then the timer will count up, otherwise it will count down from the initial value().

30.115.3.3 void Fl_Timer::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.115 Fl_Timer Class Reference 841

30.115.3.4 int Fl_Timer::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

30.115.3.5 void Fl_Timer::suspended (char d)

Gets or sets whether the timer is suspended.

30.115.3.6 char Fl_Timer::suspended () const [inline]

Gets or sets whether the timer is suspended.

The documentation for this class was generated from the following files:

• Fl_Timer.H
• forms_timer.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

842 Class Documentation

30.116 Fl_Toggle_Button Class Reference

The toggle button is a push button that needs to be clicked once to toggle on, and one more time to toggle
off.

#include <Fl_Toggle_Button.H>

Inheritance diagram for Fl_Toggle_Button::

Fl_Toggle_Button

Fl_Button

Fl_Widget

Public Member Functions

• Fl_Toggle_Button (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Toggle_Button widget using the given position, size, and label string.

30.116.1 Detailed Description

The toggle button is a push button that needs to be clicked once to toggle on, and one more time to toggle
off.

The Fl_Toggle_Button subclass displays the "on" state by drawing a pushed-in button.

Buttons generate callbacks when they are clicked by the user. You control exactly when and how by
changing the values for type() and when().

30.116.2 Constructor & Destructor Documentation

30.116.2.1 Fl_Toggle_Button::Fl_Toggle_Button (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Toggle_Button widget using the given position, size, and label string.

The inherited destructor deletes the toggle button.

The documentation for this class was generated from the following file:

• Fl_Toggle_Button.H

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.117 Fl_Tooltip Class Reference 843

30.117 Fl_Tooltip Class Reference

The Fl_Tooltip class provides tooltip support for all FLTK widgets.

#include <Fl_Tooltip.H>

Static Public Member Functions

• static void color (Fl_Color c)
Sets the background color for tooltips.

• static Fl_Color color ()
Gets the background color for tooltips.

• static void current (Fl_Widget ∗)
Sets the current widget target.

• static Fl_Widget ∗ current ()
Gets the current widget target.

• static void delay (float f)
Sets the tooltip delay.

• static float delay ()
Gets the tooltip delay.

• static void disable ()
Same as enable(0), disables tooltips on all widgets.

• static void enable (int b=1)
Enables tooltips on all widgets (or disables if b is false).

• static int enabled ()
Returns non-zero if tooltips are enabled.

• static void enter_area (Fl_Widget ∗w, int X, int Y, int W, int H, const char ∗tip)
You may be able to use this to provide tooltips for internal pieces of your widget.

• static void font (Fl_Font i)
Sets the typeface for the tooltip text.

• static Fl_Font font ()
Gets the typeface for the tooltip text.

• static void hoverdelay (float f)
Sets the tooltip hover delay, the delay between tooltips.

• static float hoverdelay ()
Gets the tooltip hover delay, the delay between tooltips.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

844 Class Documentation

• static void size (Fl_Fontsize s)

Sets the size of the tooltip text.

• static Fl_Fontsize size ()

Gets the size of the tooltip text.

• static void textcolor (Fl_Color c)

Sets the color of the text in the tooltip.

• static Fl_Color textcolor ()

Gets the color of the text in the tooltip.

Static Public Attributes

• static void(∗ enter)(Fl_Widget ∗w) = nothing
• static void(∗ exit)(Fl_Widget ∗w) = nothing

Friends

• void Fl_Widget::copy_tooltip (const char ∗)
• void Fl_Widget::tooltip (const char ∗)

30.117.1 Detailed Description

The Fl_Tooltip class provides tooltip support for all FLTK widgets.

It contains only static methods.

30.117.2 Member Function Documentation

30.117.2.1 static void Fl_Tooltip::color (Fl_Color c) [inline, static]

Sets the background color for tooltips.

The default background color is a pale yellow.

30.117.2.2 static Fl_Color Fl_Tooltip::color () [inline, static]

Gets the background color for tooltips.

The default background color is a pale yellow.

30.117.2.3 void Fl_Tooltip::current (Fl_Widget ∗ w) [static]

Sets the current widget target.

Acts as though enter(widget) was done but does not pop up a tooltip. This is useful to prevent a tooltip
from reappearing when a modal overlapping window is deleted. FLTK does this automatically when you
click the mouse button.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.117 Fl_Tooltip Class Reference 845

30.117.2.4 static void Fl_Tooltip::delay (float f) [inline, static]

Sets the tooltip delay.

The default delay is 1.0 seconds.

30.117.2.5 static float Fl_Tooltip::delay () [inline, static]

Gets the tooltip delay.

The default delay is 1.0 seconds.

30.117.2.6 static void Fl_Tooltip::disable () [inline, static]

Same as enable(0), disables tooltips on all widgets.

30.117.2.7 static void Fl_Tooltip::enable (int b = 1) [inline, static]

Enables tooltips on all widgets (or disables if b is false).

30.117.2.8 static int Fl_Tooltip::enabled () [inline, static]

Returns non-zero if tooltips are enabled.

30.117.2.9 void Fl_Tooltip::enter_area (Fl_Widget ∗ wid, int x, int y, int w, int h, const char ∗ t)
[static]

You may be able to use this to provide tooltips for internal pieces of your widget.

Call this after setting Fl::belowmouse() to your widget (because that calls the above enter() method). Then
figure out what thing the mouse is pointing at, and call this with the widget (this pointer is used to remove
the tooltip if the widget is deleted or hidden, and to locate the tooltip), the rectangle surrounding the area,
relative to the top-left corner of the widget (used to calculate where to put the tooltip), and the text of the
tooltip (which must be a pointer to static data as it is not copied).

30.117.2.10 static void Fl_Tooltip::font (Fl_Font i) [inline, static]

Sets the typeface for the tooltip text.

30.117.2.11 static Fl_Font Fl_Tooltip::font () [inline, static]

Gets the typeface for the tooltip text.

30.117.2.12 static void Fl_Tooltip::hoverdelay (float f) [inline, static]

Sets the tooltip hover delay, the delay between tooltips.

The default delay is 0.2 seconds.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

846 Class Documentation

30.117.2.13 static float Fl_Tooltip::hoverdelay () [inline, static]

Gets the tooltip hover delay, the delay between tooltips.

The default delay is 0.2 seconds.

30.117.2.14 static void Fl_Tooltip::size (Fl_Fontsize s) [inline, static]

Sets the size of the tooltip text.

30.117.2.15 static Fl_Fontsize Fl_Tooltip::size () [inline, static]

Gets the size of the tooltip text.

30.117.2.16 static void Fl_Tooltip::textcolor (Fl_Color c) [inline, static]

Sets the color of the text in the tooltip.

The default is black.

30.117.2.17 static Fl_Color Fl_Tooltip::textcolor () [inline, static]

Gets the color of the text in the tooltip.

The default is black.

The documentation for this class was generated from the following files:

• Fl_Tooltip.H
• Fl.cxx
• Fl_Tooltip.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.118 Fl_Tree Class Reference 847

30.118 Fl_Tree Class Reference

Tree widget.

#include <Fl_Tree.H>

Inheritance diagram for Fl_Tree::

Fl_Tree

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Tree_Item ∗ add (Fl_Tree_Item ∗item, const char ∗name)
Add a new child to a tree-item.

• Fl_Tree_Item ∗ add (const char ∗path)
Adds a new item, given a ’menu style’ path, eg: "/Parent/Child/item".

• Fl_Tree_Item ∗ callback_item ()
Gets the item that caused the callback.

• void callback_item (Fl_Tree_Item ∗item)
Sets the item that was changed for this callback.

• Fl_Tree_Reason callback_reason () const
Gets the reason for this callback.

• void callback_reason (Fl_Tree_Reason reason)
Sets the reason for this callback.

• void clear ()
Clear all children from the tree.

• void clear_children (Fl_Tree_Item ∗item)
Clear all the children of a particular node in the tree specified by item.

• int close (const char ∗path, int docallback=1)
Closes the item specified by path, eg: "Parent/child/item".

• int close (Fl_Tree_Item ∗item, int docallback=1)
Closes the specified item.

• void closeicon (Fl_Image ∗val)
Sets the icon to be used as the ’close’ icon.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

848 Class Documentation

• Fl_Image ∗ closeicon () const
Returns the icon to be used as the ’close’ icon.

• void connectorstyle (Fl_Tree_Connector val)
Sets the line drawing style for inter-connecting items.

• Fl_Tree_Connector connectorstyle () const
Returns the line drawing style for inter-connecting items.

• void connectorwidth (int val)
Sets the width of the horizontal connection lines (in pixels) that appear to the left of each tree item’s label.

• int connectorwidth () const
Gets the width of the horizontal connection lines (in pixels) that appear to the left of each tree item’s label.

• int deselect (const char ∗path, int docallback=1)
Deselect an item specified by path (eg: "Parent/child/item").

• int deselect (Fl_Tree_Item ∗item, int docallback=1)
De-select the specified item.

• int deselect_all (Fl_Tree_Item ∗item=0, int docallback=1)
Deselect item and all its children.

• void display (Fl_Tree_Item ∗item)
Displays item, scrolling the tree as necessary.

• int displayed (Fl_Tree_Item ∗item)
See if item is currently displayed on-screen (visible within the widget).

• void draw ()
Standard FLTK draw() method, handles draws the tree widget.

• const Fl_Tree_Item ∗ find_clicked () const
Find the item that was clicked.

• const Fl_Tree_Item ∗ find_item (const char ∗path) const
A const version of Fl_Tree::find_item(const char ∗path).

• Fl_Tree_Item ∗ find_item (const char ∗path)
Find the item, given a menu style path, eg: "/Parent/Child/item".

• Fl_Tree_Item ∗ first ()
Returns the first item in the tree.

• Fl_Tree_Item ∗ first_selected_item ()
Returns the first selected item in the tree.

• Fl_Tree (int X, int Y, int W, int H, const char ∗L=0)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.118 Fl_Tree Class Reference 849

Constructor.

• int handle (int e)
Standard FLTK event handler for this widget.

• Fl_Tree_Item ∗ insert (Fl_Tree_Item ∗item, const char ∗name, int pos)
Insert a new item into a tree-item’s children at a specified position.

• Fl_Tree_Item ∗ insert_above (Fl_Tree_Item ∗above, const char ∗name)
Inserts a new item above the specified Fl_Tree_Item, with the label set to ’name’.

• int is_close (const char ∗path) const
See if item specified by path (eg: "Parent/child/item") is closed.

• int is_close (Fl_Tree_Item ∗item) const
See if the specified item is closed.

• int is_open (const char ∗path) const
See if item specified by path (eg: "Parent/child/item") is open.

• int is_open (Fl_Tree_Item ∗item) const
See if item is open.

• int is_scrollbar (Fl_Widget ∗w)
See if widget w is one of the Fl_Tree widget’s scrollbars.

• int is_selected (const char ∗path)
See if item specified by path (eg: "Parent/child/item") is selected.

• int is_selected (Fl_Tree_Item ∗item) const
See if the specified item is selected.

• Fl_Tree_Item ∗ item_clicked ()
Return the item that was last clicked.

• int item_pathname (char ∗pathname, int pathnamelen, const Fl_Tree_Item ∗item) const
Find the pathname for the specified item.

• void labelfont (int val)
Set the default font face used for item’s labels when new items are created.

• int labelfont () const
Get the default font face used for item’s labels when new items are created.

• void labelsize (int val)
Set the default label font size used for creating new items.

• int labelsize () const
Get the default label fontsize used for creating new items.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

850 Class Documentation

• Fl_Tree_Item ∗ last ()

Returns the last item in the tree.

• void load (class Fl_Preferences &)

Load FLTK preferences.

• void marginleft (int val)

Set the amount of white space (in pixels) that should appear between the widget’s left border and the left
side of the tree’s contents.

• int marginleft () const

Get the amount of white space (in pixels) that should appear between the widget’s left border and the tree’s
contents.

• void margintop (int val)

Sets the amount of white space (in pixels) that should appear between the widget’s top border and the top
of the tree’s contents.

• int margintop () const

Get the amount of white space (in pixels) that should appear between the widget’s top border and the top of
the tree’s contents.

• Fl_Tree_Item ∗ next (Fl_Tree_Item ∗item=0)

Return the next item after item, or 0 if no more items.

• Fl_Tree_Item ∗ next_selected_item (Fl_Tree_Item ∗item=0)

Returns the next selected item after item.

• int open (const char ∗path, int docallback=1)

Opens the item specified by path (eg: "Parent/child/item").

• int open (Fl_Tree_Item ∗item, int docallback=1)

Open the specified ’item’.

• void open_toggle (Fl_Tree_Item ∗item, int docallback=1)

Toggle the open state of item.

• void openchild_marginbottom (int val)

Set the amount of white space (in pixels) that should appear below an open child tree’s contents.

• int openchild_marginbottom () const

Get the amount of white space (in pixels) that should appear below an open child tree’s contents.

• void openicon (Fl_Image ∗val)

Sets the icon to be used as the ’open’ icon.

• Fl_Image ∗ openicon () const

Returns the icon to be used as the ’open’ icon.

• Fl_Tree_Item ∗ prev (Fl_Tree_Item ∗item=0)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.118 Fl_Tree Class Reference 851

Return the previous item before item, or 0 if no more items.

• int remove (Fl_Tree_Item ∗item)
Remove the specified item from the tree.

• Fl_Tree_Item ∗ root ()
Returns the root item.

• void root_label (const char ∗new_label)
Set the label for the root item.

• void scrollbar_size (int size)
Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

• int scrollbar_size () const
Gets the current size of the scrollbars’ troughs, in pixels.

• int select (const char ∗path, int docallback=1)
Select the item specified by path (eg: "Parent/child/item").

• int select (Fl_Tree_Item ∗item, int docallback=1)
Select the specified item.

• int select_all (Fl_Tree_Item ∗item=0, int docallback=1)
Select item and all its children.

• int select_only (Fl_Tree_Item ∗selitem, int docallback=1)
Select only the specified item, deselecting all others that might be selected.

• void select_toggle (Fl_Tree_Item ∗item, int docallback=1)
Toggle the select state of the specified item.

• void selectbox (Fl_Boxtype val)
Gets the style of box used to draw selected items.

• Fl_Boxtype selectbox () const
Sets the style of box used to draw selected items.

• void selectmode (Fl_Tree_Select val)
Sets the tree’s selection mode.

• Fl_Tree_Select selectmode () const
Gets the tree’s current selection mode.

• void set_item_focus (Fl_Tree_Item ∗o)
Set the item that currently should have keyboard focus.

• void show_item (Fl_Tree_Item ∗item)
Adjust the vertical scroll bar to show item at the top of the display IF it is currently off-screen (eg.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

852 Class Documentation

• void show_item (Fl_Tree_Item ∗item, int yoff)

Adjust the vertical scroll bar so that item is visible yoff pixels from the top of the Fl_Tree widget’s
display.

• void show_item_bottom (Fl_Tree_Item ∗item)

Adjust the vertical scrollbar so that item is at the bottom of the display.

• void show_item_middle (Fl_Tree_Item ∗item)

Adjust the vertical scrollbar so that item is in the middle of the display.

• void show_item_top (Fl_Tree_Item ∗item)

Adjust the vertical scrollbar so that item is at the top of the display.

• void show_self ()

Print the tree as ’ascii art’ to stdout.

• void showcollapse (int val)

Set if we should show the collapse icon or not.

• int showcollapse () const

Returns 1 if the collapse icon is enabled, 0 if not.

• void showroot (int val)

Set if the root item should be shown or not.

• int showroot () const

Returns 1 if the root item is to be shown, or 0 if not.

• void sortorder (Fl_Tree_Sort val)

Gets the sort order used to add items to the tree.

• Fl_Tree_Sort sortorder () const

Set the default sort order used when items are added to the tree.

• void usericon (Fl_Image ∗val)

Sets the Fl_Image to be used as the default user icon for all newly created items.

• Fl_Image ∗ usericon () const

Returns the Fl_Image being used as the default user icon for newly created items.

• void vposition (int ypos)

Sets the vertical scroll offset to position pos.

• int vposition () const

Returns the vertical scroll position as a pixel offset.

• ∼Fl_Tree ()

Destructor.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.118 Fl_Tree Class Reference 853

Protected Member Functions

• void do_callback_for_item (Fl_Tree_Item ∗item, Fl_Tree_Reason reason)
Do the callback for the item, setting the item and reason.

• void item_clicked (Fl_Tree_Item ∗val)
Set the item that was last clicked.

• Fl_Tree_Item ∗ next_visible_item (Fl_Tree_Item ∗start, int dir)
Returns next visible item above (dir==Fl_Up) or below (dir==Fl_Down) the specified item.

Protected Attributes

• Fl_Scrollbar ∗ _vscroll
Vertical scrollbar.

30.118.1 Detailed Description

Tree widget.

Fl_Tree // Top level widget
|--- Fl_Tree_Item // Items in the tree
|--- Fl_Tree_Prefs // Preferences for the tree

|--- Fl_Tree_Connector (enum) // Connection modes
|--- Fl_Tree_Select (enum) // Selection modes
|--- Fl_Tree_Sort (enum) // Sort behavior

An expandable tree widget.

Similar to Fl_Browser, Fl_Tree is browser of Fl_Tree_Item’s, which can be in a parented hierarchy. Sub-
trees can be expanded or closed. Items can be added, deleted, inserted, sorted and re-ordered.

The tree items may also contain other FLTK widgets, like buttons, input fields, or even "custom" widgets.

The callback() is invoked depending on the value of when():

• FL_WHEN_RELEASE – callback invoked when left mouse button is released on an item

• FL_WHEN_CHANGED – callback invoked when left mouse changes selection state

The simple way to define a tree:

#include <FL/Fl_Tree.H>
[..]
Fl_Tree tree(X,Y,W,H);
tree.begin();

tree.add("Flintstones/Fred");
tree.add("Flintstones/Wilma");
tree.add("Flintstones/Pebbles");
tree.add("Simpsons/Homer");
tree.add("Simpsons/Marge");
tree.add("Simpsons/Bart");
tree.add("Simpsons/Lisa");

tree.end();

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

854 Class Documentation

Items can be added with add(), removed with remove(), completely cleared with clear(), inserted with
insert() and insert_above(), selected/deselected with select() and deselect(), open/closed with open() and
closed(). Children of an item can be swapped around with Fl_Tree_Item::swap_children(), sorting can be
controlled when items are add()ed via sortorder(). You can walk the entire tree with first() and next(). You
can walk selected items with first_selected_item() and next_selected_item(). Items can be found by their
pathname using find_item(const char∗), and an item’s pathname can be found with item_pathname().

The tree can have different selection behaviors controlled by selectmode().

FLTK widgets (including custom widgets) can be assigned to tree items via Fl_Tree_Item::widget().

Icons for individual items can be changed with Fl_Tree_Item::openicon(), Fl_Tree_Item::closeicon(), Fl_-
Tree_Item::usericon().

Various default preferences can be globally manipulated via Fl_Tree_Prefs, including colors, margins,
icons, connection lines.

The tree’s callback() will be invoked when items change state or are open/closed. when() controls when
mouse/keyboard events invoke the callback. callback_item() and callback_reason() can be used to deter-
mine the cause of the callback.

Figure 30.36: Fl_Tree dimensions

30.118.2 Member Function Documentation

30.118.2.1 Fl_Tree_Item ∗ Fl_Tree::add (Fl_Tree_Item ∗ item, const char ∗ name)

Add a new child to a tree-item.

Parameters:

← item The existing item to add new child to

← name The label for the new item

Returns:

the item that was added.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.118 Fl_Tree Class Reference 855

30.118.2.2 Fl_Tree_Item ∗ Fl_Tree::add (const char ∗ path)

Adds a new item, given a ’menu style’ path, eg: "/Parent/Child/item".

Any parent nodes that don’t already exist are created automatically. Adds the item based on the value of
sortorder().

Returns:

the child item created, or 0 on error.

30.118.2.3 Fl_Tree_Item∗ Fl_Tree::callback_item () [inline]

Gets the item that caused the callback.

The callback() can use this value to see which item changed.

30.118.2.4 void Fl_Tree::callback_item (Fl_Tree_Item ∗ item) [inline]

Sets the item that was changed for this callback.

Used internally to pass the item that invoked the callback.

30.118.2.5 Fl_Tree_Reason Fl_Tree::callback_reason () const [inline]

Gets the reason for this callback.

The callback() can use this value to see why it was called. Example:

void MyTreeCallback(Fl_Widget *w, void *userdata) {
Fl_Tree *tree = (Fl_Tree*)w;
Fl_Tree_Item *item = tree->callback_item(); // the item changed (can be NULL if more than one item was changed!)
switch (tree->callback_reason()) { // reason callback was invoked

case FL_TREE_REASON_OPENED: ..item was opened..
case FL_TREE_REASON_CLOSED: ..item was closed..
case FL_TREE_REASON_SELECTED: ..item was selected..
case FL_TREE_REASON_DESELECTED: ..item was deselected..

}
}

30.118.2.6 void Fl_Tree::callback_reason (Fl_Tree_Reason reason) [inline]

Sets the reason for this callback.

Used internally to pass the reason the callback was invoked.

30.118.2.7 void Fl_Tree::clear () [inline]

Clear all children from the tree.

The tree will be left completely empty.

Reimplemented from Fl_Group.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

856 Class Documentation

30.118.2.8 int Fl_Tree::close (const char ∗ path, int docallback = 1) [inline]

Closes the item specified by path, eg: "Parent/child/item".

Handles redrawing if anything was actually changed. Invokes the callback depending on the value of
optional parameter docallback.

The callback can use callback_item() and callback_reason() respectively to determine the item changed
and the reason the callback was called.

Parameters:

← path – the tree item’s pathname (eg. "Flintstones/Fred")

← docallback – A flag that determines if the callback() is invoked or not:

• 0 - callback() is not invoked
• 1 - callback() is invoked if item changed, callback_reason() will be FL_TREE_REASON_-

CLOSED

Returns:

• 1 – OK: item closed

• 0 – OK: item was already closed, no change

• -1 – ERROR: item was not found

See also:

open(), close(), is_open(), is_close(), callback_item(), callback_reason()

30.118.2.9 int Fl_Tree::close (Fl_Tree_Item ∗ item, int docallback = 1) [inline]

Closes the specified item.

Handles redrawing if anything was actually changed. Invokes the callback depending on the value of
optional parameter docallback.

The callback can use callback_item() and callback_reason() respectively to determine the item changed
and the reason the callback was called.

Parameters:

← item – the item to be closed

← docallback – A flag that determines if the callback() is invoked or not:

• 0 - callback() is not invoked
• 1 - callback() is invoked if item changed, callback_reason() will be FL_TREE_REASON_-

CLOSED

Returns:

• 1 – item was closed

• 0 – item was already closed, no change

See also:

open(), close(), is_open(), is_close(), callback_item(), callback_reason()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.118 Fl_Tree Class Reference 857

30.118.2.10 void Fl_Tree::closeicon (Fl_Image ∗ val) [inline]

Sets the icon to be used as the ’close’ icon.

This overrides the built in default ’[-]’ icon.

Parameters:

← val – The new image, or zero to use the default [-] icon.

30.118.2.11 Fl_Image∗ Fl_Tree::closeicon () const [inline]

Returns the icon to be used as the ’close’ icon.

If none was set, the internal default is returned, a simple ’[-]’ icon.

30.118.2.12 int Fl_Tree::deselect (const char ∗ path, int docallback = 1) [inline]

Deselect an item specified by path (eg: "Parent/child/item").

Handles redrawing if anything was actually changed. Invokes the callback depending on the value of
optional parameter docallback.

The callback can use callback_item() and callback_reason() respectively to determine the item changed
and the reason the callback was called.

Parameters:

← path – the tree item’s pathname (eg. "Flintstones/Fred")

← docallback – A flag that determines if the callback() is invoked or not:

• 0 - the callback() is not invoked
• 1 - the callback() is invoked if item changed state, callback_reason() will be FL_TREE_-

REASON_DESELECTED

Returns:

• 1 - OK: item’s state was changed

• 0 - OK: item was already deselected, no change was made

• -1 - ERROR: item was not found

30.118.2.13 int Fl_Tree::deselect (Fl_Tree_Item ∗ item, int docallback = 1) [inline]

De-select the specified item.

Handles redrawing if anything was actually changed. Invokes the callback depending on the value of
optional parameter docallback.

The callback can use callback_item() and callback_reason() respectively to determine the item changed
and the reason the callback was called.

Parameters:

← item – the item to be selected

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

858 Class Documentation

← docallback – A flag that determines if the callback() is invoked or not:

• 0 - the callback() is not invoked
• 1 - the callback() is invoked if item changed state, callback_reason() will be FL_TREE_-

REASON_DESELECTED

Returns:

• 0 - item was already deselected, no change was made

• 1 - item’s state was changed

30.118.2.14 int Fl_Tree::deselect_all (Fl_Tree_Item ∗ item = 0, int docallback = 1)

Deselect item and all its children.

If item is NULL, first() is used. Handles calling redraw() if anything was changed. Invokes the callback
depending on the value of optional parameter docallback.

The callback can use callback_item() and callback_reason() respectively to determine the item changed
and the reason the callback was called.

Parameters:

← item The item that will be deselected (along with all its children)

← docallback – A flag that determines if the callback() is invoked or not:

• 0 - the callback() is not invoked
• 1 - the callback() is invoked for each item that changed state, callback_reason() will be

FL_TREE_REASON_DESELECTED

Returns:

count of how many items were actually changed to the deselected state.

30.118.2.15 void Fl_Tree::display (Fl_Tree_Item ∗ item)

Displays item, scrolling the tree as necessary.

Parameters:

← item The item to be displayed.

30.118.2.16 int Fl_Tree::displayed (Fl_Tree_Item ∗ item)

See if item is currently displayed on-screen (visible within the widget).

This can be used to detect if the item is scrolled off-screen. Checks to see if the item’s vertical position is
within the top and bottom edges of the display window. This does NOT take into account the hide()/show()
status of the item.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.118 Fl_Tree Class Reference 859

30.118.2.17 const Fl_Tree_Item ∗ Fl_Tree::find_clicked () const

Find the item that was clicked.

You should use callback_item() instead, which is fast, and is meant to be used within a callback to determine
the item clicked.

This method walks the entire tree looking for the first item that is under the mouse (ie. at Fl::event_-
x()/Fl:event_y().

Use this method /only/ if you’ve subclassed Fl_Tree, and are receiving events before Fl_Tree has been able
to process and update callback_item().

Returns:

the item clicked, or 0 if no item was under the current event.

30.118.2.18 Fl_Tree_Item ∗ Fl_Tree::find_item (const char ∗ path)

Find the item, given a menu style path, eg: "/Parent/Child/item".

There is both a const and non-const version of this method. Const version allows pure const methods to
use this method to do lookups without causing compiler errors.

Parameters:

← path – the tree item’s pathname to be found (eg. "Flintstones/Fred")

Returns:

the item, or 0 if not found.

See also:

item_pathname()

30.118.2.19 Fl_Tree_Item ∗ Fl_Tree::first ()

Returns the first item in the tree.

Use this to walk the tree in the forward direction, eg:

for (Fl_Tree_Item *item = tree->first(); item; item = tree->next()) {
printf("Item: %s\n", item->label());

}

Returns:

first item in tree, or 0 if none (tree empty).

See also:

first(),next(),last(),prev()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

860 Class Documentation

30.118.2.20 Fl_Tree_Item ∗ Fl_Tree::first_selected_item ()

Returns the first selected item in the tree.

Use this to walk the tree looking for all the selected items, eg:

for (Fl_Tree_Item *item = tree->first_selected_item(); item; item = tree->next_selected_item(item)) {
printf("Item: %s\n", item->label());

}

Returns:

The next selected item, or 0 if there are no more selected items.

30.118.2.21 Fl_Tree_Item ∗ Fl_Tree::insert (Fl_Tree_Item ∗ item, const char ∗ name, int pos)

Insert a new item into a tree-item’s children at a specified position.

Parameters:

← item The existing item to insert new child into

← name The label for the new item

← pos The position of the new item in the child list

Returns:

the item that was added.

30.118.2.22 Fl_Tree_Item ∗ Fl_Tree::insert_above (Fl_Tree_Item ∗ above, const char ∗ name)

Inserts a new item above the specified Fl_Tree_Item, with the label set to ’name’.

Returns:

the item that was added, or 0 if ’above’ could not be found.

30.118.2.23 int Fl_Tree::is_close (const char ∗ path) const [inline]

See if item specified by path (eg: "Parent/child/item") is closed.

Parameters:

← path – the tree item’s pathname (eg. "Flintstones/Fred")

Returns:

• 1 - OK: item is closed

• 0 - OK: item is open

• -1 - ERROR: item was not found

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.118 Fl_Tree Class Reference 861

30.118.2.24 int Fl_Tree::is_close (Fl_Tree_Item ∗ item) const [inline]

See if the specified item is closed.

Parameters:

← item – the item to be tested

Returns:

• 1 : item is open

• 0 : item is closed

30.118.2.25 int Fl_Tree::is_open (const char ∗ path) const [inline]

See if item specified by path (eg: "Parent/child/item") is open.

Items that are ’open’ are themselves not necessarily visible; one of the item’s parents might be closed.

Parameters:

← path – the tree item’s pathname (eg. "Flintstones/Fred")

Returns:

• 1 - OK: item is open

• 0 - OK: item is closed

• -1 - ERROR: item was not found

30.118.2.26 int Fl_Tree::is_open (Fl_Tree_Item ∗ item) const [inline]

See if item is open.

Items that are ’open’ are themselves not necessarily visible; one of the item’s parents might be closed.

Parameters:

← item – the item to be tested

Returns:

• 1 : item is open

• 0 : item is closed

30.118.2.27 int Fl_Tree::is_scrollbar (Fl_Widget ∗ w) [inline]

See if widget w is one of the Fl_Tree widget’s scrollbars.

Use this to skip over the scrollbars when walking the child() array. Example:

for (int i=0; i<tree->children(); i++) { // walk children
Fl_Widget *w= tree->child(i);
if (brow->is_scrollbar(w)) continue; // skip scrollbars
..do work here..

}

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

862 Class Documentation

Parameters:

← w Widget to test

Returns:

1 if w is a scrollbar, 0 if not.

30.118.2.28 int Fl_Tree::is_selected (const char ∗ path) [inline]

See if item specified by path (eg: "Parent/child/item") is selected.

Parameters:

← path – the tree item’s pathname (eg. "Flintstones/Fred")

Returns:

• 1 : item selected

• 0 : item deselected

• -1 : item was not found

30.118.2.29 int Fl_Tree::is_selected (Fl_Tree_Item ∗ item) const [inline]

See if the specified item is selected.

Parameters:

← item – the item to be tested

Returns:

• 1 : item selected

• 0 : item deselected

30.118.2.30 Fl_Tree_Item∗ Fl_Tree::item_clicked () [inline]

Return the item that was last clicked.

Valid only from within the callback().

Deprecated: use callback_item() instead.

Returns:

the item clicked, or 0 if none. 0 may also be used to indicate several items were clicked/changed.

30.118.2.31 void Fl_Tree::item_clicked (Fl_Tree_Item ∗ val) [protected]

Set the item that was last clicked.

Should only be used by subclasses needing to change this value. Normally Fl_Tree manages this value.

Deprecated: use callback_item() instead.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.118 Fl_Tree Class Reference 863

30.118.2.32 int Fl_Tree::item_pathname (char ∗ pathname, int pathnamelen, const Fl_Tree_Item
∗ item) const

Find the pathname for the specified item.

If item is NULL, root() is used. The tree’s root will be included in the pathname of showroot() is on.

Parameters:

← pathname The string to use to return the pathname
← pathnamelen The maximum length of the string (including NULL). Must not be zero.
← item The item whose pathname is to be returned.

Returns:

• 0 : OK (pathname returns the item’s pathname)
• -1 : item not found (pathname="")
• -2 : pathname not large enough (pathname="")

See also:

find_item()

30.118.2.33 void Fl_Tree::labelfont (int val) [inline]

Set the default font face used for item’s labels when new items are created.

Don’t use this if you want to change an existing label() size; use item->labelfont(int) instead.

Reimplemented from Fl_Widget.

30.118.2.34 int Fl_Tree::labelfont () const [inline]

Get the default font face used for item’s labels when new items are created.

Don’t use this if you want to change an existing label() size; use item->labelfont() instead.

Reimplemented from Fl_Widget.

30.118.2.35 void Fl_Tree::labelsize (int val) [inline]

Set the default label font size used for creating new items.

To change the font size on a per-item basis, use Fl_Tree_Item::labelsize(int)

Reimplemented from Fl_Widget.

30.118.2.36 Fl_Tree_Item ∗ Fl_Tree::last ()

Returns the last item in the tree.

This can be used to walk the tree in reverse, eg:

for (Fl_Tree_Item *item = tree->last(); item; item = tree->prev()) {
printf("Item: %s\n", item->label());

}

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

864 Class Documentation

Returns:

last item in the tree, or 0 if none (tree empty).

See also:

first(),next(),last(),prev()

30.118.2.37 void Fl_Tree::load (class Fl_Preferences & prefs)

Load FLTK preferences.

Read a preferences database into the tree widget.

A preferences database is a hierarchical collection of data which can be directly loaded into the tree view
for inspection.

Parameters:

← prefs the Fl_Preferences database

30.118.2.38 Fl_Tree_Item ∗ Fl_Tree::next (Fl_Tree_Item ∗ item = 0)

Return the next item after item, or 0 if no more items.

Use this code to walk the entire tree:

for (Fl_Tree_Item *item = tree->first(); item; item = tree->next(item)) {
printf("Item: %s\n", item->label());

}

Parameters:

← item The item to use to find the next item. If NULL, returns NULL

Returns:

Next item in tree, or 0 if at last item.

See also:

first(),next(),last(),prev()

30.118.2.39 Fl_Tree_Item ∗ Fl_Tree::next_selected_item (Fl_Tree_Item ∗ item = 0)

Returns the next selected item after item.

If item is 0, search starts at the first item (root).

Use this to walk the tree looking for all the selected items, eg:

for (Fl_Tree_Item *item = tree->first_selected_item(); item; item = tree->next_selected_item(item)) {
printf("Item: %s\n", item->label());

}

Parameters:

← item The item to use to find the next selected item. If NULL, first() is used.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.118 Fl_Tree Class Reference 865

Returns:

The next selected item, or 0 if there are no more selected items.

30.118.2.40 Fl_Tree_Item ∗ Fl_Tree::next_visible_item (Fl_Tree_Item ∗ item, int dir)
[protected]

Returns next visible item above (dir==Fl_Up) or below (dir==Fl_Down) the specified item.

If item is 0, returns first() if dir is Fl_Up, or last() if dir is FL_Down.

Parameters:

← item The item above/below which we’ll find the next visible item

← dir The direction to search. Can be FL_Up or FL_Down.

Returns:

The item found, or 0 if there’s no visible items above/below the specified item.

30.118.2.41 int Fl_Tree::open (const char ∗ path, int docallback = 1) [inline]

Opens the item specified by path (eg: "Parent/child/item").

This causes the item’s children (if any) to be shown. Handles redrawing if anything was actually changed.
Invokes the callback depending on the value of optional parameter docallback.

The callback can use callback_item() and callback_reason() respectively to determine the item changed
and the reason the callback was called.

Parameters:

← path – the tree item’s pathname (eg. "Flintstones/Fred")

← docallback – A flag that determines if the callback() is invoked or not:

• 0 - callback() is not invoked
• 1 - callback() is invoked if item changed, callback_reason() will be FL_TREE_REASON_-

OPENED

Returns:

• 1 – OK: item opened

• 0 – OK: item was already open, no change

• -1 – ERROR: item was not found

See also:

open(), close(), is_open(), is_close(), callback_item(), callback_reason()

30.118.2.42 int Fl_Tree::open (Fl_Tree_Item ∗ item, int docallback = 1) [inline]

Open the specified ’item’.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

866 Class Documentation

This causes the item’s children (if any) to be shown. Handles redrawing if anything was actually changed.
Invokes the callback depending on the value of optional parameter docallback.

The callback can use callback_item() and callback_reason() respectively to determine the item changed
and the reason the callback was called.

Parameters:

← item – the item to be opened

← docallback – A flag that determines if the callback() is invoked or not:

• 0 - callback() is not invoked
• 1 - callback() is invoked if item changed, callback_reason() will be FL_TREE_REASON_-

OPENED

Returns:

• 1 – item was opened

• 0 – item was already open, no change

See also:

open(), close(), is_open(), is_close(), callback_item(), callback_reason()

30.118.2.43 void Fl_Tree::open_toggle (Fl_Tree_Item ∗ item, int docallback = 1) [inline]

Toggle the open state of item.

Handles redrawing if anything was actually changed. Invokes the callback depending on the value of
optional parameter docallback.

The callback can use callback_item() and callback_reason() respectively to determine the item changed
and the reason the callback was called.

Parameters:

← item – the item to be opened

← docallback – A flag that determines if the callback() is invoked or not:

• 0 - callback() is not invoked
• 1 - callback() is invoked, callback_reason() will be either FL_TREE_REASON_OPENED

or FL_TREE_REASON_CLOSED

See also:

open(), close(), is_open(), is_close(), callback_item(), callback_reason()

30.118.2.44 void Fl_Tree::openicon (Fl_Image ∗ val) [inline]

Sets the icon to be used as the ’open’ icon.

This overrides the built in default ’[+]’ icon.

Parameters:

← val – The new image, or zero to use the default [+] icon.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.118 Fl_Tree Class Reference 867

30.118.2.45 Fl_Image∗ Fl_Tree::openicon () const [inline]

Returns the icon to be used as the ’open’ icon.

If none was set, the internal default is returned, a simple ’[+]’ icon.

30.118.2.46 Fl_Tree_Item ∗ Fl_Tree::prev (Fl_Tree_Item ∗ item = 0)

Return the previous item before item, or 0 if no more items.

This can be used to walk the tree in reverse, eg:

for (Fl_Tree_Item *item = tree->first(); item; item = tree->prev(item)) {
printf("Item: %s\n", item->label());

}

Parameters:

← item The item to use to find the previous item. If NULL, returns NULL

Returns:

Previous item in tree, or 0 if at first item.

See also:

first(),next(),last(),prev()

30.118.2.47 int Fl_Tree::remove (Fl_Tree_Item ∗ item) [inline]

Remove the specified item from the tree.

If it has children, all those are removed too.

Returns:

0 if done, -1 if ’item’ not found.

30.118.2.48 void Fl_Tree::root_label (const char ∗ new_label) [inline]

Set the label for the root item.

Makes an internally managed copy of ’new_label’.

30.118.2.49 void Fl_Tree::scrollbar_size (int size) [inline]

Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

Normally you should not need this method, and should use the global Fl::scrollbar_size(int) instead to
manage the size of ALL your widgets’ scrollbars. This ensures your application has a consistent UI, is the
default behavior, and is normally what you want.

Only use THIS method if you really need to override the global scrollbar size. The need for this should be
rare.

Setting size to the special value of 0 causes the widget to track the global Fl::scrollbar_size(), which is
the default.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

868 Class Documentation

Parameters:

← size Sets the scrollbar size in pixels.
If 0 (default), scrollbar size tracks the global Fl::scrollbar_size()

See also:

Fl::scrollbar_size()

30.118.2.50 int Fl_Tree::scrollbar_size () const [inline]

Gets the current size of the scrollbars’ troughs, in pixels.

If this value is zero (default), this widget will use the global Fl::scrollbar_size() value as the scrollbar’s
width.

Returns:

Scrollbar size in pixels, or 0 if the global Fl::scrollsize() is being used.

See also:

Fl::scrollbar_size(int)

30.118.2.51 int Fl_Tree::select (const char ∗ path, int docallback = 1) [inline]

Select the item specified by path (eg: "Parent/child/item").

Handles redrawing if anything was actually changed. Invokes the callback depending on the value of
optional parameter docallback.

The callback can use callback_item() and callback_reason() respectively to determine the item changed
and the reason the callback was called.

Parameters:

← path – the tree item’s pathname (eg. "Flintstones/Fred")

← docallback – A flag that determines if the callback() is invoked or not:

• 0 - the callback() is not invoked
• 1 - the callback() is invoked if item changed state, callback_reason() will be FL_TREE_-

REASON_SELECTED

Returns:

• 1 : OK: item’s state was changed

• 0 : OK: item was already selected, no change was made

• -1 : ERROR: item was not found

30.118.2.52 int Fl_Tree::select (Fl_Tree_Item ∗ item, int docallback = 1) [inline]

Select the specified item.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.118 Fl_Tree Class Reference 869

Use ’deselect()’ to de-select it. Handles redrawing if anything was actually changed. Invokes the callback
depending on the value of optional parameter docallback.

The callback can use callback_item() and callback_reason() respectively to determine the item changed
and the reason the callback was called.

Parameters:

← item – the item to be selected

← docallback – A flag that determines if the callback() is invoked or not:

• 0 - the callback() is not invoked
• 1 - the callback() is invoked if item changed state, callback_reason() will be FL_TREE_-

REASON_SELECTED

Returns:

• 1 - item’s state was changed

• 0 - item was already selected, no change was made

30.118.2.53 int Fl_Tree::select_all (Fl_Tree_Item ∗ item = 0, int docallback = 1)

Select item and all its children.

If item is NULL, first() is used. Handles calling redraw() if anything was changed. Invokes the callback
depending on the value of optional parameter docallback.

The callback can use callback_item() and callback_reason() respectively to determine the item changed
and the reason the callback was called.

Parameters:

← item The item that will be selected (along with all its children). If NULL, first() is assumed.

← docallback – A flag that determines if the callback() is invoked or not:

• 0 - the callback() is not invoked
• 1 - the callback() is invoked for each item that changed state, callback_reason() will be

FL_TREE_REASON_SELECTED

Returns:

count of how many items were actually changed to the selected state.

30.118.2.54 int Fl_Tree::select_only (Fl_Tree_Item ∗ selitem, int docallback = 1)

Select only the specified item, deselecting all others that might be selected.

If item is 0, first() is used. Handles calling redraw() if anything was changed. Invokes the callback depend-
ing on the value of optional parameter docallback.

The callback can use callback_item() and callback_reason() respectively to determine the item changed
and the reason the callback was called.

Parameters:

← selitem The item to be selected. If NULL, first() is used.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

870 Class Documentation

← docallback – A flag that determines if the callback() is invoked or not:

• 0 - the callback() is not invoked
• 1 - the callback() is invoked for each item that changed state, callback_reason() will be either

FL_TREE_REASON_SELECTED or FL_TREE_REASON_DESELECTED

Returns:

the number of items whose selection states were changed, if any.

30.118.2.55 void Fl_Tree::select_toggle (Fl_Tree_Item ∗ item, int docallback = 1) [inline]

Toggle the select state of the specified item.

Handles redrawing if anything was actually changed. Invokes the callback depending on the value of
optional parameter docallback.

The callback can use callback_item() and callback_reason() respectively to determine the item changed
and the reason the callback was called.

Parameters:

← item – the item to be selected

← docallback – A flag that determines if the callback() is invoked or not:

• 0 - the callback() is not invoked
• 1 - the callback() is invoked, callback_reason() will be either FL_TREE_REASON_-

SELECTED or FL_TREE_REASON_DESELECTED

30.118.2.56 void Fl_Tree::selectbox (Fl_Boxtype val) [inline]

Gets the style of box used to draw selected items.

This is an fltk Fl_Boxtype. The default is influenced by FLTK’s current Fl::scheme()

30.118.2.57 Fl_Boxtype Fl_Tree::selectbox () const [inline]

Sets the style of box used to draw selected items.

This is an fltk Fl_Boxtype. The default is influenced by FLTK’s current Fl::scheme()

30.118.2.58 void Fl_Tree::set_item_focus (Fl_Tree_Item ∗ item)

Set the item that currently should have keyboard focus.

Handles calling redraw() to update the focus box (if its visible).

Parameters:

← item The item that should take focus. If NULL, none will have focus.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.118 Fl_Tree Class Reference 871

30.118.2.59 void Fl_Tree::show_item (Fl_Tree_Item ∗ item)

Adjust the vertical scroll bar to show item at the top of the display IF it is currently off-screen (eg.

show_item_top()). If it is already on-screen, no change is made.

See also:

show_item_top(), show_item_middle(), show_item_bottom()

30.118.2.60 void Fl_Tree::show_item (Fl_Tree_Item ∗ item, int yoff)

Adjust the vertical scroll bar so that item is visible yoff pixels from the top of the Fl_Tree widget’s
display.

For instance, yoff=0 will position the item at the top.

If yoff is larger than the vertical scrollbar’s limit, the value will be clipped. So if yoff=100, but scrollbar’s
max is 50, then 50 will be used.

See also:

show_item_top(), show_item_middle(), show_item_bottom()

30.118.2.61 void Fl_Tree::show_self () [inline]

Print the tree as ’ascii art’ to stdout.

Used mainly for debugging.

30.118.2.62 void Fl_Tree::showcollapse (int val) [inline]

Set if we should show the collapse icon or not.

If collapse icons are disabled, the user will not be able to interactively collapse items in the tree, unless the
application provides some other means via open() and close().

Parameters:

← val 1: shows collapse icons (default),
0: hides collapse icons.

30.118.2.63 void Fl_Tree::showroot (int val) [inline]

Set if the root item should be shown or not.

Parameters:

← val 1 – show the root item (default)
0 – hide the root item.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

872 Class Documentation

30.118.2.64 Fl_Tree_Sort Fl_Tree::sortorder () const [inline]

Set the default sort order used when items are added to the tree.

See Fl_Tree_Sort for possible values.

30.118.2.65 void Fl_Tree::usericon (Fl_Image ∗ val) [inline]

Sets the Fl_Image to be used as the default user icon for all newly created items.

If you want to specify user icons on a per-item basis, use Fl_Tree_Item::usericon() instead.

Parameters:

← val – The new image to be used, or zero to disable user icons.

30.118.2.66 Fl_Image∗ Fl_Tree::usericon () const [inline]

Returns the Fl_Image being used as the default user icon for newly created items.

Returns zero if no icon has been set, which is the default.

30.118.2.67 void Fl_Tree::vposition (int pos)

Sets the vertical scroll offset to position pos.

The position is how many pixels of the tree are scrolled off the top edge of the screen. Example: A position
of ’3’ scrolls the top three pixels of the tree off the top edge of the screen.

Parameters:

← pos The vertical position (in pixels) to scroll the browser to.

30.118.2.68 int Fl_Tree::vposition () const

Returns the vertical scroll position as a pixel offset.

The position returned is how many pixels of the tree are scrolled off the top edge of the screen. Example:
A position of ’3’ indicates the top 3 pixels of the tree are scrolled off the top edge of the screen.

See also:

vposition(), hposition()

The documentation for this class was generated from the following files:

• Fl_Tree.H
• Fl_Tree.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.119 Fl_Tree_Item Class Reference 873

30.119 Fl_Tree_Item Class Reference

Tree item.

#include <Fl_Tree_Item.H>

Public Member Functions

• void activate (int val=1)
Change the item’s activation state to the optionally specified ’val’.

• Fl_Tree_Item ∗ add (const Fl_Tree_Prefs &prefs, char ∗∗arr)
Descend into the path specified by arr, and add a new child there.

• Fl_Tree_Item ∗ add (const Fl_Tree_Prefs &prefs, const char ∗new_label)
Add a new child to this item with the name ’new_label’, with defaults from ’prefs’.

• const Fl_Tree_Item ∗ child (int t) const
Return the const child item for the given ’index’.

• Fl_Tree_Item ∗ child (int index)
Return the child item for the given ’index’.

• int children () const
Return the number of children this item has.

• void clear_children ()
Clear all the children for this item.

• void close ()
Close this item and all its children.

• void deactivate ()
Deactivate the item; the callback() won’t be invoked when clicked.

• int depth () const
Returns how many levels deep this item is in the hierarchy.

• void deselect ()
Disable the item’s selection state.

• int deselect_all ()
Deselect self and all children Returns count of how many items were in the ’selected’ state, ie.

• void draw (int X, int &Y, int W, Fl_Widget ∗tree, Fl_Tree_Item ∗itemfocus, const Fl_Tree_Prefs
&prefs, int lastchild=1)

Draw this item and its children.

• int event_on_collapse_icon (const Fl_Tree_Prefs &prefs) const
Was the event on the ’collapse’ button?

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

874 Class Documentation

• int event_on_label (const Fl_Tree_Prefs &prefs) const
Was event on the label()?

• int find_child (Fl_Tree_Item ∗item)
Find the index number for the specified ’item’ in the current item’s list of children.

• int find_child (const char ∗name)
Return the index of the immediate child of this item that has the label ’name’.

• Fl_Tree_Item ∗ find_child_item (char ∗∗arr)
Find child item by descending array of names.

• const Fl_Tree_Item ∗ find_child_item (char ∗∗arr) const
Find child item by descending array of names.

• Fl_Tree_Item ∗ find_clicked (const Fl_Tree_Prefs &prefs)
Non-const version of the above.

• const Fl_Tree_Item ∗ find_clicked (const Fl_Tree_Prefs &prefs) const
Find the item that the last event was over.

• Fl_Tree_Item ∗ find_item (char ∗∗arr)
Find item by descending array of names.

• const Fl_Tree_Item ∗ find_item (char ∗∗arr) const
Find item by descending array of names.

• Fl_Tree_Item (const Fl_Tree_Item ∗o)
Copy constructor.

• Fl_Tree_Item (const Fl_Tree_Prefs &prefs)
Constructor.

• int h () const
• int has_children () const

See if this item has children.

• Fl_Tree_Item ∗ insert (const Fl_Tree_Prefs &prefs, const char ∗new_label, int pos=0)
Insert a new item into current item’s children at a specified position.

• Fl_Tree_Item ∗ insert_above (const Fl_Tree_Prefs &prefs, const char ∗new_label)
Insert a new item above this item.

• char is_activated () const
See if the item is activated.

• char is_active () const
See if the item is activated.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.119 Fl_Tree_Item Class Reference 875

• int is_close () const
See if the item is ’closed’.

• int is_open () const
See if the item is ’open’.

• int is_root () const
Is this item the root of the tree?

• char is_selected () const
See if the item is selected.

• const char ∗ label () const
Return the label.

• void label (const char ∗val)
Set the label. Makes a copy of the name.

• Fl_Color labelbgcolor () const
Return item’s background text color.

• void labelbgcolor (Fl_Color val)
Set item’s label background color.

• Fl_Color labelcolor () const
Return item’s label text color.

• void labelcolor (Fl_Color val)
Set item’s label text color.

• Fl_Color labelfgcolor () const
Return item’s label foreground text color.

• void labelfgcolor (Fl_Color val)
Set item’s label foreground text color.

• int labelfont () const
Get item’s label font face.

• void labelfont (int val)
Set item’s label font face.

• int labelsize () const
Get item’s label font size.

• void labelsize (int val)
Set item’s label font size.

• Fl_Tree_Item ∗ next ()
Return the next item in the tree.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

876 Class Documentation

• Fl_Tree_Item ∗ next_displayed (Fl_Tree_Prefs &prefs)
Return the next visible item.

• Fl_Tree_Item ∗ next_sibling ()
Return this item’s next sibling.

• void open ()
Open this item and all its children.

• void open_toggle ()
Toggle the item’s open/closed state.

• void parent (Fl_Tree_Item ∗val)
Set the parent for this item.

• const Fl_Tree_Item ∗ parent () const
Return the const parent for this item. Returns NULL if we are the root.

• Fl_Tree_Item ∗ parent ()
Return the parent for this item. Returns NULL if we are the root.

• Fl_Tree_Item ∗ prev ()
Return the previous item in the tree.

• Fl_Tree_Item ∗ prev_displayed (Fl_Tree_Prefs &prefs)
Return the previous visible item.

• Fl_Tree_Item ∗ prev_sibling ()
Return this item’s previous sibling.

• int remove_child (const char ∗new_label)
Remove immediate child (and its children) by its label ’name’.

• int remove_child (Fl_Tree_Item ∗item)
Remove child by item.

• void select (int val=1)
Change the item’s selection state to the optionally specified ’val’.

• int select_all ()
Select self and all children Returns count of how many items were in the ’deselected’ state, ie.

• void select_toggle ()
Toggle the item’s selection state.

• void show_self (const char ∗indent="") const
Print the tree as ’ascii art’ to stdout.

• int swap_children (Fl_Tree_Item ∗a, Fl_Tree_Item ∗b)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.119 Fl_Tree_Item Class Reference 877

Swap two of our children, given item pointers.

• void swap_children (int ax, int bx)

Swap two of our children, given two child index values.

• void ∗ user_data () const

Retrieve the user-data value that has been assigned to the item.

• void user_data (void ∗data)

Set a user-data value for the item.

• Fl_Image ∗ usericon () const

Get the user icon. Returns ’0’ if disabled.

• void usericon (Fl_Image ∗val)

Set the user icon’s image. ’0’ will disable.

• int visible () const

See if the item is visible.

• int visible_r () const

Returns if item and all its parents are visible.

• int w () const
• Fl_Widget ∗ widget () const

Return FLTK widget assigned to this item.

• void widget (Fl_Widget ∗val)

Assign an FLTK widget to this item.

• int x () const
• int y () const

Protected Member Functions

• void draw_horizontal_connector (int x1, int x2, int y, const Fl_Tree_Prefs &prefs)

Internal: Horizontal connector line based on preference settings.

• void draw_vertical_connector (int x, int y1, int y2, const Fl_Tree_Prefs &prefs)

Internal: Vertical connector line based on preference settings.

• void hide_widgets ()

Internal: Hide the FLTK widget() for this item and all children.

• void show_widgets ()

Internal: Show the FLTK widget() for this item and all children.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

878 Class Documentation

30.119.1 Detailed Description

Tree item.

This class is a single tree item, and manages all of the item’s attributes. Fl_Tree_Item is used by Fl_Tree,
which is comprised of many instances of Fl_Tree_Item.

Fl_Tree_Item is hierarchical; it dynamically manages an Fl_Tree_Item_Array of children that are them-
selves instances of Fl_Tree_Item. Each item can have zero or more children. When an item has children,
close() and open() can be used to hide or show them.

Items have their own attributes; font size, face, color. Items maintain their own hierarchy of children.

When you make changes to items, you’ll need to tell the tree to redraw() for the changes to show up.

30.119.2 Constructor & Destructor Documentation

30.119.2.1 Fl_Tree_Item::Fl_Tree_Item (const Fl_Tree_Prefs & prefs)

Constructor.

Makes a new instance of Fl_Tree_Item using defaults from ’prefs’.

30.119.3 Member Function Documentation

30.119.3.1 void Fl_Tree_Item::activate (int val = 1) [inline]

Change the item’s activation state to the optionally specified ’val’.

When deactivated, the item will be ’grayed out’; the callback() won’t be invoked if the user clicks on the
label. If the item has a widget() associated with the item, its activation state will be changed as well.

If ’val’ is not specified, the item will be activated.

30.119.3.2 Fl_Tree_Item ∗ Fl_Tree_Item::add (const Fl_Tree_Prefs & prefs, char ∗∗ arr)

Descend into the path specified by arr, and add a new child there.

Should be used only by Fl_Tree’s internals. Adds the item based on the value of prefs.sortorder().

Returns:

the item added.

30.119.3.3 Fl_Tree_Item ∗ Fl_Tree_Item::add (const Fl_Tree_Prefs & prefs, const char ∗
new_label)

Add a new child to this item with the name ’new_label’, with defaults from ’prefs’.

An internally managed copy is made of the label string. Adds the item based on the value of
prefs.sortorder().

30.119.3.4 const Fl_Tree_Item ∗ Fl_Tree_Item::child (int t) const

Return the const child item for the given ’index’.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.119 Fl_Tree_Item Class Reference 879

Return child item for the specified ’index’.

30.119.3.5 void Fl_Tree_Item::deactivate () [inline]

Deactivate the item; the callback() won’t be invoked when clicked.

Same as activate(0)

30.119.3.6 int Fl_Tree_Item::depth () const

Returns how many levels deep this item is in the hierarchy.

For instance; root has a depth of zero, and its immediate children would have a depth of 1, and so on.

30.119.3.7 int Fl_Tree_Item::deselect_all () [inline]

Deselect self and all children Returns count of how many items were in the ’selected’ state, ie.

how many items were "changed".

30.119.3.8 int Fl_Tree_Item::find_child (Fl_Tree_Item ∗ item)

Find the index number for the specified ’item’ in the current item’s list of children.

Returns:

the index, or -1 if not found.

30.119.3.9 int Fl_Tree_Item::find_child (const char ∗ name)

Return the index of the immediate child of this item that has the label ’name’.

Returns:

index of found item, or -1 if not found.

30.119.3.10 Fl_Tree_Item ∗ Fl_Tree_Item::find_child_item (char ∗∗ arr)

Find child item by descending array of names.

Does not include self in search. Only Fl_Tree should need this method. Use Fl_Tree::find_item() instead.

Returns:

item, or 0 if not found

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

880 Class Documentation

30.119.3.11 const Fl_Tree_Item ∗ Fl_Tree_Item::find_child_item (char ∗∗ arr) const

Find child item by descending array of names.

Does not include self in search. Only Fl_Tree should need this method.

Returns:

item, or 0 if not found

30.119.3.12 Fl_Tree_Item ∗ Fl_Tree_Item::find_clicked (const Fl_Tree_Prefs & prefs)

Non-const version of the above.

Find the item that the last event was over.

Returns the item if its visible, and mouse is over it. Works even if widget deactivated. Use event_on_-
collapse_icon() to determine if collapse button was pressed.

Returns:

the visible item under the event if found, or 0 if none.

30.119.3.13 const Fl_Tree_Item ∗ Fl_Tree_Item::find_clicked (const Fl_Tree_Prefs & prefs) const

Find the item that the last event was over.

Returns the item if its visible, and mouse is over it. Works even if widget deactivated. Use event_on_-
collapse_icon() to determine if collapse button was pressed.

Returns:

const visible item under the event if found, or 0 if none.

30.119.3.14 Fl_Tree_Item ∗ Fl_Tree_Item::find_item (char ∗∗ names)

Find item by descending array of names.

Includes self in search. Only Fl_Tree should need this method.

Returns:

item, or 0 if not found

30.119.3.15 const Fl_Tree_Item ∗ Fl_Tree_Item::find_item (char ∗∗ names) const

Find item by descending array of names.

Includes self in search. Only Fl_Tree should need this method. Use Fl_Tree::find_item() instead.

Returns:

item, or 0 if not found

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.119 Fl_Tree_Item Class Reference 881

30.119.3.16 void Fl_Tree_Item::hide_widgets () [protected]

Internal: Hide the FLTK widget() for this item and all children.

Used by close() to hide widgets.

30.119.3.17 Fl_Tree_Item ∗ Fl_Tree_Item::insert (const Fl_Tree_Prefs & prefs, const char ∗
new_label, int pos = 0)

Insert a new item into current item’s children at a specified position.

Returns:

the new item inserted.

30.119.3.18 Fl_Tree_Item ∗ Fl_Tree_Item::insert_above (const Fl_Tree_Prefs & prefs, const char
∗ new_label)

Insert a new item above this item.

Returns:

the new item inserted, or 0 if an error occurred.

30.119.3.19 Fl_Tree_Item ∗ Fl_Tree_Item::next ()

Return the next item in the tree.

This method can be used to walk the tree forward. For an example of how to use this method, see Fl_-
Tree::first().

Returns:

the next item in the tree, or 0 if there’s no more items.

30.119.3.20 Fl_Tree_Item ∗ Fl_Tree_Item::next_displayed (Fl_Tree_Prefs & prefs)

Return the next visible item.

(If this item has children and is closed, children are skipped)

This method can be used to walk the tree forward, skipping items that are not currently visible to the user.

Returns:

the next visible item below us, or 0 if there’s no more items.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

882 Class Documentation

30.119.3.21 Fl_Tree_Item ∗ Fl_Tree_Item::next_sibling ()

Return this item’s next sibling.

Moves to the next item below us at the same level (sibling). Use this to move down the tree without moving
deeper into the tree, effectively skipping over this item’s children/descendents.

Returns:

item’s next sibling, or 0 if none.

30.119.3.22 void Fl_Tree_Item::parent (Fl_Tree_Item ∗ val) [inline]

Set the parent for this item.

Should only be used by Fl_Tree’s internals.

30.119.3.23 Fl_Tree_Item ∗ Fl_Tree_Item::prev ()

Return the previous item in the tree.

This method can be used to walk the tree backwards. For an example of how to use this method, see
Fl_Tree::last().

Returns:

the previous item in the tree, or 0 if there’s no item above this one (hit the root).

30.119.3.24 Fl_Tree_Item ∗ Fl_Tree_Item::prev_displayed (Fl_Tree_Prefs & prefs)

Return the previous visible item.

(If this item above us has children and is closed, its children are skipped)

This method can be used to walk the tree backward, skipping items that are not currently visible to the user.

Returns:

the previous visible item above us, or 0 if there’s no more items.

30.119.3.25 Fl_Tree_Item ∗ Fl_Tree_Item::prev_sibling ()

Return this item’s previous sibling.

Moves to the previous item above us at the same level (sibling). Use this to move up the tree without
moving deeper into the tree.

Returns:

This item’s previous sibling, or 0 if none.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.119 Fl_Tree_Item Class Reference 883

30.119.3.26 int Fl_Tree_Item::remove_child (const char ∗ name)

Remove immediate child (and its children) by its label ’name’.

Returns:

0 if removed, -1 if not found.

30.119.3.27 int Fl_Tree_Item::remove_child (Fl_Tree_Item ∗ item)

Remove child by item.

Returns:

0 if removed, -1 if item not an immediate child.

30.119.3.28 void Fl_Tree_Item::select (int val = 1) [inline]

Change the item’s selection state to the optionally specified ’val’.

If ’val’ is not specified, the item will be selected.

30.119.3.29 int Fl_Tree_Item::select_all () [inline]

Select self and all children Returns count of how many items were in the ’deselected’ state, ie.

how many items were "changed".

30.119.3.30 void Fl_Tree_Item::show_self (const char ∗ indent = "") const

Print the tree as ’ascii art’ to stdout.

Used mainly for debugging.

30.119.3.31 void Fl_Tree_Item::show_widgets () [protected]

Internal: Show the FLTK widget() for this item and all children.

Used by open() to re-show widgets that were hidden by a previous close()

30.119.3.32 int Fl_Tree_Item::swap_children (Fl_Tree_Item ∗ a, Fl_Tree_Item ∗ b)

Swap two of our children, given item pointers.

Use this eg. for sorting.

This method is SLOW because it involves linear lookups. For speed, use swap_children(int,int) instead.

Returns:

• 0 : OK

• -1 : failed: ’a’ or ’b’ is not our immediate child

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

884 Class Documentation

30.119.3.33 void Fl_Tree_Item::swap_children (int ax, int bx)

Swap two of our children, given two child index values.

Use this eg. for sorting.

This method is FAST, and does not involve lookups.

No range checking is done on either index value.

Returns:

• 0 : OK

• -1 : failed: ’a’ or ’b’ is not our immediate child

30.119.3.34 int Fl_Tree_Item::visible_r () const

Returns if item and all its parents are visible.

Also takes into consideration if any parent is close()ed.

Returns:

1 – item and its parents are visible/open() 0 – item (or parents) invisible or close()ed.

The documentation for this class was generated from the following files:

• Fl_Tree_Item.H
• Fl_Tree_Item.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.120 Fl_Tree_Item_Array Class Reference 885

30.120 Fl_Tree_Item_Array Class Reference

Manages an array of Fl_Tree_Item pointers.

#include <Fl_Tree_Item_Array.H>

Public Member Functions

• void add (Fl_Tree_Item ∗val)

Add an item∗ to the end of the array.

• void clear ()

Clear the entire array.

• Fl_Tree_Item_Array (const Fl_Tree_Item_Array ∗o)

Copy constructor. Makes new copy of array, with new instances of each item.

• Fl_Tree_Item_Array (int new_chunksize=10)

Constructor; creates an empty array.

• void insert (int pos, Fl_Tree_Item ∗new_item)

Insert an item at index position pos.

• const Fl_Tree_Item ∗ operator[] (int i) const

Const version of operator[](int i).

• Fl_Tree_Item ∗ operator[] (int i)

Return the item and index i.

• int remove (Fl_Tree_Item ∗item)

Remove the item from the array.

• void remove (int index)

Remove the item at.

• void swap (int ax, int bx)

Swap the two items at index positions ax and bx.

• int total () const

Return the total items in the array, or 0 if empty.

• ∼Fl_Tree_Item_Array ()

Destructor. Calls each item’s destructor, destroys internal _items array.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

886 Class Documentation

30.120.1 Detailed Description

Manages an array of Fl_Tree_Item pointers.

Because FLTK 1.x.x. has mandated that templates and STL not be used, we use this class to dynamically
manage the arrays.

None of the methods do range checking on index values; the caller must be sure that index values are within
the range 0<index<total() (unless otherwise noted).

30.120.2 Constructor & Destructor Documentation

30.120.2.1 Fl_Tree_Item_Array::Fl_Tree_Item_Array (int new_chunksize = 10)

Constructor; creates an empty array.

The optional ’chunksize’ can be specified to optimize memory allocation for potentially large arrays. De-
fault chunksize is 10.

30.120.3 Member Function Documentation

30.120.3.1 void Fl_Tree_Item_Array::add (Fl_Tree_Item ∗ val)

Add an item∗ to the end of the array.

Assumes the item was created with ’new’, and will remain allocated.. Fl_Tree_Item_Array will handle
calling the item’s destructor when the array is cleared or the item remove()’ed.

30.120.3.2 void Fl_Tree_Item_Array::clear ()

Clear the entire array.

Each item will be deleted (destructors will be called), and the array will be cleared. total() will return 0.

30.120.3.3 void Fl_Tree_Item_Array::insert (int pos, Fl_Tree_Item ∗ new_item)

Insert an item at index position pos.

Handles enlarging array if needed, total increased by 1. If pos == total(), an empty item is appended to
the array.

30.120.3.4 int Fl_Tree_Item_Array::remove (Fl_Tree_Item ∗ item)

Remove the item from the array.

Returns:

0 if removed, or -1 if the item was not in the array.

30.120.3.5 void Fl_Tree_Item_Array::remove (int index)

Remove the item at.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.120 Fl_Tree_Item_Array Class Reference 887

Parameters:

← index from the array.

The item will be delete’d (if non-NULL), so its destructor will be called.

The documentation for this class was generated from the following files:

• Fl_Tree_Item_Array.H
• Fl_Tree_Item_Array.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

888 Class Documentation

30.121 Fl_Tree_Prefs Class Reference

Tree widget’s preferences.

#include <Fl_Tree_Prefs.H>

Public Member Functions

• void bgcolor (Fl_Color val)
Set the default label background color.

• Fl_Color bgcolor () const
Get the default label background color.

• void closeicon (Fl_Image ∗val)
Sets the icon to be used as the ’close’ icon.

• Fl_Image ∗ closeicon () const
Gets the default ’close’ icon Returns the Fl_Image∗ of the icon, or 0 if none.

• void connectorcolor (Fl_Color val)
Set the connector color; the color used for tree connection lines.

• Fl_Color connectorcolor () const
Get the connector color; the color used for tree connection lines.

• void connectorstyle (int val)
Set the connector style [integer].

• void connectorstyle (Fl_Tree_Connector val)
Set the connector style.

• Fl_Tree_Connector connectorstyle () const
Get the connector style.

• void connectorwidth (int val)
Set the tree connection line’s width.

• int connectorwidth () const
Get the tree connection line’s width.

• void fgcolor (Fl_Color val)
Set the default label foreground color.

• Fl_Color fgcolor () const
Get the default label foreground color.

• Fl_Tree_Prefs ()
Fl_Tree_Prefs constructor.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.121 Fl_Tree_Prefs Class Reference 889

• void inactivecolor (Fl_Color val)
Set the default inactive color.

• Fl_Color inactivecolor () const
Get the default inactive color.

• void labelfont (int val)
Set the label’s font to val.

• int labelfont () const
Return the label’s font.

• void labelmarginleft (int val)
Set the label’s left margin value in pixels.

• int labelmarginleft () const
Get the label’s left margin value in pixels.

• void labelsize (int val)
Set the label’s size in pixels to val.

• int labelsize () const
Return the label’s size in pixels.

• void linespacing (int val)
Set the line spacing value in pixels.

• int linespacing () const
Get the line spacing value in pixels.

• void marginleft (int val)
Set the left margin’s value in pixels.

• int marginleft () const
Get the left margin’s value in pixels.

• void margintop (int val)
Set the top margin’s value in pixels.

• int margintop () const
Get the top margin’s value in pixels.

• void openchild_marginbottom (int val)
Set the margin below an open child in pixels.

• int openchild_marginbottom () const
Get the margin below an open child in pixels.

• void openicon (Fl_Image ∗val)
Sets the default icon to be used as the ’open’ icon when items are add()ed to the tree.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

890 Class Documentation

• Fl_Image ∗ openicon () const
Get the current default ’open’ icon.

• void selectbox (Fl_Boxtype val)
Set the default selection box’s box drawing style to val.

• Fl_Boxtype selectbox () const
Get the default selection box’s box drawing style as an Fl_Boxtype.

• void selectcolor (Fl_Color val)
Set the default selection color.

• Fl_Color selectcolor () const
Get the default selection color.

• void selectmode (Fl_Tree_Select val)
Set the selection mode used for the tree to val.

• Fl_Tree_Select selectmode () const
Get the selection mode used for the tree.

• void showcollapse (int val)
Set if we should show the collapse icon or not.

• char showcollapse () const
Returns 1 if the collapse icon is enabled, 0 if not.

• void showroot (int val)
Set if the root item should be shown or not.

• int showroot () const
Returns 1 if the root item is to be shown, or 0 if not.

• void sortorder (Fl_Tree_Sort val)
Set the default sort order value.

• Fl_Tree_Sort sortorder () const
Get the default sort order value.

• void usericon (Fl_Image ∗val)
Sets the default ’user icon’ Returns the Fl_Image∗ of the icon, or 0 if none (default).

• Fl_Image ∗ usericon () const
Gets the default ’user icon’ (default is 0).

• void usericonmarginleft (int val)
Set the user icon’s left margin value in pixels.

• int usericonmarginleft () const
Get the user icon’s left margin value in pixels.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.121 Fl_Tree_Prefs Class Reference 891

30.121.1 Detailed Description

Tree widget’s preferences.

Fl_Tree’s Preferences class.

This class manages the Fl_Tree’s defaults. You should probably be using the methods in Fl_Tree instead
of trying to accessing tree’s preferences settings directly.

30.121.2 Member Function Documentation

30.121.2.1 void Fl_Tree_Prefs::closeicon (Fl_Image ∗ val)

Sets the icon to be used as the ’close’ icon.

This overrides the built in default ’[-]’ icon.

Parameters:

← val – The new image, or zero to use the default [-] icon.

30.121.2.2 int Fl_Tree_Prefs::labelfont () const [inline]

Return the label’s font.

30.121.2.3 void Fl_Tree_Prefs::openicon (Fl_Image ∗ val)

Sets the default icon to be used as the ’open’ icon when items are add()ed to the tree.

This overrides the built in default ’[+]’ icon.

Parameters:

← val – The new image, or zero to use the default [+] icon.

30.121.2.4 Fl_Image∗ Fl_Tree_Prefs::openicon () const [inline]

Get the current default ’open’ icon.

Returns the Fl_Image∗ of the icon, or 0 if none.

30.121.2.5 void Fl_Tree_Prefs::selectmode (Fl_Tree_Select val) [inline]

Set the selection mode used for the tree to val.

This affects how items in the tree are selected when clicked on and dragged over by the mouse. See
Fl_Tree_Select for possible values.

30.121.2.6 void Fl_Tree_Prefs::showcollapse (int val) [inline]

Set if we should show the collapse icon or not.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

892 Class Documentation

If collapse icons are disabled, the user will not be able to interactively collapse items in the tree, unless the
application provides some other means via open() and close().

Parameters:

← val 1: shows collapse icons (default),
0: hides collapse icons.

30.121.2.7 char Fl_Tree_Prefs::showcollapse () const [inline]

Returns 1 if the collapse icon is enabled, 0 if not.

30.121.2.8 void Fl_Tree_Prefs::showroot (int val) [inline]

Set if the root item should be shown or not.

Parameters:

← val 1 – show the root item (default)
0 – hide the root item.

30.121.2.9 void Fl_Tree_Prefs::sortorder (Fl_Tree_Sort val) [inline]

Set the default sort order value.

Defines the order new items appear when add()ed to the tree. See Fl_Tree_Sort for possible values.

The documentation for this class was generated from the following files:

• Fl_Tree_Prefs.H
• Fl_Tree_Prefs.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.122 Fl_Valuator Class Reference 893

30.122 Fl_Valuator Class Reference

The Fl_Valuator class controls a single floating-point value and provides a consistent interface to set the
value, range, and step, and insures that callbacks are done the same for every object.

#include <Fl_Valuator.H>

Inheritance diagram for Fl_Valuator::

Fl_Valuator

Fl_Widget

Fl_Adjuster Fl_Counter Fl_Dial Fl_Roller Fl_Slider Fl_Value_Input Fl_Value_Output

Fl_Simple_Counter Fl_Fill_Dial Fl_Fill_Slider Fl_Scrollbar Fl_Value_Slider

Public Member Functions

• void bounds (double a, double b)

Sets the minimum (a) and maximum (b) values for the valuator widget.

• double clamp (double)

Clamps the passed value to the valuator range.

• virtual int format (char ∗)
Uses internal rules to format the fields numerical value into the character array pointed to by the passed
parameter.

• double increment (double, int)

Adds n times the step value to the passed value.

• void maximum (double a)

Sets the maximum value for the valuator.

• double maximum () const

Gets the maximum value for the valuator.

• void minimum (double a)

Sets the minimum value for the valuator.

• double minimum () const

Gets the minimum value for the valuator.

• void precision (int)

Sets the step value to 1/10digits .

• void range (double a, double b)

Sets the minimum and maximum values for the valuator.

• double round (double)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

894 Class Documentation

Round the passed value to the nearest step increment.

• double step () const
Gets or sets the step value.

• void step (double s)
See double Fl_Valuator::step() const.

• void step (double a, int b)
See double Fl_Valuator::step() const.

• void step (int a)
See double Fl_Valuator::step() const.

• int value (double)
Sets the current value.

• double value () const
Gets the floating point(double) value.

Protected Member Functions

• Fl_Valuator (int X, int Y, int W, int H, const char ∗L)
Creates a new Fl_Valuator widget using the given position, size, and label string.

• void handle_drag (double newvalue)
Called during a drag operation, after an FL_WHEN_CHANGED event is received and before the callback.

• void handle_push ()
Stores the current value in the previous value.

• void handle_release ()
Called after an FL_WHEN_RELEASE event is received and before the callback.

• int horizontal () const
Tells if the valuator is an FL_HORIZONTAL one.

• double previous_value () const
Gets the previous floating point value before an event changed it.

• void set_value (double v)
Sets the current floating point value.

• double softclamp (double)
Clamps the value, but accepts v if the previous value is not already out of range.

• virtual void value_damage ()
Asks for partial redraw.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.122 Fl_Valuator Class Reference 895

30.122.1 Detailed Description

The Fl_Valuator class controls a single floating-point value and provides a consistent interface to set the
value, range, and step, and insures that callbacks are done the same for every object.

There are probably more of these classes in FLTK than any others:

Figure 30.37: Valuators derived from Fl_Valuators

In the above diagram each box surrounds an actual subclass. These are further differentiated by setting
the type() of the widget t o the symbolic value labeling the widget. The ones labelled "0" are the default
versions with a type(0). For consistency the symbol FL_VERTICAL is defined as zero.

30.122.2 Constructor & Destructor Documentation

30.122.2.1 Fl_Valuator::Fl_Valuator (int X, int Y, int W, int H, const char ∗ L) [protected]

Creates a new Fl_Valuator widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

30.122.3 Member Function Documentation

30.122.3.1 void Fl_Valuator::bounds (double a, double b) [inline]

Sets the minimum (a) and maximum (b) values for the valuator widget.

Reimplemented in Fl_Slider.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

896 Class Documentation

30.122.3.2 double Fl_Valuator::clamp (double v)

Clamps the passed value to the valuator range.

30.122.3.3 int Fl_Valuator::format (char ∗ buffer) [virtual]

Uses internal rules to format the fields numerical value into the character array pointed to by the passed
parameter.

The actual format used depends on the current step value. If the step value has been set to zero then a g
format is used. If the step value is non-zero, then a %.∗f format is used, where the precision is calculated
to show sufficient digits for the current step value. An integer step value, such as 1 or 1.0, gives a precision
of 0, so the formatted value will appear as an integer.

This method is used by the Fl_Value_... group of widgets to format the current value into a text string. The
return value is the length of the formatted text. The formatted value is written into in buffer. buffer should
have space for at least 128 bytes.

You may override this function to create your own text formatting.

30.122.3.4 void Fl_Valuator::handle_drag (double v) [protected]

Called during a drag operation, after an FL_WHEN_CHANGED event is received and before the callback.

30.122.3.5 void Fl_Valuator::handle_release () [protected]

Called after an FL_WHEN_RELEASE event is received and before the callback.

30.122.3.6 double Fl_Valuator::increment (double v, int n)

Adds n times the step value to the passed value.

If step was set to zero it uses fabs(maximum() - minimum()) / 100.

30.122.3.7 void Fl_Valuator::maximum (double a) [inline]

Sets the maximum value for the valuator.

30.122.3.8 double Fl_Valuator::maximum () const [inline]

Gets the maximum value for the valuator.

30.122.3.9 void Fl_Valuator::minimum (double a) [inline]

Sets the minimum value for the valuator.

30.122.3.10 double Fl_Valuator::minimum () const [inline]

Gets the minimum value for the valuator.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.122 Fl_Valuator Class Reference 897

30.122.3.11 void Fl_Valuator::precision (int p)

Sets the step value to 1/10digits .

30.122.3.12 void Fl_Valuator::range (double a, double b) [inline]

Sets the minimum and maximum values for the valuator.

When the user manipulates the widget, the value is limited to this range. This clamping is done after
rounding to the step value (this makes a difference if the range is not a multiple of the step).

The minimum may be greater than the maximum. This has the effect of "reversing" the object so the larger
values are in the opposite direction. This also switches which end of the filled sliders is filled.

Some widgets consider this a "soft" range. This means they will stop at the range, but if the user releases
and grabs the control again and tries to move it further, it is allowed.

The range may affect the display. You must redraw() the widget after changing the range.

30.122.3.13 double Fl_Valuator::round (double v)

Round the passed value to the nearest step increment.

Does nothing if step is zero.

30.122.3.14 void Fl_Valuator::set_value (double v) [inline, protected]

Sets the current floating point value.

30.122.3.15 double Fl_Valuator::step () const [inline]

Gets or sets the step value.

As the user moves the mouse the value is rounded to the nearest multiple of the step value. This is done
before clamping it to the range. For most widgets the default step is zero.

For precision the step is stored as the ratio of two integers, A/B. You can set these integers directly. Cur-
rently setting a floating point value sets the nearest A/1 or 1/B value possible.

Reimplemented in Fl_Counter.

30.122.3.16 int Fl_Valuator::value (double v)

Sets the current value.

The new value is not clamped or otherwise changed before storing it. Use clamp() or round() to modify the
value before calling value(). The widget is redrawn if the new value is different than the current one. The
initial value is zero.

changed() will return true if the user has moved the slider, but it will be turned off by value(x) and just
before doing a callback (the callback can turn it back on if desired).

30.122.3.17 double Fl_Valuator::value () const [inline]

Gets the floating point(double) value.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

898 Class Documentation

See int value(double)

Reimplemented in Fl_Scrollbar.

The documentation for this class was generated from the following files:

• Fl_Valuator.H
• Fl_Valuator.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.123 Fl_Value_Input Class Reference 899

30.123 Fl_Value_Input Class Reference

The Fl_Value_Input widget displays a numeric value.

#include <Fl_Value_Input.H>

Inheritance diagram for Fl_Value_Input::

Fl_Value_Input

Fl_Valuator

Fl_Widget

Public Member Functions

• void cursor_color (Fl_Color n)
Sets the color of the text cursor.

• Fl_Color cursor_color () const
Gets the color of the text cursor.

• Fl_Value_Input (int x, int y, int w, int h, const char ∗l=0)
Creates a new Fl_Value_Input widget using the given position, size, and label string.

• int handle (int)
Handles the specified event.

• void resize (int, int, int, int)
Changes the size or position of the widget.

• void shortcut (int s)
See int Fl_Value_Input::shortcut() const.

• int shortcut () const
The first form returns the current shortcut key for the Input.

• char soft () const
If "soft" is turned on, the user is allowed to drag the value outside the range.

• void soft (char s)
See void Fl_Value_Input::soft(char s).

• void textcolor (Fl_Color n)
Sets the color of the text in the value box.

• Fl_Color textcolor () const
Gets the color of the text in the value box.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

900 Class Documentation

• void textfont (Fl_Font s)

Sets the typeface of the text in the value box.

• Fl_Font textfont () const

Gets the typeface of the text in the value box.

• void textsize (Fl_Fontsize s)

Sets the size of the text in the value box.

• Fl_Fontsize textsize () const

Gets the size of the text in the value box.

Public Attributes

• Fl_Input input

Protected Member Functions

• void draw ()

Draws the widget.

30.123.1 Detailed Description

The Fl_Value_Input widget displays a numeric value.

The user can click in the text field and edit it - there is in fact a hidden Fl_Input widget with type(FL_-
FLOAT_INPUT) or type(FL_INT_INPUT) in there - and when they hit return or tab the value updates to
what they typed and the callback is done.

If step() is non-zero and integral, then the range of numbers is limited to integers instead of floating point
numbers. As well as displaying the value as an integer, typed input is also limited to integer values, even if
the hidden Fl_Input widget is of type(FL_FLOAT_INPUT).

If step() is non-zero, the user can also drag the mouse across the object and thus slide the value. The
left button moves one step() per pixel, the middle by 10 step(), and the right button by 100 ∗ step(). It
is therefore impossible to select text by dragging across it, although clicking can still move the insertion
cursor.

If step() is non-zero and integral, then the range of numbers are limited to integers instead of floating point
values.

Figure 30.38: Fl_Value_Input

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.123 Fl_Value_Input Class Reference 901

30.123.2 Constructor & Destructor Documentation

30.123.2.1 Fl_Value_Input::Fl_Value_Input (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Value_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

30.123.3 Member Function Documentation

30.123.3.1 void Fl_Value_Input::cursor_color (Fl_Color n) [inline]

Sets the color of the text cursor.

The text cursor is black by default.

30.123.3.2 Fl_Color Fl_Value_Input::cursor_color () const [inline]

Gets the color of the text cursor.

The text cursor is black by default.

30.123.3.3 void Fl_Value_Input::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.123.3.4 int Fl_Value_Input::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

902 Class Documentation

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

30.123.3.5 void Fl_Value_Input::resize (int x, int y, int w, int h) [virtual]

Changes the size or position of the widget.

This is a virtual function so that the widget may implement its own handling of resizing. The default
version does not call the redraw() method, but instead relies on the parent widget to do so because the
parent may know a faster way to update the display, such as scrolling from the old position.

Some window managers under X11 call resize() a lot more often than needed. Please verify that the position
or size of a widget did actually change before doing any extensive calculations.

position(X, Y) is a shortcut for resize(X, Y, w(), h()), and size(W, H) is a shortcut for resize(x(), y(), W, H).

Parameters:

← x,y new position relative to the parent window

← w,h new size

See also:

position(int,int), size(int,int)

Reimplemented from Fl_Widget.

30.123.3.6 int Fl_Value_Input::shortcut () const [inline]

The first form returns the current shortcut key for the Input.

The second form sets the shortcut key to key. Setting this overrides the use of ’&’ in the label(). The value
is a bitwise OR of a key and a set of shift flags, for example FL_ALT | ’a’ , FL_ALT | (FL_F + 10), or just
’a’. A value of 0 disables the shortcut.

The key can be any value returned by Fl::event_key(), but will usually be an ASCII letter. Use a lower-case
letter unless you require the shift key to be held down.

The shift flags can be any set of values accepted by Fl::event_state(). If the bit is on that shift key must
be pushed. Meta, Alt, Ctrl, and Shift must be off if they are not in the shift flags (zero for the other bits
indicates a "don’t care" setting).

30.123.3.7 char Fl_Value_Input::soft () const [inline]

If "soft" is turned on, the user is allowed to drag the value outside the range.

If they drag the value to one of the ends, let go, then grab again and continue to drag, they can get to any
value. The default is true.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.123 Fl_Value_Input Class Reference 903

30.123.3.8 void Fl_Value_Input::textcolor (Fl_Color n) [inline]

Sets the color of the text in the value box.

30.123.3.9 Fl_Color Fl_Value_Input::textcolor () const [inline]

Gets the color of the text in the value box.

30.123.3.10 void Fl_Value_Input::textfont (Fl_Font s) [inline]

Sets the typeface of the text in the value box.

30.123.3.11 Fl_Font Fl_Value_Input::textfont () const [inline]

Gets the typeface of the text in the value box.

30.123.3.12 void Fl_Value_Input::textsize (Fl_Fontsize s) [inline]

Sets the size of the text in the value box.

30.123.3.13 Fl_Fontsize Fl_Value_Input::textsize () const [inline]

Gets the size of the text in the value box.

The documentation for this class was generated from the following files:

• Fl_Value_Input.H
• Fl_Value_Input.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

904 Class Documentation

30.124 Fl_Value_Output Class Reference

The Fl_Value_Output widget displays a floating point value.

#include <Fl_Value_Output.H>

Inheritance diagram for Fl_Value_Output::

Fl_Value_Output

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Value_Output (int x, int y, int w, int h, const char ∗l=0)

Creates a new Fl_Value_Output widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

• uchar soft () const

If "soft" is turned on, the user is allowed to drag the value outside the range.

• void soft (uchar s)

If "soft" is turned on, the user is allowed to drag the value outside the range.

• void textcolor (Fl_Color s)

Gets the color of the text in the value box.

• Fl_Color textcolor () const

Sets the color of the text in the value box.

• void textfont (Fl_Font s)

Sets the typeface of the text in the value box.

• Fl_Font textfont () const

Gets the typeface of the text in the value box.

• void textsize (Fl_Fontsize s)

• Fl_Fontsize textsize () const

Gets the size of the text in the value box.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.124 Fl_Value_Output Class Reference 905

Protected Member Functions

• void draw ()
Draws the widget.

30.124.1 Detailed Description

The Fl_Value_Output widget displays a floating point value.

If step() is not zero, the user can adjust the value by dragging the mouse left and right. The left button
moves one step() per pixel, the middle by 10 ∗ step(), and the right button by 100 ∗ step().

This is much lighter-weight than Fl_Value_Input because it contains no text editing code or character buffer.

Figure 30.39: Fl_Value_Output

30.124.2 Constructor & Destructor Documentation

30.124.2.1 Fl_Value_Output::Fl_Value_Output (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Value_Output widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

Inherited destructor destroys the Valuator.

30.124.3 Member Function Documentation

30.124.3.1 void Fl_Value_Output::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.124.3.2 int Fl_Value_Output::handle (int event) [virtual]

Handles the specified event.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

906 Class Documentation

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

30.124.3.3 uchar Fl_Value_Output::soft () const [inline]

If "soft" is turned on, the user is allowed to drag the value outside the range.

If they drag the value to one of the ends, let go, then grab again and continue to drag, they can get to any
value. Default is one.

30.124.3.4 void Fl_Value_Output::soft (uchar s) [inline]

If "soft" is turned on, the user is allowed to drag the value outside the range.

If they drag the value to one of the ends, let go, then grab again and continue to drag, they can get to any
value. Default is one.

30.124.3.5 void Fl_Value_Output::textcolor (Fl_Color s) [inline]

Gets the color of the text in the value box.

30.124.3.6 Fl_Color Fl_Value_Output::textcolor () const [inline]

Sets the color of the text in the value box.

30.124.3.7 void Fl_Value_Output::textfont (Fl_Font s) [inline]

Sets the typeface of the text in the value box.

30.124.3.8 Fl_Font Fl_Value_Output::textfont () const [inline]

Gets the typeface of the text in the value box.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.124 Fl_Value_Output Class Reference 907

30.124.3.9 Fl_Fontsize Fl_Value_Output::textsize () const [inline]

Gets the size of the text in the value box.

The documentation for this class was generated from the following files:

• Fl_Value_Output.H
• Fl_Value_Output.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

908 Class Documentation

30.125 Fl_Value_Slider Class Reference

The Fl_Value_Slider widget is a Fl_Slider widget with a box displaying the current value.

#include <Fl_Value_Slider.H>

Inheritance diagram for Fl_Value_Slider::

Fl_Value_Slider

Fl_Slider

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Value_Slider (int x, int y, int w, int h, const char ∗l=0)
Creates a new Fl_Value_Slider widget using the given position, size, and label string.

• int handle (int)
Handles the specified event.

• void textcolor (Fl_Color s)
Sets the color of the text in the value box.

• Fl_Color textcolor () const
Gets the color of the text in the value box.

• void textfont (Fl_Font s)
Sets the typeface of the text in the value box.

• Fl_Font textfont () const
Gets the typeface of the text in the value box.

• void textsize (Fl_Fontsize s)
Sets the size of the text in the value box.

• Fl_Fontsize textsize () const
Gets the size of the text in the value box.

Protected Member Functions

• void draw ()
Draws the widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.125 Fl_Value_Slider Class Reference 909

30.125.1 Detailed Description

The Fl_Value_Slider widget is a Fl_Slider widget with a box displaying the current value.

Figure 30.40: Fl_Value_Slider

30.125.2 Constructor & Destructor Documentation

30.125.2.1 Fl_Value_Slider::Fl_Value_Slider (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Value_Slider widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

30.125.3 Member Function Documentation

30.125.3.1 void Fl_Value_Slider::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Slider.

30.125.3.2 int Fl_Value_Slider::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

910 Class Documentation

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Slider.

30.125.3.3 void Fl_Value_Slider::textcolor (Fl_Color s) [inline]

Sets the color of the text in the value box.

30.125.3.4 Fl_Color Fl_Value_Slider::textcolor () const [inline]

Gets the color of the text in the value box.

30.125.3.5 void Fl_Value_Slider::textfont (Fl_Font s) [inline]

Sets the typeface of the text in the value box.

30.125.3.6 Fl_Font Fl_Value_Slider::textfont () const [inline]

Gets the typeface of the text in the value box.

30.125.3.7 void Fl_Value_Slider::textsize (Fl_Fontsize s) [inline]

Sets the size of the text in the value box.

30.125.3.8 Fl_Fontsize Fl_Value_Slider::textsize () const [inline]

Gets the size of the text in the value box.

The documentation for this class was generated from the following files:

• Fl_Value_Slider.H
• Fl_Value_Slider.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 911

30.126 Fl_Widget Class Reference

Fl_Widget is the base class for all widgets in FLTK.

#include <Fl_Widget.H>

Inheritance diagram for Fl_Widget::

Fl_Widget

Fl_Box

Fl_Button

Fl_Chart

Fl_Clock_Output

Fl_FormsBitmap

Fl_FormsPixmap

Fl_Free

Fl_Group

Fl_Input_

Fl_Menu_

Fl_Positioner

Fl_Progress

Fl_Timer

Fl_Valuator

Public Member Functions

• void activate ()

Activates the widget.

• unsigned int active () const

Returns whether the widget is active.

• int active_r () const

Returns whether the widget and all of its parents are active.

• void align (Fl_Align alignment)

Sets the label alignment.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

912 Class Documentation

• Fl_Align align () const
Gets the label alignment.

• void argument (long v)
Sets the current user data (long) argument that is passed to the callback function.

• long argument () const
Gets the current user data (long) argument that is passed to the callback function.

• virtual class Fl_Gl_Window ∗ as_gl_window ()
Returns an Fl_Gl_Window pointer if this widget is an Fl_Gl_Window.

• virtual Fl_Group ∗ as_group ()
Returns an Fl_Group pointer if this widget is an Fl_Group.

• virtual Fl_Window ∗ as_window ()
Returns an Fl_Window pointer if this widget is an Fl_Window.

• void box (Fl_Boxtype new_box)
Sets the box type for the widget.

• Fl_Boxtype box () const
Gets the box type of the widget.

• void callback (Fl_Callback1 ∗cb, long p=0)
Sets the current callback function for the widget.

• void callback (Fl_Callback0 ∗cb)
Sets the current callback function for the widget.

• void callback (Fl_Callback ∗cb)
Sets the current callback function for the widget.

• void callback (Fl_Callback ∗cb, void ∗p)
Sets the current callback function for the widget.

• Fl_Callback_p callback () const
Gets the current callback function for the widget.

• unsigned int changed () const
Checks if the widget value changed since the last callback.

• void clear_changed ()
Marks the value of the widget as unchanged.

• void clear_damage (uchar c=0)
Clears or sets the damage flags.

• void clear_output ()
Sets a widget to accept input.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 913

• void clear_visible ()
Hides the widget.

• void clear_visible_focus ()
Disables keyboard focus navigation with this widget.

• void color (Fl_Color bg, Fl_Color sel)
Sets the background and selection color of the widget.

• void color (Fl_Color bg)
Sets the background color of the widget.

• Fl_Color color () const
Gets the background color of the widget.

• void color2 (unsigned a)
For back compatibility only.

• Fl_Color color2 () const
For back compatibility only.

• int contains (const Fl_Widget ∗w) const
Checks if w is a child of this widget.

• void copy_label (const char ∗new_label)
Sets the current label.

• void copy_tooltip (const char ∗text)
Sets the current tooltip text.

• void damage (uchar c, int x, int y, int w, int h)
Sets the damage bits for an area inside the widget.

• void damage (uchar c)
Sets the damage bits for the widget.

• uchar damage () const
Returns non-zero if draw() needs to be called.

• int damage_resize (int, int, int, int)
Internal use only.

• void deactivate ()
Deactivates the widget.

• void deimage (Fl_Image &img)
Sets the image to use as part of the widget label.

• void deimage (Fl_Image ∗img)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

914 Class Documentation

Sets the image to use as part of the widget label.

• const Fl_Image ∗ deimage () const
• Fl_Image ∗ deimage ()

Gets the image that is used as part of the widget label.

• void do_callback (Fl_Widget ∗o, void ∗arg=0)
Calls the widget callback.

• void do_callback (Fl_Widget ∗o, long arg)
Calls the widget callback.

• void do_callback ()
Calls the widget callback.

• virtual void draw ()=0
Draws the widget.

• void draw_label (int, int, int, int, Fl_Align) const
Draws the label in an arbitrary bounding box with an arbitrary alignment.

• int h () const
Gets the widget height.

• virtual int handle (int event)
Handles the specified event.

• virtual void hide ()
Makes a widget invisible.

• void image (Fl_Image &img)
Sets the image to use as part of the widget label.

• void image (Fl_Image ∗img)
Sets the image to use as part of the widget label.

• const Fl_Image ∗ image () const
• Fl_Image ∗ image ()

Gets the image that is used as part of the widget label.

• int inside (const Fl_Widget ∗w) const
Checks if this widget is a child of w.

• void label (Fl_Labeltype a, const char ∗b)
Shortcut to set the label text and type in one call.

• void label (const char ∗text)
Sets the current label pointer.

• const char ∗ label () const

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 915

Gets the current label text.

• void labelcolor (Fl_Color c)
Sets the label color.

• Fl_Color labelcolor () const
Gets the label color.

• void labelfont (Fl_Font f)
Sets the font to use.

• Fl_Font labelfont () const
Gets the font to use.

• void labelsize (Fl_Fontsize pix)
Sets the font size in pixels.

• Fl_Fontsize labelsize () const
Gets the font size in pixels.

• void labeltype (Fl_Labeltype a)
Sets the label type.

• Fl_Labeltype labeltype () const
Gets the label type.

• void measure_label (int &ww, int &hh) const
Sets width ww and height hh accordingly with the label size.

• unsigned int output () const
Returns if a widget is used for output only.

• void parent (Fl_Group ∗p)
Internal use only - "for hacks only".

• Fl_Group ∗ parent () const
Returns a pointer to the parent widget.

• void position (int X, int Y)
Repositions the window or widget.

• void redraw ()
Schedules the drawing of the widget.

• void redraw_label ()
Schedules the drawing of the label.

• virtual void resize (int x, int y, int w, int h)
Changes the size or position of the widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

916 Class Documentation

• void selection_color (Fl_Color a)
Sets the selection color.

• Fl_Color selection_color () const
Gets the selection color.

• void set_changed ()
Marks the value of the widget as changed.

• void set_output ()
Sets a widget to output only.

• void set_visible ()
Makes the widget visible.

• void set_visible_focus ()
Enables keyboard focus navigation with this widget.

• virtual void show ()
Makes a widget visible.

• void size (int W, int H)
Changes the size of the widget.

• int take_focus ()
Gives the widget the keyboard focus.

• unsigned int takesevents () const
Returns if the widget is able to take events.

• int test_shortcut ()
Returns true if the widget’s label contains the entered ’&x’ shortcut.

• void tooltip (const char ∗text)
Sets the current tooltip text.

• const char ∗ tooltip () const
Gets the current tooltip text.

• void type (uchar t)
Sets the widget type.

• uchar type () const
Gets the widget type.

• void user_data (void ∗v)
Sets the user data for this widget.

• void ∗ user_data () const
Gets the user data for this widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 917

• unsigned int visible () const

Returns whether a widget is visible.

• unsigned int visible_focus ()

Checks whether this widget has a visible focus.

• void visible_focus (int v)

Modifies keyboard focus navigation.

• int visible_r () const

Returns whether a widget and all its parents are visible.

• int w () const

Gets the widget width.

• void when (uchar i)

Sets the flags used to decide when a callback is called.

• Fl_When when () const

Returns the conditions under which the callback is called.

• Fl_Window ∗ window () const

Returns a pointer to the primary Fl_Window widget.

• int x () const

Gets the widget position in its window.

• int y () const

Gets the widget position in its window.

• virtual ∼Fl_Widget ()

Destroys the widget.

Static Public Member Functions

• static void default_callback (Fl_Widget ∗cb, void ∗d)

Sets the default callback for all widgets.

• static unsigned int label_shortcut (const char ∗t)
Returns the Unicode value of the ’&x’ shortcut in a given text.

• static int test_shortcut (const char ∗, const bool require_alt=false)

Returns true if the given text t contains the entered ’&x’ shortcut.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

918 Class Documentation

Protected Types

• enum {

INACTIVE = 1<<0, INVISIBLE = 1<<1, OUTPUT = 1<<2, NOBORDER = 1<<3,

FORCE_POSITION = 1<<4, NON_MODAL = 1<<5, SHORTCUT_LABEL = 1<<6,
CHANGED = 1<<7,

OVERRIDE = 1<<8, VISIBLE_FOCUS = 1<<9, COPIED_LABEL = 1<<10, CLIP_-
CHILDREN = 1<<11,

MENU_WINDOW = 1<<12, TOOLTIP_WINDOW = 1<<13, MODAL = 1<<14, NO_-
OVERLAY = 1<<15,

GROUP_RELATIVE = 1<<16, COPIED_TOOLTIP = 1<<17, USERFLAG3 = 1<<29, USER-
FLAG2 = 1<<30,

USERFLAG1 = 1<<31 }
flags possible values enumeration.

Protected Member Functions

• void clear_flag (unsigned int c)
Clears a flag in the flags mask.

• void draw_backdrop () const
If FL_ALIGN_IMAGE_BACKDROP is set, the image or deimage will be drawn.

• void draw_box (Fl_Boxtype t, int x, int y, int w, int h, Fl_Color c) const
Draws a box of type t, of color c at the position X,Y and size W,H.

• void draw_box (Fl_Boxtype t, Fl_Color c) const
Draws a box of type t, of color c at the widget’s position and size.

• void draw_box () const
Draws the widget box according its box style.

• void draw_focus (Fl_Boxtype t, int x, int y, int w, int h) const
Draws a focus box for the widget at the given position and size.

• void draw_focus ()
draws a focus rectangle around the widget

• void draw_label (int, int, int, int) const
Draws the label in an arbitrary bounding box.

• void draw_label () const
Draws the widget’s label at the defined label position.

• Fl_Widget (int x, int y, int w, int h, const char ∗label=0L)
Creates a widget at the given position and size.

• unsigned int flags () const

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 919

Gets the widget flags mask.

• void h (int v)

Internal use only.

• void set_flag (unsigned int c)

Sets a flag in the flags mask.

• void w (int v)

Internal use only.

• void x (int v)

Internal use only.

• void y (int v)

Internal use only.

Friends

• class Fl_Group

30.126.1 Detailed Description

Fl_Widget is the base class for all widgets in FLTK.

You can’t create one of these because the constructor is not public. However you can subclass it.

All "property" accessing methods, such as color(), parent(), or argument() are implemented as trivial inline
functions and thus are as fast and small as accessing fields in a structure. Unless otherwise noted, the
property setting methods such as color(n) or label(s) are also trivial inline functions, even if they change
the widget’s appearance. It is up to the user code to call redraw() after these.

30.126.2 Member Enumeration Documentation

30.126.2.1 anonymous enum [protected]

flags possible values enumeration.

See activate(), output(), visible(), changed(), set_visible_focus()

Enumerator:

INACTIVE the widget can’t receive focus, and is disabled but potentially visible

INVISIBLE the widget is not drawn but can receive events

OUTPUT for output only

NOBORDER don’t draw a decoration (Fl_Window)

FORCE_POSITION don’t let the window manager position the window (Fl_Window)

NON_MODAL thisis a hovering toolbar window (Fl_Window)

SHORTCUT_LABEL the label contains a shortcut we need to draw

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

920 Class Documentation

CHANGED the widget value changed

OVERRIDE position window on top (Fl_Window)

VISIBLE_FOCUS accepts keyboard focus navigation if the widget can have the focus

COPIED_LABEL the widget label is internally copied, its destruction is handled by the widget

CLIP_CHILDREN all drawing within this widget will be clipped (Fl_Group)

MENU_WINDOW a temporary popup window, dismissed by clicking outside (Fl_Window)

TOOLTIP_WINDOW a temporary popup, transparent to events, and dismissed easily (Fl_Window)

MODAL a window blocking input to all other winows (Fl_Window)

NO_OVERLAY window not using a hardware overlay plane (Fl_Menu_Window)

GROUP_RELATIVE position this idget relative to the parent group, not to the window

COPIED_TOOLTIP the widget tooltip is internally copied, its destruction is handled by the widget

USERFLAG3 reserved for 3rd party extensions

USERFLAG2 reserved for 3rd party extensions

USERFLAG1 reserved for 3rd party extensions

30.126.3 Constructor & Destructor Documentation

30.126.3.1 Fl_Widget::Fl_Widget (int x, int y, int w, int h, const char ∗ label = 0L)
[protected]

Creates a widget at the given position and size.

The Fl_Widget is a protected constructor, but all derived widgets have a matching public constructor. It
takes a value for x(), y(), w(), h(), and an optional value for label().

Parameters:

← x,y the position of the widget relative to the enclosing window

← w,h size of the widget in pixels

← label optional text for the widget label

30.126.3.2 Fl_Widget::∼Fl_Widget () [virtual]

Destroys the widget.

Destroys the widget, taking care of throwing focus before if any.

Destroying single widgets is not very common. You almost always want to destroy the parent group instead,
which will destroy all of the child widgets and groups in that group.

Since:

FLTK 1.3, the widget’s destructor removes the widget from its parent group, if it is member of a group.

Destruction removes the widget from any parent group! And groups when destroyed destroy all their
children. This is convenient and fast.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 921

30.126.4 Member Function Documentation

30.126.4.1 void Fl_Widget::activate ()

Activates the widget.

Changing this value will send FL_ACTIVATE to the widget if active_r() is true.

See also:

active(), active_r(), deactivate()

30.126.4.2 unsigned int Fl_Widget::active () const [inline]

Returns whether the widget is active.

Return values:

0 if the widget is inactive

See also:

active_r(), activate(), deactivate()

30.126.4.3 int Fl_Widget::active_r () const

Returns whether the widget and all of its parents are active.

Return values:

0 if this or any of the parent widgets are inactive

See also:

active(), activate(), deactivate()

30.126.4.4 void Fl_Widget::align (Fl_Align alignment) [inline]

Sets the label alignment.

This controls how the label is displayed next to or inside the widget. The default value is FL_ALIGN_-
CENTER, which centers the label inside the widget.

Parameters:

← alignment new label alignment

See also:

align(), Fl_Align

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

922 Class Documentation

30.126.4.5 Fl_Align Fl_Widget::align () const [inline]

Gets the label alignment.

Returns:

label alignment

See also:

label(), align(Fl_Align), Fl_Align

Todo

This function should not take uchar as an argument. Apart from the fact that uchar is too short with
only 8 bits, it does not provide type safety (in which case we don’t need to declare Fl_Align an enum
to begin with). NOTE∗ The current (FLTK 1.3) implementation (Dec 2008) is such that Fl_Align is
(typedef’d to be) "unsigned" (int), but Fl_Widget’s "align_" member variable is a bit field of 8 bits
only !

30.126.4.6 void Fl_Widget::argument (long v) [inline]

Sets the current user data (long) argument that is passed to the callback function.

Todo

The user data value must be implemented using a union to avoid 64 bit machine incompatibilities.

30.126.4.7 virtual class Fl_Gl_Window∗ Fl_Widget::as_gl_window () [inline, virtual]

Returns an Fl_Gl_Window pointer if this widget is an Fl_Gl_Window.

Return values:

NULL if this widget is not derived from Fl_Gl_Window.

Note:

This method is provided to avoid dynamic_cast.

Todo

More documentation ...

Reimplemented in Fl_Gl_Window.

30.126.4.8 virtual Fl_Group∗ Fl_Widget::as_group () [inline, virtual]

Returns an Fl_Group pointer if this widget is an Fl_Group.

Return values:

NULL if this widget is not derived from Fl_Group.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 923

Note:

This method is provided to avoid dynamic_cast.

Todo

More documentation ...

Reimplemented in Fl_Group.

30.126.4.9 virtual Fl_Window∗ Fl_Widget::as_window () [inline, virtual]

Returns an Fl_Window pointer if this widget is an Fl_Window.

Return values:

NULL if this widget is not derived from Fl_Window.

Note:

This method is provided to avoid dynamic_cast.

Todo

More documentation ...

Reimplemented in Fl_Window.

30.126.4.10 void Fl_Widget::box (Fl_Boxtype new_box) [inline]

Sets the box type for the widget.

This identifies a routine that draws the background of the widget. See Fl_Boxtype for the available types.
The default depends on the widget, but is usually FL_NO_BOX or FL_UP_BOX.

Parameters:

← new_box the new box type

See also:

box(), Fl_Boxtype

30.126.4.11 Fl_Boxtype Fl_Widget::box () const [inline]

Gets the box type of the widget.

Returns:

the current box type

See also:

box(Fl_Boxtype), Fl_Boxtype

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

924 Class Documentation

30.126.4.12 void Fl_Widget::callback (Fl_Callback1 ∗ cb, long p = 0) [inline]

Sets the current callback function for the widget.

Each widget has a single callback.

Parameters:

← cb new callback

← p user data

30.126.4.13 void Fl_Widget::callback (Fl_Callback0 ∗ cb) [inline]

Sets the current callback function for the widget.

Each widget has a single callback.

Parameters:

← cb new callback

30.126.4.14 void Fl_Widget::callback (Fl_Callback ∗ cb) [inline]

Sets the current callback function for the widget.

Each widget has a single callback.

Parameters:

← cb new callback

30.126.4.15 void Fl_Widget::callback (Fl_Callback ∗ cb, void ∗ p) [inline]

Sets the current callback function for the widget.

Each widget has a single callback.

Parameters:

← cb new callback

← p user data

30.126.4.16 Fl_Callback_p Fl_Widget::callback () const [inline]

Gets the current callback function for the widget.

Each widget has a single callback.

Returns:

current callback

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 925

30.126.4.17 unsigned int Fl_Widget::changed () const [inline]

Checks if the widget value changed since the last callback.

"Changed" is a flag that is turned on when the user changes the value stored in the widget. This is only used
by subclasses of Fl_Widget that store values, but is in the base class so it is easier to scan all the widgets in
a panel and do_callback() on the changed ones in response to an "OK" button.

Most widgets turn this flag off when they do the callback, and when the program sets the stored value.

Return values:

0 if the value did not change

See also:

set_changed(), clear_changed()

Reimplemented in Fl_Input_Choice.

30.126.4.18 void Fl_Widget::clear_changed () [inline]

Marks the value of the widget as unchanged.

See also:

changed(), set_changed()

Reimplemented in Fl_Input_Choice.

30.126.4.19 void Fl_Widget::clear_damage (uchar c = 0) [inline]

Clears or sets the damage flags.

Damage flags are cleared when parts of the widget drawing is repaired.

The optional argument c specifies the bits that are set after the call (default: 0) and not the bits that are
cleared!

Note:

Therefore it is possible to set damage bits with this method, but this should be avoided. Use dam-
age(uchar) instead.

Parameters:

← c new bitmask of damage flags (default: 0)

See also:

damage(uchar), damage()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

926 Class Documentation

30.126.4.20 void Fl_Widget::clear_output () [inline]

Sets a widget to accept input.

See also:

set_output(), output()

30.126.4.21 void Fl_Widget::clear_visible () [inline]

Hides the widget.

You must still redraw the parent to see a change in the window. Normally you want to use the hide() method
instead.

30.126.4.22 void Fl_Widget::clear_visible_focus () [inline]

Disables keyboard focus navigation with this widget.

Normally, all widgets participate in keyboard focus navigation.

See also:

set_visible_focus(), visible_focus(), visible_focus(int)

30.126.4.23 void Fl_Widget::color (Fl_Color bg, Fl_Color sel) [inline]

Sets the background and selection color of the widget.

The two color form sets both the background and selection colors.

Parameters:

← bg background color
← sel selection color

See also:

color(unsigned), selection_color(unsigned)

30.126.4.24 void Fl_Widget::color (Fl_Color bg) [inline]

Sets the background color of the widget.

The color is passed to the box routine. The color is either an index into an internal table of RGB colors or
an RGB color value generated using fl_rgb_color().

The default for most widgets is FL_BACKGROUND_COLOR. Use Fl::set_color() to redefine colors in
the color map.

Parameters:

← bg background color

See also:

color(), color(Fl_Color, Fl_Color), selection_color(Fl_Color)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 927

30.126.4.25 Fl_Color Fl_Widget::color () const [inline]

Gets the background color of the widget.

Returns:

current background color

See also:

color(Fl_Color), color(Fl_Color, Fl_Color)

30.126.4.26 void Fl_Widget::color2 (unsigned a) [inline]

For back compatibility only.

Deprecated

Use selection_color(unsigned) instead.

30.126.4.27 Fl_Color Fl_Widget::color2 () const [inline]

For back compatibility only.

Deprecated

Use selection_color() instead.

30.126.4.28 int Fl_Widget::contains (const Fl_Widget ∗ w) const

Checks if w is a child of this widget.

Parameters:

← w potential child widget

Returns:

Returns 1 if w is a child of this widget, or is equal to this widget. Returns 0 if w is NULL.

30.126.4.29 void Fl_Widget::copy_label (const char ∗ new_label)

Sets the current label.

Unlike label(), this method allocates a copy of the label string instead of using the original string pointer.

The internal copy will automatically be freed whenever you assign a new label or when the widget is
destroyed.

Parameters:

← new_label the new label text

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

928 Class Documentation

See also:

label()

Reimplemented in Fl_Window.

30.126.4.30 void Fl_Widget::copy_tooltip (const char ∗ text)

Sets the current tooltip text.

Unlike tooltip(), this method allocates a copy of the tooltip string instead of using the original string pointer.

The internal copy will automatically be freed whenever you assign a new tooltip or when the widget is
destroyed.

If no tooltip is set, the tooltip of the parent is inherited. Setting a tooltip for a group and setting no tooltip
for a child will show the group’s tooltip instead. To avoid this behavior, you can set the child’s tooltip to
an empty string ("").

Parameters:

← text New tooltip text (an internal copy is made and managed)

See also:

tooltip(const char∗), tooltip()

30.126.4.31 void Fl_Widget::damage (uchar c, int x, int y, int w, int h)

Sets the damage bits for an area inside the widget.

Setting damage bits will schedule the widget for the next redraw.

Parameters:

← c bitmask of flags to set

← x,y,w,h size of damaged area

See also:

damage(), clear_damage(uchar)

30.126.4.32 void Fl_Widget::damage (uchar c)

Sets the damage bits for the widget.

Setting damage bits will schedule the widget for the next redraw.

Parameters:

← c bitmask of flags to set

See also:

damage(), clear_damage(uchar)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 929

30.126.4.33 uchar Fl_Widget::damage () const [inline]

Returns non-zero if draw() needs to be called.

The damage value is actually a bit field that the widget subclass can use to figure out what parts to draw.

Returns:

a bitmap of flags describing the kind of damage to the widget

See also:

damage(uchar), clear_damage(uchar)

30.126.4.34 int Fl_Widget::damage_resize (int X, int Y, int W, int H)

Internal use only.

30.126.4.35 void Fl_Widget::deactivate ()

Deactivates the widget.

Inactive widgets will be drawn "grayed out", e.g. with less contrast than the active widget. Inactive widgets
will not receive any keyboard or mouse button events. Other events (including FL_ENTER, FL_MOVE,
FL_LEAVE, FL_SHORTCUT, and others) will still be sent. A widget is only active if active() is true on it
and all of its parents.

Changing this value will send FL_DEACTIVATE to the widget if active_r() is true.

Currently you cannot deactivate Fl_Window widgets.

See also:

activate(), active(), active_r()

Reimplemented in Fl_Repeat_Button.

30.126.4.36 void Fl_Widget::default_callback (Fl_Widget ∗ cb, void ∗ d) [static]

Sets the default callback for all widgets.

Sets the default callback, which puts a pointer to the widget on the queue returned by Fl::readqueue(). You
may want to call this from your own callback.

Parameters:

← cb the new callback

← d user data associated with that callback

See also:

callback(), do_callback(), Fl::readqueue()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

930 Class Documentation

30.126.4.37 void Fl_Widget::deimage (Fl_Image & img) [inline]

Sets the image to use as part of the widget label.

This image is used when drawing the widget in the inactive state.

Parameters:

← img the new image for the deactivated widget

30.126.4.38 void Fl_Widget::deimage (Fl_Image ∗ img) [inline]

Sets the image to use as part of the widget label.

This image is used when drawing the widget in the inactive state.

Parameters:

← img the new image for the deactivated widget

30.126.4.39 Fl_Image∗ Fl_Widget::deimage () [inline]

Gets the image that is used as part of the widget label.

This image is used when drawing the widget in the inactive state.

Returns:

the current image for the deactivated widget

30.126.4.40 void Fl_Widget::do_callback (Fl_Widget ∗ o, void ∗ arg = 0)

Calls the widget callback.

Causes a widget to invoke its callback function with arbitrary arguments.

Parameters:

← o call the callback with o as the widget argument

← arg use arg as the user data argument

See also:

callback()

30.126.4.41 void Fl_Widget::do_callback (Fl_Widget ∗ o, long arg) [inline]

Calls the widget callback.

Causes a widget to invoke its callback function with arbitrary arguments.

Parameters:

← o call the callback with o as the widget argument

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 931

← arg call the callback with arg as the user data argument

See also:

callback()

30.126.4.42 void Fl_Widget::do_callback () [inline]

Calls the widget callback.

Causes a widget to invoke its callback function with default arguments.

See also:

callback()

30.126.4.43 virtual void Fl_Widget::draw () [pure virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implemented in Fl_Adjuster, Fl_Box, Fl_Browser_, Fl_Button, Fl_Cairo_Window, Fl_Chart, Fl_Choice,
Fl_Clock_Output, Fl_Counter, Fl_Dial, Fl_File_Input, Fl_FormsBitmap, Fl_FormsPixmap, Fl_Free, Fl_-
Gl_Window, Fl_Group, Fl_Input, Fl_Light_Button, Fl_Menu_Bar, Fl_Menu_Button, Fl_Pack, Fl_-
Positioner, Fl_Progress, Fl_Return_Button, Fl_Roller, Fl_Scroll, Fl_Scrollbar, Fl_Slider, Fl_Sys_Menu_-
Bar, Fl_Table, Fl_Tabs, Fl_Text_Display, Fl_Timer, Fl_Tree, Fl_Value_Input, Fl_Value_Output, Fl_-
Value_Slider, Fl_Window, and Fl_Glut_Window.

30.126.4.44 void Fl_Widget::draw_box (Fl_Boxtype t, int X, int Y, int W, int H, Fl_Color c)
const [protected]

Draws a box of type t, of color c at the position X,Y and size W,H.

30.126.4.45 void Fl_Widget::draw_box (Fl_Boxtype t, Fl_Color c) const [protected]

Draws a box of type t, of color c at the widget’s position and size.

30.126.4.46 void Fl_Widget::draw_label (int X, int Y, int W, int H, Fl_Align a) const

Draws the label in an arbitrary bounding box with an arbitrary alignment.

Anybody can call this to force the label to draw anywhere.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

932 Class Documentation

30.126.4.47 void Fl_Widget::draw_label (int X, int Y, int W, int H) const [protected]

Draws the label in an arbitrary bounding box.

draw() can use this instead of draw_label(void) to change the bounding box

30.126.4.48 void Fl_Widget::draw_label (void) const [protected]

Draws the widget’s label at the defined label position.

This is the normal call for a widget’s draw() method.

30.126.4.49 int Fl_Widget::h () const [inline]

Gets the widget height.

Returns:

the height of the widget in pixels.

30.126.4.50 void Fl_Widget::h (int v) [inline, protected]

Internal use only.

Use position(int,int), size(int,int) or resize(int,int,int,int) instead.

30.126.4.51 int Fl_Widget::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented in Fl_Adjuster, Fl_Box, Fl_Browser_, Fl_Button, Fl_Check_Browser, Fl_Choice, Fl_-
Clock, Fl_Counter, Fl_Dial, Fl_File_Input, Fl_Free, Fl_Gl_Window, Fl_Group, Fl_Input, Fl_Light_-
Button, Fl_Menu_Bar, Fl_Menu_Button, Fl_Positioner, Fl_Repeat_Button, Fl_Return_Button, Fl_Roller,

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 933

Fl_Scroll, Fl_Scrollbar, Fl_Slider, Fl_Spinner, Fl_Table, Fl_Table_Row, Fl_Tabs, Fl_Text_Display, Fl_-
Text_Editor, Fl_Tile, Fl_Timer, Fl_Tree, Fl_Value_Input, Fl_Value_Output, Fl_Value_Slider, Fl_Window,
and Fl_Glut_Window.

30.126.4.52 void Fl_Widget::hide () [virtual]

Makes a widget invisible.

See also:

show(), visible(), visible_r()

Reimplemented in Fl_Browser, Fl_Double_Window, Fl_Gl_Window, Fl_Menu_Window, Fl_Overlay_-
Window, and Fl_Window.

30.126.4.53 void Fl_Widget::image (Fl_Image & img) [inline]

Sets the image to use as part of the widget label.

This image is used when drawing the widget in the active state.

Parameters:

← img the new image for the label

30.126.4.54 void Fl_Widget::image (Fl_Image ∗ img) [inline]

Sets the image to use as part of the widget label.

This image is used when drawing the widget in the active state.

Parameters:

← img the new image for the label

30.126.4.55 Fl_Image∗ Fl_Widget::image () [inline]

Gets the image that is used as part of the widget label.

This image is used when drawing the widget in the active state.

Returns:

the current image

30.126.4.56 int Fl_Widget::inside (const Fl_Widget ∗ w) const [inline]

Checks if this widget is a child of w.

Returns 1 if this widget is a child of w, or is equal to w. Returns 0 if w is NULL.

Parameters:

← w the possible parent widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

934 Class Documentation

See also:

contains()

30.126.4.57 void Fl_Widget::label (Fl_Labeltype a, const char ∗ b) [inline]

Shortcut to set the label text and type in one call.

See also:

label(const char ∗), labeltype(Fl_Labeltype)

30.126.4.58 void Fl_Widget::label (const char ∗ text)

Sets the current label pointer.

The label is shown somewhere on or next to the widget. The passed pointer is stored unchanged in the
widget (the string is not copied), so if you need to set the label to a formatted value, make sure the buffer
is static, global, or allocated. The copy_label() method can be used to make a copy of the label string
automatically.

Parameters:

← text pointer to new label text

See also:

copy_label()

Reimplemented in Fl_Window.

30.126.4.59 const char∗ Fl_Widget::label () const [inline]

Gets the current label text.

Returns:

a pointer to the current label text

See also:

label(const char ∗), copy_label(const char ∗)

Reimplemented in Fl_Window.

30.126.4.60 unsigned int Fl_Widget::label_shortcut (const char ∗ t) [static]

Returns the Unicode value of the ’&x’ shortcut in a given text.

The given text t (usually a widget’s label or a menu text) is searched for a ’&x’ shortcut label, and if found,
the Unicode value of the ’&x’ shortcut is returned.

Parameters:

t text or label to search for ’&x’ shortcut.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 935

Returns:

Unicode (UCS-4) value of shortcut in t or 0.

Note:

Internal use only.

30.126.4.61 void Fl_Widget::labelcolor (Fl_Color c) [inline]

Sets the label color.

The default color is FL_FOREGROUND_COLOR.

Parameters:

← c the new label color

30.126.4.62 Fl_Color Fl_Widget::labelcolor () const [inline]

Gets the label color.

The default color is FL_FOREGROUND_COLOR.

Returns:

the current label color

30.126.4.63 void Fl_Widget::labelfont (Fl_Font f) [inline]

Sets the font to use.

Fonts are identified by indexes into a table. The default value uses a Helvetica typeface (Arial for Mi-
crosoft®Windows®). The function Fl::set_font() can define new typefaces.

Parameters:

← f the new font for the label

See also:

Fl_Font

Reimplemented in Fl_Tree.

30.126.4.64 Fl_Font Fl_Widget::labelfont () const [inline]

Gets the font to use.

Fonts are identified by indexes into a table. The default value uses a Helvetica typeface (Arial for Mi-
crosoft®Windows®). The function Fl::set_font() can define new typefaces.

Returns:

current font used by the label

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

936 Class Documentation

See also:

Fl_Font

Reimplemented in Fl_Tree.

30.126.4.65 void Fl_Widget::labelsize (Fl_Fontsize pix) [inline]

Sets the font size in pixels.

Parameters:

← pix the new font size

See also:

Fl_Fontsize labelsize()

Reimplemented in Fl_Tree.

30.126.4.66 Fl_Fontsize Fl_Widget::labelsize () const [inline]

Gets the font size in pixels.

The default size is 14 pixels.

Returns:

the current font size

Reimplemented in Fl_Tree.

30.126.4.67 void Fl_Widget::labeltype (Fl_Labeltype a) [inline]

Sets the label type.

The label type identifies the function that draws the label of the widget. This is generally used for special
effects such as embossing or for using the label() pointer as another form of data such as an icon. The value
FL_NORMAL_LABEL prints the label as plain text.

Parameters:

← a new label type

See also:

Fl_Labeltype

30.126.4.68 Fl_Labeltype Fl_Widget::labeltype () const [inline]

Gets the label type.

Returns:

the current label type.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 937

See also:

Fl_Labeltype

30.126.4.69 void Fl_Widget::measure_label (int & ww, int & hh) const [inline]

Sets width ww and height hh accordingly with the label size.

Labels with images will return w() and h() of the image.

30.126.4.70 unsigned int Fl_Widget::output () const [inline]

Returns if a widget is used for output only.

output() means the same as !active() except it does not change how the widget is drawn. The widget will
not receive any events. This is useful for making scrollbars or buttons that work as displays rather than
input devices.

Return values:

0 if the widget is used for input and output

See also:

set_output(), clear_output()

30.126.4.71 void Fl_Widget::parent (Fl_Group ∗ p) [inline]

Internal use only - "for hacks only".

It is STRONGLY recommended not to use this method, because it short-circuits Fl_Group’s normal widget
adding and removing methods, if the widget is already a child widget of another Fl_Group.

Use Fl_Group::add(Fl_Widget∗) and/or Fl_Group::remove(Fl_Widget∗) instead.

30.126.4.72 Fl_Group∗ Fl_Widget::parent () const [inline]

Returns a pointer to the parent widget.

Usually this is a Fl_Group or Fl_Window.

Return values:

NULL if the widget has no parent

See also:

Fl_Group::add(Fl_Widget∗)

30.126.4.73 void Fl_Widget::position (int X, int Y) [inline]

Repositions the window or widget.

position(X, Y) is a shortcut for resize(X, Y, w(), h()).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

938 Class Documentation

Parameters:

← X,Y new position relative to the parent window

See also:

resize(int,int,int,int), size(int,int)

Reimplemented in Fl_Input_.

30.126.4.74 void Fl_Widget::redraw ()

Schedules the drawing of the widget.

Marks the widget as needing its draw() routine called.

30.126.4.75 void Fl_Widget::redraw_label ()

Schedules the drawing of the label.

Marks the widget or the parent as needing a redraw for the label area of a widget.

30.126.4.76 void Fl_Widget::resize (int x, int y, int w, int h) [virtual]

Changes the size or position of the widget.

This is a virtual function so that the widget may implement its own handling of resizing. The default
version does not call the redraw() method, but instead relies on the parent widget to do so because the
parent may know a faster way to update the display, such as scrolling from the old position.

Some window managers under X11 call resize() a lot more often than needed. Please verify that the position
or size of a widget did actually change before doing any extensive calculations.

position(X, Y) is a shortcut for resize(X, Y, w(), h()), and size(W, H) is a shortcut for resize(x(), y(), W, H).

Parameters:

← x,y new position relative to the parent window

← w,h new size

See also:

position(int,int), size(int,int)

Reimplemented in Fl_Browser_, Fl_Double_Window, Fl_Gl_Window, Fl_Group, Fl_Help_View, Fl_-
Input_, Fl_Input_Choice, Fl_Overlay_Window, Fl_Scroll, Fl_Spinner, Fl_Table, Fl_Text_Display, Fl_-
Tile, Fl_Value_Input, and Fl_Window.

30.126.4.77 void Fl_Widget::selection_color (Fl_Color a) [inline]

Sets the selection color.

The selection color is defined for Forms compatibility and is usually used to color the widget when it is
selected, although some widgets use this color for other purposes. You can set both colors at once with
color(Fl_Color bg, Fl_Color sel).

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 939

Parameters:

← a the new selection color

See also:

selection_color(), color(Fl_Color, Fl_Color)

30.126.4.78 Fl_Color Fl_Widget::selection_color () const [inline]

Gets the selection color.

Returns:

the current selection color

See also:

selection_color(Fl_Color), color(Fl_Color, Fl_Color)

30.126.4.79 void Fl_Widget::set_changed () [inline]

Marks the value of the widget as changed.

See also:

changed(), clear_changed()

Reimplemented in Fl_Input_Choice.

30.126.4.80 void Fl_Widget::set_output () [inline]

Sets a widget to output only.

See also:

output(), clear_output()

30.126.4.81 void Fl_Widget::set_visible () [inline]

Makes the widget visible.

You must still redraw the parent widget to see a change in the window. Normally you want to use the
show() method instead.

30.126.4.82 void Fl_Widget::set_visible_focus () [inline]

Enables keyboard focus navigation with this widget.

Note, however, that this will not necessarily mean that the widget will accept focus, but for widgets that
can accept focus, this method enables it if it has been disabled.

See also:

visible_focus(), clear_visible_focus(), visible_focus(int)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

940 Class Documentation

30.126.4.83 void Fl_Widget::show () [virtual]

Makes a widget visible.

An invisible widget never gets redrawn and does not get events. The visible() method returns true if the
widget is set to be visible. The visible_r() method returns true if the widget and all of its parents are visible.
A widget is only visible if visible() is true on it and all of its parents.

Changing it will send FL_SHOW or FL_HIDE events to the widget. Do not change it if the parent is not
visible, as this will send false FL_SHOW or FL_HIDE events to the widget. redraw() is called if necessary
on this or the parent.

See also:

hide(), visible(), visible_r()

Reimplemented in Fl_Browser, Fl_Double_Window, Fl_Gl_Window, Fl_Menu_Window, Fl_Overlay_-
Window, Fl_Single_Window, and Fl_Window.

30.126.4.84 void Fl_Widget::size (int W, int H) [inline]

Changes the size of the widget.

size(W, H) is a shortcut for resize(x(), y(), W, H).

Parameters:

←W,H new size

See also:

position(int,int), resize(int,int,int,int)

Reimplemented in Fl_Browser, Fl_Chart, Fl_Help_View, Fl_Input_, and Fl_Menu_.

30.126.4.85 int Fl_Widget::take_focus ()

Gives the widget the keyboard focus.

Tries to make this widget be the Fl::focus() widget, by first sending it an FL_FOCUS event, and if it returns
non-zero, setting Fl::focus() to this widget. You should use this method to assign the focus to a widget.

Returns:

true if the widget accepted the focus.

30.126.4.86 unsigned int Fl_Widget::takesevents () const [inline]

Returns if the widget is able to take events.

This is the same as (active() && !output() && visible()) but is faster.

Return values:

0 if the widget takes no events

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 941

30.126.4.87 int Fl_Widget::test_shortcut (const char ∗ t, const bool require_alt = false)
[static]

Returns true if the given text t contains the entered ’&x’ shortcut.

This method must only be called in handle() methods or callbacks after a keypress event (usually FL_-
KEYDOWN or FL_SHORTCUT). The given text t (usually a widget’s label or menu text) is searched for
a ’&x’ shortcut, and if found, this is compared with the entered key value.

Fl::event_text() is used to get the entered key value. Fl::event_state() is used to get the Alt modifier, if
require_alt is true.

Parameters:

t text or label to search for ’&x’ shortcut.

require_alt if true: match only if Alt key is pressed.

Returns:

true, if the entered text matches the ’&x’ shortcut in t false (0) otherwise.

Note:

Internal use only.

30.126.4.88 int Fl_Widget::test_shortcut ()

Returns true if the widget’s label contains the entered ’&x’ shortcut.

This method must only be called in handle() methods or callbacks after a keypress event (usually FL_-
KEYDOWN or FL_SHORTCUT). The widget’s label is searched for a ’&x’ shortcut, and if found, this is
compared with the entered key value.

Fl::event_text() is used to get the entered key value.

Returns:

true, if the entered text matches the widget’s’&x’ shortcut, false (0) otherwise.

Note:

Internal use only.

Reimplemented in Fl_Menu_.

30.126.4.89 void Fl_Widget::tooltip (const char ∗ text)

Sets the current tooltip text.

Sets a string of text to display in a popup tooltip window when the user hovers the mouse over the widget.
The string is not copied, so make sure any formatted string is stored in a static, global, or allocated buffer.
If you want a copy made and managed for you, use the copy_tooltip() method, which will manage the
tooltip string automatically.

If no tooltip is set, the tooltip of the parent is inherited. Setting a tooltip for a group and setting no tooltip
for a child will show the group’s tooltip instead. To avoid this behavior, you can set the child’s tooltip to
an empty string ("").

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

942 Class Documentation

Parameters:

← text New tooltip text (no copy is made)

See also:

copy_tooltip(const char∗), tooltip()

30.126.4.90 const char∗ Fl_Widget::tooltip () const [inline]

Gets the current tooltip text.

Returns:

a pointer to the tooltip text or NULL

See also:

tooltip(const char∗), copy_tooltip(const char∗)

30.126.4.91 void Fl_Widget::type (uchar t) [inline]

Sets the widget type.

This is used for Forms compatibility.

Reimplemented in Fl_Spinner.

30.126.4.92 uchar Fl_Widget::type () const [inline]

Gets the widget type.

Returns the widget type value, which is used for Forms compatibility and to simulate RTTI.

Todo

Explain "simulate RTTI" (currently only used to decide if a widget is a window, i.e. type()>=FL_-
WINDOW ?). Is type() really used in a way that ensures "Forms compatibility" ?

Reimplemented in Fl_Spinner, and Fl_Table_Row.

30.126.4.93 void Fl_Widget::user_data (void ∗ v) [inline]

Sets the user data for this widget.

Sets the new user data (void ∗) argument that is passed to the callback function.

Parameters:

← v new user data

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 943

30.126.4.94 void∗ Fl_Widget::user_data () const [inline]

Gets the user data for this widget.

Gets the current user data (void ∗) argument that is passed to the callback function.

Returns:

user data as a pointer

30.126.4.95 unsigned int Fl_Widget::visible () const [inline]

Returns whether a widget is visible.

Return values:

0 if the widget is not drawn and hence invisible.

See also:

show(), hide(), visible_r()

30.126.4.96 unsigned int Fl_Widget::visible_focus () [inline]

Checks whether this widget has a visible focus.

Return values:

0 if this widget has no visible focus.

See also:

visible_focus(int), set_visible_focus(), clear_visible_focus()

30.126.4.97 void Fl_Widget::visible_focus (int v) [inline]

Modifies keyboard focus navigation.

Parameters:

← v set or clear visible focus

See also:

set_visible_focus(), clear_visible_focus(), visible_focus()

30.126.4.98 int Fl_Widget::visible_r () const

Returns whether a widget and all its parents are visible.

Return values:

0 if the widget or any of its parents are invisible.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

944 Class Documentation

See also:

show(), hide(), visible()

30.126.4.99 int Fl_Widget::w () const [inline]

Gets the widget width.

Returns:

the width of the widget in pixels.

30.126.4.100 void Fl_Widget::w (int v) [inline, protected]

Internal use only.

Use position(int,int), size(int,int) or resize(int,int,int,int) instead.

30.126.4.101 void Fl_Widget::when (uchar i) [inline]

Sets the flags used to decide when a callback is called.

This controls when callbacks are done. The following values are useful, the default value is FL_WHEN_-
RELEASE:

• 0: The callback is not done, but changed() is turned on.

• FL_WHEN_CHANGED: The callback is done each time the text is changed by the user.

• FL_WHEN_RELEASE: The callback will be done when this widget loses the focus, including when
the window is unmapped. This is a useful value for text fields in a panel where doing the callback
on every change is wasteful. However the callback will also happen if the mouse is moved out of the
window, which means it should not do anything visible (like pop up an error message). You might
do better setting this to zero, and scanning all the items for changed() when the OK button on a panel
is pressed.

• FL_WHEN_ENTER_KEY: If the user types the Enter key, the entire text is selected, and the callback
is done if the text has changed. Normally the Enter key will navigate to the next field (or insert a
newline for a Fl_Multiline_Input) - this changes the behavior.

• FL_WHEN_ENTER_KEY|FL_WHEN_NOT_CHANGED: The Enter key will do the callback even
if the text has not changed. Useful for command fields. Fl_Widget::when() is a set of bitflags used
by subclasses of Fl_Widget to decide when to do the callback.

If the value is zero then the callback is never done. Other values are described in the individual widgets.
This field is in the base class so that you can scan a panel and do_callback() on all the ones that don’t do
their own callbacks in response to an "OK" button.

Parameters:

← i set of flags

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.126 Fl_Widget Class Reference 945

30.126.4.102 Fl_When Fl_Widget::when () const [inline]

Returns the conditions under which the callback is called.

You can set the flags with when(uchar), the default value is FL_WHEN_RELEASE.

Returns:

set of flags

See also:

when(uchar)

30.126.4.103 Fl_Window ∗ Fl_Widget::window () const

Returns a pointer to the primary Fl_Window widget.

Return values:

NULL if no window is associated with this widget.

Note:

for an Fl_Window widget, this returns its parent window (if any), not this window.

30.126.4.104 int Fl_Widget::x () const [inline]

Gets the widget position in its window.

Returns:

the x position relative to the window

30.126.4.105 void Fl_Widget::x (int v) [inline, protected]

Internal use only.

Use position(int,int), size(int,int) or resize(int,int,int,int) instead.

30.126.4.106 int Fl_Widget::y () const [inline]

Gets the widget position in its window.

Returns:

the y position relative to the window

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

946 Class Documentation

30.126.4.107 void Fl_Widget::y (int v) [inline, protected]

Internal use only.

Use position(int,int), size(int,int) or resize(int,int,int,int) instead.

The documentation for this class was generated from the following files:

• Fl_Widget.H
• Fl.cxx
• fl_boxtype.cxx
• fl_labeltype.cxx
• fl_shortcut.cxx
• Fl_Tooltip.cxx
• Fl_Widget.cxx
• Fl_Window.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.127 Fl_Widget_Tracker Class Reference 947

30.127 Fl_Widget_Tracker Class Reference

This class should be used to control safe widget deletion.

#include <Fl.H>

Public Member Functions

• int deleted ()

Returns 1, if the watched widget has been deleted.

• int exists ()

Returns 1, if the watched widget exists (has not been deleted).

• Fl_Widget_Tracker (Fl_Widget ∗wi)

The constructor adds a widget to the watch list.

• Fl_Widget ∗ widget ()

Returns a pointer to the watched widget.

• ∼Fl_Widget_Tracker ()

The destructor removes a widget from the watch list.

30.127.1 Detailed Description

This class should be used to control safe widget deletion.

You can use an Fl_Widget_Tracker object to watch another widget, if you need to know, if this widget has
been deleted during a callback.

This simplifies the use of the "safe widget deletion" methods Fl::watch_widget_pointer() and Fl::release_-
widget_pointer() and makes their use more reliable, because the destructor autmatically releases the widget
pointer from the widget watch list.

It is intended to be used as an automatic (local/stack) variable, such that the automatic destructor is called
when the object’s scope is left. This ensures that no stale widget pointers are left in the widget watch list
(see example below).

You can also create Fl_Widget_Tracker objects with new, but then it is your responsibility to delete the
object (and thus remove the widget pointer from the watch list) when it is not needed any more.

Example:

int MyClass::handle (int event) {

if (...) {
Fl_Widget_Tracker wp(this); // watch myself
do_callback(); // call the callback

if (wp.deleted()) return 1; // exit, if deleted

// Now we are sure that the widget has not been deleted.
// It is safe to access the widget

clear_changed(); // access the widget

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

948 Class Documentation

}
}

30.127.2 Member Function Documentation

30.127.2.1 int Fl_Widget_Tracker::deleted () [inline]

Returns 1, if the watched widget has been deleted.

This is a convenience method. You can also use something like

if (wp.widget() == 0) // ...

where wp is an Fl_Widget_Tracker object.

30.127.2.2 int Fl_Widget_Tracker::exists () [inline]

Returns 1, if the watched widget exists (has not been deleted).

This is a convenience method. You can also use something like

if (wp.widget() != 0) // ...

where wp is an Fl_Widget_Tracker object.

30.127.2.3 Fl_Widget∗ Fl_Widget_Tracker::widget () [inline]

Returns a pointer to the watched widget.

This pointer is NULL, if the widget has been deleted.

The documentation for this class was generated from the following files:

• Fl.H
• Fl.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.128 Fl_Window Class Reference 949

30.128 Fl_Window Class Reference

This widget produces an actual window.

#include <Fl_Window.H>

Inheritance diagram for Fl_Window::

Fl_Window

Fl_Group

Fl_Widget

Fl_Double_Window Fl_Gl_Window Fl_Single_Window

Fl_Cairo_Window Fl_Overlay_Window Fl_Glut_Window Fl_Menu_Window

Public Member Functions

• virtual Fl_Window ∗ as_window ()
Returns an Fl_Window pointer if this widget is an Fl_Window.

• unsigned int border () const
See void Fl_Window::border(int).

• void border (int b)
Sets whether or not the window manager border is around the window.

• void clear_border ()
Fast inline function to turn the window manager border off.

• void copy_label (const char ∗a)
Sets the current label.

• void cursor (Fl_Cursor, Fl_Color=FL_BLACK, Fl_Color=FL_WHITE)
Changes the cursor for this window.

• void default_cursor (Fl_Cursor, Fl_Color=FL_BLACK, Fl_Color=FL_WHITE)
Sets the default window cursor as well as its color.

• Fl_Window (int x, int y, int w, int h, const char ∗title=0)
Creates a window from the given position, size and title.

• Fl_Window (int w, int h, const char ∗title=0)
Creates a window from the given size and title.

• void free_position ()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

950 Class Documentation

Undoes the effect of a previous resize() or show() so that the next time show() is called the window manager
is free to position the window.

• void fullscreen ()

Makes the window completely fill the screen, without any window manager border visible.

• void fullscreen_off (int, int, int, int)

Turns off any side effects of fullscreen() and does resize(x,y,w,h).

• virtual int handle (int)

Handles the specified event.

• virtual void hide ()

Removes the window from the screen.

• void hotspot (const Fl_Widget &p, int offscreen=0)

See void Fl_Window::hotspot(int x, int y, int offscreen = 0).

• void hotspot (const Fl_Widget ∗, int offscreen=0)

See void Fl_Window::hotspot(int x, int y, int offscreen = 0).

• void hotspot (int x, int y, int offscreen=0)

Positions the window so that the mouse is pointing at the given position, or at the center of the given widget,
which may be the window itself.

• void icon (const void ∗ic)

Sets the current icon window target dependent data.

• const void ∗ icon () const

Gets the current icon window target dependent data.

• void iconize ()

Iconifies the window.

• void iconlabel (const char ∗)
Sets the icon label.

• const char ∗ iconlabel () const

See void Fl_Window::iconlabel(const char∗).

• void label (const char ∗label, const char ∗iconlabel)

Sets the icon label.

• void label (const char ∗)
Sets the window title bar label.

• const char ∗ label () const

See void Fl_Window::label(const char∗).

• void make_current ()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.128 Fl_Window Class Reference 951

Sets things up so that the drawing functions in <FL/fl_draw.H> will go into this window.

• unsigned int menu_window () const

Returns true if this window is a menu window.

• unsigned int modal () const

Returns true if this window is modal.

• unsigned int non_modal () const

Returns true if this window is modal or non-modal.

• unsigned int override () const

Returns non zero if FL_OVERRIDE flag is set, 0 otherwise.

• virtual void resize (int, int, int, int)

Changes the size and position of the window.

• void set_menu_window ()

Marks the window as a menu window.

• void set_modal ()

A "modal" window, when shown(), will prevent any events from being delivered to other windows in the
same program, and will also remain on top of the other windows (if the X window manager supports the
"transient for" property).

• void set_non_modal ()

A "non-modal" window (terminology borrowed from Microsoft Windows) acts like a modal() one in that it
remains on top, but it has no effect on event delivery.

• void set_override ()

Activates the flags NOBORDER|FL_OVERRIDE.

• void set_tooltip_window ()

Marks the window as a tooltip window.

• void show (int argc, char ∗∗argv)

Puts the window on the screen and parses command-line arguments.

• virtual void show ()

Puts the window on the screen.

• int shown ()

Returns non-zero if show() has been called (but not hide()).

• void size_range (int a, int b, int c=0, int d=0, int e=0, int f=0, int g=0)

Sets the allowable range the user can resize this window to.

• unsigned int tooltip_window () const

Returns true if this window is a tooltip window.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

952 Class Documentation

• int x_root () const

Gets the x position of the window on the screen.

• void xclass (const char ∗c)

Sets the xclass for this window.

• const char ∗ xclass () const

Returns the xclass for this window, or a default.

• int y_root () const

Gets the y position of the window on the screen.

• virtual ∼Fl_Window ()

The destructor also deletes all the children.

Static Public Member Functions

• static Fl_Window ∗ current ()

Returns the last window that was made current.

• static void default_callback (Fl_Window ∗, void ∗v)

Back compatibility: Sets the default callback v for win to call on close event.

• static const char ∗ default_xclass ()

Returns the default xclass.

• static void default_xclass (const char ∗)
Sets the default window xclass.

Protected Member Functions

• virtual void draw ()

Draws the widget.

• virtual void flush ()

Forces the window to be drawn, this window is also made current and calls draw().

• int force_position () const

Returns the internal state of the window’s FORCE_POSITION flag.

• void force_position (int force)

Sets an internal flag that tells FLTK and the window manager to honor position requests.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.128 Fl_Window Class Reference 953

Static Protected Attributes

• static Fl_Window ∗ current_
Stores the last window that was made current.

Friends

• class Fl_X

30.128.1 Detailed Description

This widget produces an actual window.

This can either be a main window, with a border and title and all the window management controls, or a
"subwindow" inside a window. This is controlled by whether or not the window has a parent().

Once you create a window, you usually add children Fl_Widget ’s to it by using window->add(child) for
each new widget. See Fl_Group for more information on how to add and remove children.

There are several subclasses of Fl_Window that provide double-buffering, overlay, menu, and OpenGL
support.

The window’s callback is done if the user tries to close a window using the window manager and
Fl::modal() is zero or equal to the window. Fl_Window has a default callback that calls Fl_Window::hide().

30.128.2 Constructor & Destructor Documentation

30.128.2.1 Fl_Window::Fl_Window (int w, int h, const char ∗ title = 0)

Creates a window from the given size and title.

If Fl_Group::current() is not NULL, the window is created as a subwindow of the parent window.

The first form of the constructor creates a top-level window and asks the window manager to position
the window. The second form of the constructor either creates a subwindow or a top-level window at
the specified location (x,y) , subject to window manager configuration. If you do not specify the position
of the window, the window manager will pick a place to show the window or allow the user to pick a
location. Use position(x,y) or hotspot() before calling show() to request a position on the screen. See
Fl_Window::resize() for some more details on positioning windows.

Top-level windows initially have visible() set to 0 and parent() set to NULL. Subwindows initially have
visible() set to 1 and parent() set to the parent window pointer.

Fl_Widget::box() defaults to FL_FLAT_BOX. If you plan to completely fill the window with children
widgets you should change this to FL_NO_BOX. If you turn the window border off you may want to
change this to FL_UP_BOX.

See also:

Fl_Window(int x, int y, int w, int h, const char∗ title = 0)

30.128.2.2 Fl_Window::Fl_Window (int x, int y, int w, int h, const char ∗ title = 0)

Creates a window from the given position, size and title.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

954 Class Documentation

See also:

Fl_Window::Fl_Window(int w, int h, const char ∗title = 0)

30.128.2.3 Fl_Window::∼Fl_Window () [virtual]

The destructor also deletes all the children.

This allows a whole tree to be deleted at once, without having to keep a pointer to all the children in the user
code. A kludge has been done so the Fl_Window and all of its children can be automatic (local) variables,
but you must declare the Fl_Window first so that it is destroyed last.

30.128.3 Member Function Documentation

30.128.3.1 virtual Fl_Window∗ Fl_Window::as_window () [inline, virtual]

Returns an Fl_Window pointer if this widget is an Fl_Window.

Return values:

NULL if this widget is not derived from Fl_Window.

Note:

This method is provided to avoid dynamic_cast.

Todo

More documentation ...

Reimplemented from Fl_Widget.

30.128.3.2 void Fl_Window::border (int b)

Sets whether or not the window manager border is around the window.

The default value is true. void border(int) can be used to turn the border on and off. Under most X window
managers this does not work after show() has been called, although SGI’s 4DWM does work.

30.128.3.3 void Fl_Window::clear_border () [inline]

Fast inline function to turn the window manager border off.

It only works before show() is called.

30.128.3.4 void Fl_Window::copy_label (const char ∗ new_label)

Sets the current label.

Unlike label(), this method allocates a copy of the label string instead of using the original string pointer.

The internal copy will automatically be freed whenever you assign a new label or when the widget is
destroyed.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.128 Fl_Window Class Reference 955

Parameters:

← new_label the new label text

See also:

label()

Reimplemented from Fl_Widget.

30.128.3.5 Fl_Window ∗ Fl_Window::current () [static]

Returns the last window that was made current.

See also:

Fl_Window::make_current()

Reimplemented from Fl_Group.

30.128.3.6 void Fl_Window::cursor (Fl_Cursor c, Fl_Color fg = FL_BLACK, Fl_Color bg =
FL_WHITE)

Changes the cursor for this window.

This always calls the system, if you are changing the cursor a lot you may want to keep track of how you
set it in a static variable and call this only if the new cursor is different.

The type Fl_Cursor is an enumeration defined in <FL/Enumerations.H>. (Under X you can get any XC_-
cursor value by passing Fl_Cursor((XC_foo/2)+1)). The colors only work on X, they are not implemented
on WIN32.

For back compatibility only.

30.128.3.7 void Fl_Window::default_cursor (Fl_Cursor c, Fl_Color fg = FL_BLACK, Fl_Color bg
= FL_WHITE)

Sets the default window cursor as well as its color.

For back compatibility only.

30.128.3.8 const char ∗ Fl_Window::default_xclass () [static]

Returns the default xclass.

See also:

Fl_Window::default_xclass(const char ∗)

30.128.3.9 void Fl_Window::default_xclass (const char ∗ xc) [static]

Sets the default window xclass.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

956 Class Documentation

The default xclass is used for all windows that don’t have their own xclass set before show() is called.
You can change the default xclass whenever you want, but this only affects windows that are created (and
shown) after this call.

The given string xc is copied. You can use a local variable or free the string immediately after this call.

If you don’t call this, the default xclass for all windows will be "FLTK". You can reset the default xclass
by specifying NULL for xc.

If you call Fl_Window::xclass(const char ∗) for any window, then this also sets the default xclass, unless it
has been set before.

Parameters:

← xc default xclass for all windows subsequently created

See also:

Fl_Window::xclass(const char ∗)

30.128.3.10 void Fl_Window::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Group.

Reimplemented in Fl_Cairo_Window, Fl_Gl_Window, and Fl_Glut_Window.

30.128.3.11 void Fl_Window::flush () [protected, virtual]

Forces the window to be drawn, this window is also made current and calls draw().

Reimplemented in Fl_Double_Window, Fl_Gl_Window, Fl_Menu_Window, Fl_Overlay_Window, and
Fl_Single_Window.

30.128.3.12 int Fl_Window::force_position () const [inline, protected]

Returns the internal state of the window’s FORCE_POSITION flag.

Return values:

1 if flag is set
0 otherwise

See also:

force_position(int)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.128 Fl_Window Class Reference 957

30.128.3.13 void Fl_Window::force_position (int force) [inline, protected]

Sets an internal flag that tells FLTK and the window manager to honor position requests.

This is used internally and should not be needed by user code.

Parameters:

← force 1 to set the FORCE_POSITION flag, 0 to clear it

30.128.3.14 void Fl_Window::free_position () [inline]

Undoes the effect of a previous resize() or show() so that the next time show() is called the window manager
is free to position the window.

This is for Forms compatibility only.

Deprecated

please use force_position(0) instead

30.128.3.15 void Fl_Window::fullscreen ()

Makes the window completely fill the screen, without any window manager border visible.

You must use fullscreen_off() to undo this. This may not work with all window managers.

30.128.3.16 int Fl_Window::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Group.

Reimplemented in Fl_Gl_Window, and Fl_Glut_Window.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

958 Class Documentation

30.128.3.17 void Fl_Window::hide () [virtual]

Removes the window from the screen.

If the window is already hidden or has not been shown then this does nothing and is harmless.

Reimplemented from Fl_Widget.

Reimplemented in Fl_Double_Window, Fl_Gl_Window, Fl_Menu_Window, and Fl_Overlay_Window.

30.128.3.18 void Fl_Window::hotspot (int x, int y, int offscreen = 0)

Positions the window so that the mouse is pointing at the given position, or at the center of the given widget,
which may be the window itself.

If the optional offscreen parameter is non-zero, then the window is allowed to extend off the screen (this
does not work with some X window managers).

See also:

position()

30.128.3.19 void Fl_Window::icon (const void ∗ ic) [inline]

Sets the current icon window target dependent data.

30.128.3.20 const void∗ Fl_Window::icon () const [inline]

Gets the current icon window target dependent data.

30.128.3.21 void Fl_Window::iconize ()

Iconifies the window.

If you call this when shown() is false it will show() it as an icon. If the window is already iconified this
does nothing.

Call show() to restore the window.

When a window is iconified/restored (either by these calls or by the user) the handle() method is called
with FL_HIDE and FL_SHOW events and visible() is turned on and off.

There is no way to control what is drawn in the icon except with the string passed to Fl_Window::xclass().
You should not rely on window managers displaying the icons.

30.128.3.22 void Fl_Window::iconlabel (const char ∗ iname)

Sets the icon label.

30.128.3.23 void Fl_Window::label (const char ∗ label, const char ∗ iconlabel)

Sets the icon label.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.128 Fl_Window Class Reference 959

30.128.3.24 void Fl_Window::label (const char ∗ name)

Sets the window title bar label.

Reimplemented from Fl_Widget.

30.128.3.25 void Fl_Window::make_current ()

Sets things up so that the drawing functions in <FL/fl_draw.H> will go into this window.

This is useful for incremental update of windows, such as in an idle callback, which will make your program
behave much better if it draws a slow graphic. Danger: incremental update is very hard to debug and
maintain!

This method only works for the Fl_Window and Fl_Gl_Window derived classes.

Reimplemented in Fl_Gl_Window, Fl_Single_Window, and Fl_Glut_Window.

30.128.3.26 unsigned int Fl_Window::menu_window () const [inline]

Returns true if this window is a menu window.

30.128.3.27 unsigned int Fl_Window::modal () const [inline]

Returns true if this window is modal.

30.128.3.28 unsigned int Fl_Window::non_modal () const [inline]

Returns true if this window is modal or non-modal.

30.128.3.29 unsigned int Fl_Window::override () const [inline]

Returns non zero if FL_OVERRIDE flag is set, 0 otherwise.

30.128.3.30 virtual void Fl_Window::resize (int, int, int, int) [virtual]

Changes the size and position of the window.

If shown() is true, these changes are communicated to the window server (which may refuse that size and
cause a further resize). If shown() is false, the size and position are used when show() is called. See
Fl_Group for the effect of resizing on the child widgets.

You can also call the Fl_Widget methods size(x,y) and position(w,h), which are inline wrappers for this
virtual function.

A top-level window can not force, but merely suggest a position and size to the operating system. The
window manager may not be willing or able to display a window at the desired position or with the given
dimensions. It is up to the application developer to verify window parameters after the resize request.

Reimplemented from Fl_Group.

Reimplemented in Fl_Double_Window, Fl_Gl_Window, and Fl_Overlay_Window.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

960 Class Documentation

30.128.3.31 void Fl_Window::set_menu_window () [inline]

Marks the window as a menu window.

This is intended for internal use, but it can also be used if you write your own menu handling. However,
this is not recommended.

This flag is used for correct "parenting" of windows in communication with the windowing system. Modern
X window managers can use different flags to distinguish menu and tooltip windows from normal windows.

This must be called before the window is shown and cannot be changed later.

30.128.3.32 void Fl_Window::set_modal () [inline]

A "modal" window, when shown(), will prevent any events from being delivered to other windows in the
same program, and will also remain on top of the other windows (if the X window manager supports the
"transient for" property).

Several modal windows may be shown at once, in which case only the last one shown gets events. You can
see which window (if any) is modal by calling Fl::modal().

30.128.3.33 void Fl_Window::set_non_modal () [inline]

A "non-modal" window (terminology borrowed from Microsoft Windows) acts like a modal() one in that
it remains on top, but it has no effect on event delivery.

There are three states for a window: modal, non-modal, and normal.

30.128.3.34 void Fl_Window::set_tooltip_window () [inline]

Marks the window as a tooltip window.

This is intended for internal use, but it can also be used if you write your own tooltip handling. However,
this is not recommended.

This flag is used for correct "parenting" of windows in communication with the windowing system. Modern
X window managers can use different flags to distinguish menu and tooltip windows from normal windows.

This must be called before the window is shown and cannot be changed later.

Note:

Since Fl_Tooltip_Window is derived from Fl_Menu_Window, this also clears the menu_window()
state.

30.128.3.35 void Fl_Window::show (int argc, char ∗∗ argv)

Puts the window on the screen and parses command-line arguments.

Usually (on X) this has the side effect of opening the display.

This form should be used for top-level windows, at least for the first (main) window. It allows standard
arguments to be parsed from the command-line. You can use argc and argv from main(int argc, char
∗∗argv) for this call.

The first call also sets up some system-specific internal variables like the system colors.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.128 Fl_Window Class Reference 961

Todo

explain which system parameters are set up.

Parameters:

argc command-line argument count, usually from main()

argv command-line argument vector, usually from main()

See also:

virtual void Fl_Window::show()

Reimplemented in Fl_Double_Window, Fl_Gl_Window, Fl_Overlay_Window, and Fl_Single_Window.

30.128.3.36 virtual void Fl_Window::show () [virtual]

Puts the window on the screen.

Usually (on X) this has the side effect of opening the display.

If the window is already shown then it is restored and raised to the top. This is really convenient because
your program can call show() at any time, even if the window is already up. It also means that show()
serves the purpose of raise() in other toolkits.

Fl_Window::show(int argc, char ∗∗argv) is used for top-level windows and allows standard arguments to
be parsed from the command-line.

See also:

Fl_Window::show(int argc, char ∗∗argv)

Reimplemented from Fl_Widget.

Reimplemented in Fl_Double_Window, Fl_Gl_Window, Fl_Menu_Window, Fl_Overlay_Window, and
Fl_Single_Window.

30.128.3.37 int Fl_Window::shown () [inline]

Returns non-zero if show() has been called (but not hide()).

You can tell if a window is iconified with (w->shown() && !w->visible()).

30.128.3.38 void Fl_Window::size_range (int a, int b, int c = 0, int d = 0, int e = 0, int f = 0, int
g = 0) [inline]

Sets the allowable range the user can resize this window to.

This only works for top-level windows.

• minw and minh are the smallest the window can be. Either value must be greater than 0.

• maxw and maxh are the largest the window can be. If either is equal to the minimum then you cannot
resize in that direction. If either is zero then FLTK picks a maximum size in that direction such that
the window will fill the screen.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

962 Class Documentation

• dw and dh are size increments. The window will be constrained to widths of minw + N ∗ dw, where
N is any non-negative integer. If these are less or equal to 1 they are ignored (this is ignored on
WIN32).

• aspect is a flag that indicates that the window should preserve its aspect ratio. This only works if both
the maximum and minimum have the same aspect ratio (ignored on WIN32 and by many X window
managers).

If this function is not called, FLTK tries to figure out the range from the setting of resizable():

• If resizable() is NULL (this is the default) then the window cannot be resized and the resize border
and max-size control will not be displayed for the window.

• If either dimension of resizable() is less than 100, then that is considered the minimum size. Other-
wise the resizable() has a minimum size of 100.

• If either dimension of resizable() is zero, then that is also the maximum size (so the window cannot
resize in that direction).

It is undefined what happens if the current size does not fit in the constraints passed to size_range().

30.128.3.39 unsigned int Fl_Window::tooltip_window () const [inline]

Returns true if this window is a tooltip window.

30.128.3.40 void Fl_Window::xclass (const char ∗ xc)

Sets the xclass for this window.

A string used to tell the system what type of window this is. Mostly this identifies the picture to draw in
the icon. This only works if called before calling show().

Under X, this is turned into a XA_WM_CLASS pair by truncating at the first non-alphanumeric character
and capitalizing the first character, and the second one if the first is ’x’. Thus "foo" turns into "foo, Foo",
and "xprog.1" turns into "xprog, XProg".

Under Microsoft Windows, this string is used as the name of the WNDCLASS structure, though it is not
clear if this can have any visible effect.

Since:

FLTK 1.3 the passed string is copied. You can use a local variable or free the string immediately after
this call. Note that FLTK 1.1 stores the pointer without copying the string.

If the default xclass has not yet been set, this also sets the default xclass for all windows created subse-
quently.

See also:

Fl_Window::default_xclass(const char ∗)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.128 Fl_Window Class Reference 963

30.128.3.41 const char ∗ Fl_Window::xclass () const

Returns the xclass for this window, or a default.

See also:

Fl_Window::default_xclass(const char ∗)
Fl_Window::xclass(const char ∗)

30.128.4 Member Data Documentation

30.128.4.1 Fl_Window∗ Fl_Window::current_ [static, protected]

Stores the last window that was made current.

See current() const

Reimplemented from Fl_Group.

The documentation for this class was generated from the following files:

• Fl_Window.H
• Fl.cxx
• Fl_arg.cxx
• fl_cursor.cxx
• Fl_Window.cxx
• Fl_Window_fullscreen.cxx
• Fl_Window_hotspot.cxx
• Fl_Window_iconize.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

964 Class Documentation

30.129 Fl_Wizard Class Reference

This widget is based off the Fl_Tabs widget, but instead of displaying tabs it only changes "tabs" under
program control.

#include <Fl_Wizard.H>

Inheritance diagram for Fl_Wizard::

Fl_Wizard

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Wizard (int, int, int, int, const char ∗=0)
The constructor creates the Fl_Wizard widget at the specified position and size.

• void next ()
This method shows the next child of the wizard.

• void prev ()
Shows the previous child.

• void value (Fl_Widget ∗)
Sets the child widget that is visible.

• Fl_Widget ∗ value ()
Gets the current visible child widget.

30.129.1 Detailed Description

This widget is based off the Fl_Tabs widget, but instead of displaying tabs it only changes "tabs" under
program control.

Its primary purpose is to support "wizards" that step a user through configuration or troubleshooting tasks.

As with Fl_Tabs, wizard panes are composed of child (usually Fl_Group) widgets. Navigation buttons
must be added separately.

30.129.2 Constructor & Destructor Documentation

30.129.2.1 Fl_Wizard::Fl_Wizard (int xx, int yy, int ww, int hh, const char ∗ l = 0)

The constructor creates the Fl_Wizard widget at the specified position and size.

The inherited destructor destroys the widget and its children.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.129 Fl_Wizard Class Reference 965

30.129.3 Member Function Documentation

30.129.3.1 void Fl_Wizard::next ()

This method shows the next child of the wizard.

If the last child is already visible, this function does nothing.

30.129.3.2 void Fl_Wizard::prev ()

Shows the previous child.

30.129.3.3 void Fl_Wizard::value (Fl_Widget ∗ kid)

Sets the child widget that is visible.

30.129.3.4 Fl_Widget ∗ Fl_Wizard::value ()

Gets the current visible child widget.

The documentation for this class was generated from the following files:

• Fl_Wizard.H
• Fl_Wizard.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

966 Class Documentation

30.130 Fl_XBM_Image Class Reference

The Fl_XBM_Image class supports loading, caching, and drawing of X Bitmap (XBM) bitmap files.

#include <Fl_XBM_Image.H>

Inheritance diagram for Fl_XBM_Image::

Fl_XBM_Image

Fl_Bitmap

Fl_Image

Public Member Functions

• Fl_XBM_Image (const char ∗filename)
The constructor loads the named XBM file from the given name filename.

30.130.1 Detailed Description

The Fl_XBM_Image class supports loading, caching, and drawing of X Bitmap (XBM) bitmap files.

30.130.2 Constructor & Destructor Documentation

30.130.2.1 Fl_XBM_Image::Fl_XBM_Image (const char ∗ name)

The constructor loads the named XBM file from the given name filename.

The destructor free all memory and server resources that are used by the image.

The documentation for this class was generated from the following files:

• Fl_XBM_Image.H
• Fl_XBM_Image.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.131 Fl_Xlib_Graphics_Driver Class Reference 967

30.131 Fl_Xlib_Graphics_Driver Class Reference

The Xlib-specific graphics class.

#include <Fl_Device.H>

Inheritance diagram for Fl_Xlib_Graphics_Driver::

Fl_Xlib_Graphics_Driver

Fl_Graphics_Driver

Fl_Device

Public Member Functions

• void draw (Fl_RGB_Image ∗img, int XP, int YP, int WP, int HP, int cx, int cy)

Draws an Fl_RGB_Image object to the device.

• void draw (Fl_Bitmap ∗pxm, int XP, int YP, int WP, int HP, int cx, int cy)

Draws an Fl_Bitmap object to the device.

• void draw (Fl_Pixmap ∗pxm, int XP, int YP, int WP, int HP, int cx, int cy)

Draws an Fl_Pixmap object to the device.

• Fl_Xlib_Graphics_Driver ()

The constructor.

Static Public Attributes

• static const char ∗ device_type = "Fl_Xlib_Graphics_Driver"

A string that identifies each subclass of Fl_Device.

30.131.1 Detailed Description

The Xlib-specific graphics class.

This class is implemented only on the Xlib platform.

30.131.2 Constructor & Destructor Documentation

30.131.2.1 Fl_Xlib_Graphics_Driver::Fl_Xlib_Graphics_Driver () [inline]

The constructor.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

968 Class Documentation

30.131.3 Member Function Documentation

30.131.3.1 void Fl_Xlib_Graphics_Driver::draw (Fl_RGB_Image ∗ rgb, int XP, int YP, int WP,
int HP, int cx, int cy) [virtual]

Draws an Fl_RGB_Image object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented from Fl_Graphics_Driver.

30.131.3.2 void Fl_Xlib_Graphics_Driver::draw (Fl_Bitmap ∗ bm, int XP, int YP, int WP, int
HP, int cx, int cy) [virtual]

Draws an Fl_Bitmap object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented from Fl_Graphics_Driver.

30.131.3.3 void Fl_Xlib_Graphics_Driver::draw (Fl_Pixmap ∗ pxm, int XP, int YP, int WP, int
HP, int cx, int cy) [virtual]

Draws an Fl_Pixmap object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

Reimplemented from Fl_Graphics_Driver.

30.131.4 Member Data Documentation

30.131.4.1 const char ∗ Fl_Xlib_Graphics_Driver::device_type = "Fl_Xlib_Graphics_Driver"
[static]

A string that identifies each subclass of Fl_Device.

Function type() applied to a device of this class returns this string.

Reimplemented from Fl_Graphics_Driver.

The documentation for this class was generated from the following files:

• Fl_Device.H
• Fl_Bitmap.cxx
• Fl_Device.cxx
• Fl_Image.cxx
• Fl_Pixmap.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30.132 Fl_XPM_Image Class Reference 969

30.132 Fl_XPM_Image Class Reference

The Fl_XPM_Image class supports loading, caching, and drawing of X Pixmap (XPM) images, including
transparency.

#include <Fl_XPM_Image.H>

Inheritance diagram for Fl_XPM_Image::

Fl_XPM_Image

Fl_Pixmap

Fl_Image

Public Member Functions

• Fl_XPM_Image (const char ∗filename)
The constructor loads the XPM image from the name filename.

30.132.1 Detailed Description

The Fl_XPM_Image class supports loading, caching, and drawing of X Pixmap (XPM) images, including
transparency.

30.132.2 Constructor & Destructor Documentation

30.132.2.1 Fl_XPM_Image::Fl_XPM_Image (const char ∗ name)

The constructor loads the XPM image from the name filename.

The destructor free all memory and server resources that are used by the image.

The documentation for this class was generated from the following files:

• Fl_XPM_Image.H
• Fl_XPM_Image.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

970 Class Documentation

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 31

File Documentation

31.1 Enumerations.H File Reference

This file contains type definitions and general enumerations.

#include "Fl_Export.H"

#include "fl_types.h"

Defines

Event States
The following constants define bits in the Fl::event_state() value.

• #define FL_ALT 0x00080000
One of the alt keys is down.

• #define FL_BUTTON(n) (0x00800000<<(n))
Mouse button n (n > 0) is pushed.

• #define FL_BUTTON1 0x01000000
Mouse button 1 is pushed.

• #define FL_BUTTON2 0x02000000
Mouse button 2 is pushed.

• #define FL_BUTTON3 0x04000000
Mouse button 3 is pushed.

• #define FL_BUTTONS 0x7f000000
Any mouse button is pushed.

• #define FL_CAPS_LOCK 0x00020000
The caps lock is on.

• #define FL_COMMAND FL_CTRL
An alias for FL_CTRL on WIN32 and X11, or FL_META on MacOS X.

972 File Documentation

• #define FL_CONTROL FL_META
An alias for FL_META on WIN32 and X11, or FL_META on MacOS X.

• #define FL_CTRL 0x00040000
One of the ctrl keys is down.

• #define FL_KEY_MASK 0x0000ffff
All keys are 16 bit for now.

• #define FL_META 0x00400000
One of the meta/Windows keys is down.

• #define FL_NUM_LOCK 0x00100000
The num lock is on.

• #define FL_SCROLL_LOCK 0x00800000
The scroll lock is on.

• #define FL_SHIFT 0x00010000
One of the shift keys is down.

Mouse and Keyboard Events
This and the following constants define the non-ASCII keys on the keyboard for FL_KEYBOARD and
FL_SHORTCUT events.

Todo

FL_Button and FL_key... constants could be structured better (use an enum or some doxygen
grouping ?)

See also:

Fl::event_key() and Fl::get_key(int) (use ascii letters for all other keys):

• #define FL_Alt_L 0xffe9
The left alt key.

• #define FL_Alt_R 0xffea
The right alt key.

• #define FL_BackSpace 0xff08
The backspace key.

• #define FL_Button 0xfee8
A mouse button; use Fl_Button + n for mouse button n.

• #define FL_Caps_Lock 0xffe5
The caps lock key.

• #define FL_Control_L 0xffe3
The lefthand control key.

• #define FL_Control_R 0xffe4
The righthand control key.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.1 Enumerations.H File Reference 973

• #define FL_Delete 0xffff
The delete key.

• #define FL_Down 0xff54
The down arrow key.

• #define FL_End 0xff57
The end key.

• #define FL_Enter 0xff0d
The enter key.

• #define FL_Escape 0xff1b
The escape key.

• #define FL_F 0xffbd
One of the function keys; use FL_F + n for function key n.

• #define FL_F_Last 0xffe0
The last function key; use to range-check function keys.

• #define FL_Help 0xff68
The ’help’ key on Mac keyboards.

• #define FL_Home 0xff50
The home key.

• #define FL_Insert 0xff63
The insert key.

• #define FL_KP 0xff80
One of the keypad numbers; use FL_KP + n for number n.

• #define FL_KP_Enter 0xff8d
The enter key on the keypad, same as Fl_KP+’\r’.

• #define FL_KP_Last 0xffbd
The last keypad key; use to range-check keypad.

• #define FL_Left 0xff51
The left arrow key.

• #define FL_Menu 0xff67
The menu key.

• #define FL_Meta_L 0xffe7
The left meta/Windows key.

• #define FL_Meta_R 0xffe8
The right meta/Windows key.

• #define FL_Num_Lock 0xff7f

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

974 File Documentation

The num lock key.

• #define FL_Page_Down 0xff56
The page-down key.

• #define FL_Page_Up 0xff55
The page-up key.

• #define FL_Pause 0xff13
The pause key.

• #define FL_Print 0xff61
The print (or print-screen) key.

• #define FL_Right 0xff53
The right arrow key.

• #define FL_Scroll_Lock 0xff14
The scroll lock key.

• #define FL_Shift_L 0xffe1
The lefthand shift key.

• #define FL_Shift_R 0xffe2
The righthand shift key.

• #define FL_Tab 0xff09
The tab key.

• #define FL_Up 0xff52
The up arrow key.

Mouse Buttons
These constants define the button numbers for FL_PUSH and FL_RELEASE events.

See also:

Fl::event_button()

• #define FL_LEFT_MOUSE 1
The left mouse button.

• #define FL_MIDDLE_MOUSE 2
The middle mouse button.

• #define FL_RIGHT_MOUSE 3
The right mouse button.

Version Numbers
FLTK defines some constants to help the programmer to find out, for which FLTK version a program is
compiled.

The following constants are defined:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.1 Enumerations.H File Reference 975

• #define FL_MAJOR_VERSION 1
The major release version of this FLTK library.

• #define FL_MINOR_VERSION 3
The minor release version for this library.

• #define FL_PATCH_VERSION 0
The patch version for this library.

• #define FL_VERSION
The FLTK version number as a double.

Typedefs

• typedef int Fl_Fontsize
Size of a font in pixels.

Enumerations

• enum Fl_Event {

FL_NO_EVENT = 0, FL_PUSH = 1, FL_RELEASE = 2, FL_ENTER = 3,

FL_LEAVE = 4, FL_DRAG = 5, FL_FOCUS = 6, FL_UNFOCUS = 7,

FL_KEYDOWN = 8, FL_KEYBOARD = 8, FL_KEYUP = 9, FL_CLOSE = 10,

FL_MOVE = 11, FL_SHORTCUT = 12, FL_DEACTIVATE = 13, FL_ACTIVATE = 14,

FL_HIDE = 15, FL_SHOW = 16, FL_PASTE = 17, FL_SELECTIONCLEAR = 18,

FL_MOUSEWHEEL = 19, FL_DND_ENTER = 20, FL_DND_DRAG = 21, FL_DND_LEAVE =
22,

FL_DND_RELEASE = 23 }
Every time a user moves the mouse pointer, clicks a button, or presses a key, an event is generated and sent
to your application.

• enum Fl_Labeltype {

FL_NORMAL_LABEL = 0, FL_NO_LABEL, _FL_SHADOW_LABEL, _FL_ENGRAVED_-
LABEL,

_FL_EMBOSSED_LABEL, _FL_MULTI_LABEL, _FL_ICON_LABEL, _FL_IMAGE_LABEL,

FL_FREE_LABELTYPE }
The labeltype() method sets the type of the label.

When Conditions

• enum Fl_When {
FL_WHEN_NEVER = 0, FL_WHEN_CHANGED = 1, FL_WHEN_NOT_CHANGED = 2, FL_-
WHEN_RELEASE = 4,
FL_WHEN_RELEASE_ALWAYS = 6, FL_WHEN_ENTER_KEY = 8, FL_WHEN_ENTER_-
KEY_ALWAYS = 10, FL_WHEN_ENTER_KEY_CHANGED = 11 }

These constants determine when a callback is performed.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

976 File Documentation

Variables

• FL_EXPORT Fl_Fontsize FL_NORMAL_SIZE

normal font size

31.1.1 Detailed Description

This file contains type definitions and general enumerations.

31.1.2 Define Documentation

31.1.2.1 #define FL_MAJOR_VERSION 1

The major release version of this FLTK library.

See also:

FL_VERSION

31.1.2.2 #define FL_MINOR_VERSION 3

The minor release version for this library.

FLTK remains mostly source-code compatible between minor version changes.

31.1.2.3 #define FL_PATCH_VERSION 0

The patch version for this library.

FLTK remains binary compatible between patches.

31.1.2.4 #define FL_VERSION

Value:

((double)FL_MAJOR_VERSION + \
(double)FL_MINOR_VERSION * 0.01 + \
(double)FL_PATCH_VERSION * 0.0001)

The FLTK version number as a double.

This is changed slightly from the beta versions because the old "const double" definition would not allow
for conditional compilation...

FL_VERSION is a double that describes the major and minor version numbers. Version 1.1 is actually
stored as 1.01 to allow for more than 9 minor releases.

The FL_MAJOR_VERSION, FL_MINOR_VERSION, and FL_PATCH_VERSION constants give the in-
tegral values for the major, minor, and patch releases respectively.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.1 Enumerations.H File Reference 977

31.1.3 Typedef Documentation

31.1.3.1 typedef unsigned Fl_Align

Flags to control the label alignment.

This controls how the label is displayed next to or inside the widget. The default value is FL_ALIGN_-
CENTER for most widgets, which centers the label inside the widget.

Flags can be or’d to achieve a combination of alignments.

Outside alignments:

TOP_LEFT TOP TOP_RIGHT
LEFT_TOP+---------------------------------+RIGHT_TOP

| |
LEFT| |RIGHT

| |
LEFT_BOTTOM+---------------------------------+RIGHT_BOTTOM

BOTTOM_RIGHT BOTTOM BOTTOM_LEFT

Inside alignments:
+---------------------------------+
|TOP_LEFT TOP TOP_RIGHT|
| |
|LEFT RIGHT|
| |
|BOTTOM_RIGHT BOTTOM BOTTOM_LEFT|
+---------------------------------+

See also:

FL_ALIGN_CENTER, etc.

31.1.3.2 typedef unsigned int Fl_Color

The Fl_Color type holds an FLTK color value.

Colors are either 8-bit indexes into a virtual colormap or 24-bit RGB color values.

Color indices occupy the lower 8 bits of the value, while RGB colors occupy the upper 24 bits, for a byte
organization of RGBI.

Fl_Color => 0xrrggbbii
| | | |
| | | +--- index between 0 and 255
| | +----- blue color component (8 bit)
| +------- green component (8 bit)
+--------- red component (8 bit)

A color can have either an index or an rgb value. Colors with rgb set and an index >0 are reserved for
special use.

31.1.3.3 typedef int Fl_Font

A font number is an index into the internal font table.

The following constants define the standard FLTK fonts:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

978 File Documentation

31.1.3.4 typedef int Fl_Fontsize

Size of a font in pixels.

This is the approximate height of a font in pixels.

31.1.4 Enumeration Type Documentation

31.1.4.1 enum Fl_Boxtype

Enumerator:

FL_NO_BOX nothing is drawn at all, this box is invisible

FL_FLAT_BOX a flat box

FL_UP_BOX see figure 1

FL_DOWN_BOX see figure 1

FL_UP_FRAME see figure 1

FL_DOWN_FRAME see figure 1

FL_THIN_UP_BOX see figure 1

FL_THIN_DOWN_BOX see figure 1

FL_THIN_UP_FRAME see figure 1

FL_THIN_DOWN_FRAME see figure 1

FL_ENGRAVED_BOX see figure 1

FL_EMBOSSED_BOX see figure 1

FL_ENGRAVED_FRAME see figure 1

FL_EMBOSSED_FRAME see figure 1

FL_BORDER_BOX see figure 1

_FL_SHADOW_BOX see figure 1

FL_BORDER_FRAME see figure 1

_FL_SHADOW_FRAME see figure 1

_FL_ROUNDED_BOX see figure 1

_FL_RSHADOW_BOX see figure 1

_FL_ROUNDED_FRAME see figure 1

_FL_RFLAT_BOX see figure 1

_FL_ROUND_UP_BOX see figure 1

_FL_ROUND_DOWN_BOX see figure 1

_FL_DIAMOND_UP_BOX see figure 1

_FL_DIAMOND_DOWN_BOX see figure 1

_FL_OVAL_BOX see figure 1

_FL_OSHADOW_BOX see figure 1

_FL_OVAL_FRAME see figure 1

_FL_OFLAT_BOX see figure 1

_FL_PLASTIC_UP_BOX plastic version of FL_UP_BOX

_FL_PLASTIC_DOWN_BOX plastic version of FL_DOWN_BOX

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.1 Enumerations.H File Reference 979

_FL_PLASTIC_UP_FRAME plastic version of FL_UP_FRAME

_FL_PLASTIC_DOWN_FRAME plastic version of FL_DOWN_FRAME

_FL_PLASTIC_THIN_UP_BOX plastic version of FL_THIN_UP_BOX

_FL_PLASTIC_THIN_DOWN_BOX plastic version of FL_THIN_DOWN_BOX

_FL_PLASTIC_ROUND_UP_BOX plastic version of FL_ROUND_UP_BOX

_FL_PLASTIC_ROUND_DOWN_BOX plastic version of FL_ROUND_DOWN_BOX

_FL_GTK_UP_BOX gtk+ version of FL_UP_BOX

_FL_GTK_DOWN_BOX gtk+ version of FL_DOWN_BOX

_FL_GTK_UP_FRAME gtk+ version of FL_UP_FRAME

_FL_GTK_DOWN_FRAME gtk+ version of FL_DOWN_RAME

_FL_GTK_THIN_UP_BOX gtk+ version of FL_THIN_UP_BOX

_FL_GTK_THIN_DOWN_BOX gtk+ version of FL_THIN_DOWN_BOX

_FL_GTK_THIN_UP_FRAME gtk+ version of FL_UP_FRAME

_FL_GTK_THIN_DOWN_FRAME gtk+ version of FL_THIN_DOWN_FRAME

_FL_GTK_ROUND_UP_BOX gtk+ version of FL_ROUND_UP_BOX

_FL_GTK_ROUND_DOWN_BOX gtk+ version of FL_ROUND_DOWN_BOX

FL_FREE_BOXTYPE the first free box type for creation of new box types

31.1.4.2 enum Fl_Event

Every time a user moves the mouse pointer, clicks a button, or presses a key, an event is generated and sent
to your application.

Events can also come from other programs like the window manager.

Events are identified by the integer argument passed to the Fl_Widget::handle() virtual method. Other
information about the most recent event is stored in static locations and acquired by calling the Fl::event_-
∗() methods. This static information remains valid until the next event is read from the window system, so
it is ok to look at it outside of the handle() method.

See also:

Fl::event_text(), Fl::event_key(), class Fl::

Enumerator:

FL_NO_EVENT No event.

FL_PUSH A mouse button has gone down with the mouse pointing at this widget.
You can find out what button by calling Fl::event_button(). You find out the mouse position by
calling Fl::event_x() and Fl::event_y().
A widget indicates that it "wants" the mouse click by returning non-zero from its Fl_-
Widget::handle() method. It will then become the Fl::pushed() widget and will get FL_DRAG
and the matching FL_RELEASE events. If Fl_Widget::handle() returns zero then FLTK will try
sending the FL_PUSH to another widget.

FL_RELEASE A mouse button has been released.
You can find out what button by calling Fl::event_button().
In order to receive the FL_RELEASE event, the widget must return non-zero when handling
FL_PUSH.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

980 File Documentation

FL_ENTER The mouse has been moved to point at this widget.
This can be used for highlighting feedback. If a widget wants to highlight or otherwise track
the mouse, it indicates this by returning non-zero from its handle() method. It then becomes the
Fl::belowmouse() widget and will receive FL_MOVE and FL_LEAVE events.

FL_LEAVE The mouse has moved out of the widget.
In order to receive the FL_LEAVE event, the widget must return non-zero when handling FL_-
ENTER.

FL_DRAG The mouse has moved with a button held down.
The current button state is in Fl::event_state(). The mouse position is in Fl::event_x() and
Fl::event_y().
In order to receive FL_DRAG events, the widget must return non-zero when handling FL_PUSH.

FL_FOCUS This indicates an attempt to give a widget the keyboard focus.
If a widget wants the focus, it should change itself to display the fact that it has the focus, and
return non-zero from its handle() method. It then becomes the Fl::focus() widget and gets FL_-
KEYDOWN, FL_KEYUP, and FL_UNFOCUS events.
The focus will change either because the window manager changed which window gets the focus,
or because the user tried to navigate using tab, arrows, or other keys. You can check Fl::event_-
key() to figure out why it moved. For navigation it will be the key pressed and interaction with
the window manager it will be zero.

FL_UNFOCUS This event is sent to the previous Fl::focus() widget when another widget gets the
focus or the window loses focus.

FL_KEYDOWN A key was pressed or released.
The key can be found in Fl::event_key(). The text that the key should insert can be found with
Fl::event_text() and its length is in Fl::event_length(). If you use the key handle() should return
1. If you return zero then FLTK assumes you ignored the key and will then attempt to send it to
a parent widget. If none of them want it, it will change the event into a FL_SHORTCUT event.
To receive FL_KEYBOARD events you must also respond to the FL_FOCUS and FL_-
UNFOCUS events.
If you are writing a text-editing widget you may also want to call the Fl::compose() function to
translate individual keystrokes into foreign characters.
FL_KEYUP events are sent to the widget that currently has focus. This is not necessarily the
same widget that received the corresponding FL_KEYDOWN event because focus may have
changed between events.

FL_KEYBOARD Equvalent to FL_KEYDOWN.
See also:

FL_KEYDOWN

FL_KEYUP Key release event.
See also:

FL_KEYDOWN

FL_CLOSE The user clicked the close button of a window.
This event is used internally only to trigger the callback of Fl_Window derived classed. The
default callback closes the window calling Fl_Window::hide().

FL_MOVE The mouse has moved without any mouse buttons held down.
This event is sent to the Fl::belowmouse() widget.
In order to receive FL_MOVE events, the widget must return non-zero when handling FL_-
ENTER.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.1 Enumerations.H File Reference 981

FL_SHORTCUT If the Fl::focus() widget is zero or ignores an FL_KEYBOARD event then FLTK
tries sending this event to every widget it can, until one of them returns non-zero.
FL_SHORTCUT is first sent to the Fl::belowmouse() widget, then its parents and siblings, and
eventually to every widget in the window, trying to find an object that returns non-zero. FLTK
tries really hard to not to ignore any keystrokes!
You can also make "global" shortcuts by using Fl::add_handler(). A global shortcut will work no
matter what windows are displayed or which one has the focus.

FL_DEACTIVATE This widget is no longer active, due to Fl_Widget::deactivate() being called on
it or one of its parents.
Fl_Widget::active() may still be true after this, the widget is only active if Fl_Widget::active() is
true on it and all its parents (use Fl_Widget::active_r() to check this).

FL_ACTIVATE This widget is now active, due to Fl_Widget::activate() being called on it or one of
its parents.

FL_HIDE This widget is no longer visible, due to Fl_Widget::hide() being called on it or one of its
parents, or due to a parent window being minimized.
Fl_Widget::visible() may still be true after this, but the widget is visible only if visible() is true
for it and all its parents (use Fl_Widget::visible_r() to check this).

FL_SHOW This widget is visible again, due to Fl_Widget::show() being called on it or one of its
parents, or due to a parent window being restored.
Child Fl_Windows respond to this by actually creating the window if not done already, so if you
subclass a window, be sure to pass FL_SHOW to the base class Fl_Widget::handle() method!

FL_PASTE You should get this event some time after you call Fl::paste().
The contents of Fl::event_text() is the text to insert and the number of characters is in Fl::event_-
length().

FL_SELECTIONCLEAR The Fl::selection_owner() will get this event before the selection is
moved to another widget.
This indicates that some other widget or program has claimed the selection. Motif programs used
this to clear the selection indication. Most modern programs ignore this.

FL_MOUSEWHEEL The user has moved the mouse wheel.
The Fl::event_dx() and Fl::event_dy() methods can be used to find the amount to scroll horizon-
tally and vertically.

FL_DND_ENTER The mouse has been moved to point at this widget.
A widget that is interested in receiving drag’n’drop data must return 1 to receive FL_DND_-
DRAG, FL_DND_LEAVE and FL_DND_RELEASE events.

FL_DND_DRAG The mouse has been moved inside a widget while dragging data.
A widget that is interested in receiving drag’n’drop data should indicate the possible drop posi-
tion.

FL_DND_LEAVE The mouse has moved out of the widget.

FL_DND_RELEASE The user has released the mouse button dropping data into the widget.
If the widget returns 1, it will receive the data in the immediately following FL_PASTE event.

31.1.4.3 enum Fl_Labeltype

The labeltype() method sets the type of the label.

The following standard label types are included:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

982 File Documentation

Todo

The doxygen comments are incomplete, and some labeltypes are starting with an underscore. Also,
there are three external functions undocumented (yet):

• fl_define_FL_SHADOW_LABEL()

• fl_define_FL_ENGRAVED_LABEL()

• fl_define_FL_EMBOSSED_LABEL()

Enumerator:

FL_NORMAL_LABEL draws the text (0)

FL_NO_LABEL does nothing

_FL_SHADOW_LABEL draws a drop shadow under the text

_FL_ENGRAVED_LABEL draws edges as though the text is engraved

_FL_EMBOSSED_LABEL draws edges as thought the text is raised

_FL_MULTI_LABEL ?

_FL_ICON_LABEL draws the icon associated with the text

_FL_IMAGE_LABEL ?

FL_FREE_LABELTYPE first free labeltype to use for creating own labeltypes

31.1.4.4 enum Fl_When

These constants determine when a callback is performed.

See also:

Fl_Widget::when();

Todo

doxygen comments for values are incomplete and maybe wrong or unclear

Enumerator:

FL_WHEN_NEVER Never call the callback.

FL_WHEN_CHANGED Do the callback only when the widget value changes.

FL_WHEN_NOT_CHANGED Do the callback whenever the user interacts with the widget.

FL_WHEN_RELEASE Do the callback when the button or key is released and the value changes.

FL_WHEN_RELEASE_ALWAYS Do the callback when the button or key is released, even if the
value doesn’t change.

FL_WHEN_ENTER_KEY Do the callback when the user presses the ENTER key and the value
changes.

FL_WHEN_ENTER_KEY_ALWAYS Do the callback when the user presses the ENTER key, even
if the value doesn’t change.

FL_WHEN_ENTER_KEY_CHANGED ?

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.1 Enumerations.H File Reference 983

31.1.5 Function Documentation

31.1.5.1 Fl_Boxtype fl_box (Fl_Boxtype b) [inline]

Get the filled version of a frame.

If no filled version of a given frame exists, the behavior of this function is undefined and some random box
or frame is returned,

31.1.5.2 Fl_Boxtype fl_down (Fl_Boxtype b) [inline]

Get the "pressed" or "down" version of a box.

If no "down" version of a given box exists, the behavior of this function is undefined and some random box
or frame is returned,

31.1.5.3 Fl_Boxtype fl_frame (Fl_Boxtype b) [inline]

Get the unfilled, frame only version of a box.

If no frame version of a given box exists, the behavior of this function is undefined and some random box
or frame is returned,

31.1.5.4 Fl_Color fl_rgb_color (uchar r, uchar g, uchar b) [inline]

return 24-bit color value closest to r, g, b.

31.1.6 Variable Documentation

31.1.6.1 const Fl_Align FL_ALIGN_BOTTOM = (Fl_Align)2

Align the label at the bottom of the widget.

31.1.6.2 const Fl_Align FL_ALIGN_CENTER = (Fl_Align)0

Align the label horizontally in the middle.

31.1.6.3 const Fl_Align FL_ALIGN_CLIP = (Fl_Align)64

All parts of the label that are lager than the widget will not be drawn .

31.1.6.4 const Fl_Align FL_ALIGN_IMAGE_BACKDROP = (Fl_Align)0x0200

If the label contains an image, draw the image or deimage in the backgroup.

31.1.6.5 const Fl_Align FL_ALIGN_IMAGE_NEXT_TO_TEXT = (Fl_Align)0x0100

If the label contains an image, draw the text to the right of the image.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

984 File Documentation

31.1.6.6 const Fl_Align FL_ALIGN_IMAGE_OVER_TEXT = (Fl_Align)0x0000

If the label contains an image, draw the text below the image.

31.1.6.7 const Fl_Align FL_ALIGN_INSIDE = (Fl_Align)16

Draw the label inside of the widget.

31.1.6.8 const Fl_Align FL_ALIGN_LEFT = (Fl_Align)4

Align the label at the left of the widget.

Inside labels appear left-justified starting at the left side of the widget, outside labels are right-justified and
drawn to the left of the widget.

31.1.6.9 const Fl_Align FL_ALIGN_RIGHT = (Fl_Align)8

Align the label to the right of the widget.

31.1.6.10 const Fl_Align FL_ALIGN_TEXT_NEXT_TO_IMAGE = (Fl_Align)0x0120

If the label contains an image, draw the text to the left of the image.

31.1.6.11 const Fl_Align FL_ALIGN_TEXT_OVER_IMAGE = (Fl_Align)0x0020

If the label contains an image, draw the text on top of the image.

31.1.6.12 const Fl_Align FL_ALIGN_TOP = (Fl_Align)1

Align the label at the top of the widget.

Inside labels appear below the top, outside labels are drawn on top of the widget.

31.1.6.13 const Fl_Align FL_ALIGN_WRAP = (Fl_Align)128

Wrap text that does not fit the width of the widget.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.2 fl_arc.cxx File Reference 985

31.2 fl_arc.cxx File Reference

Utility functions for drawing arcs and circles.

#include <FL/fl_draw.H>

#include <FL/math.h>

31.2.1 Detailed Description

Utility functions for drawing arcs and circles.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

986 File Documentation

31.3 fl_arci.cxx File Reference

Utility functions for drawing circles using integers.

#include <FL/fl_draw.H>

#include <FL/x.H>

#include <config.h>

31.3.1 Detailed Description

Utility functions for drawing circles using integers.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.4 fl_boxtype.cxx File Reference 987

31.4 fl_boxtype.cxx File Reference

drawing code for common box types.

#include <FL/Fl.H>

#include <FL/Fl_Widget.H>

#include <FL/fl_draw.H>

#include <config.h>

Defines

• #define D1 BORDER_WIDTH
• #define D2 (BORDER_WIDTH+BORDER_WIDTH)
• #define fl_border_box fl_rectbound

allow consistent naming

Functions

• void fl_border_frame (int x, int y, int w, int h, Fl_Color c)

Draws a frame of type FL_BORDER_FRAME.

• void fl_down_box (int x, int y, int w, int h, Fl_Color c)

Draws a box of type FL_DOWN_BOX.

• void fl_down_frame (int x, int y, int w, int h, Fl_Color)

Draws a frame of type FL_DOWN_FRAME.

• void fl_draw_box (Fl_Boxtype t, int x, int y, int w, int h, Fl_Color c)

Draws a box using given type, position, size and color.

• void fl_embossed_box (int x, int y, int w, int h, Fl_Color c)

Draws a box of type FL_EMBOSSED_BOX.

• void fl_embossed_frame (int x, int y, int w, int h, Fl_Color)

Draws a frame of type FL_EMBOSSED_FRAME.

• void fl_engraved_box (int x, int y, int w, int h, Fl_Color c)

Draws a box of type FL_ENGRAVED_BOX.

• void fl_engraved_frame (int x, int y, int w, int h, Fl_Color)

Draws a frame of type FL_ENGRAVED_FRAME.

• void fl_frame (const char ∗s, int x, int y, int w, int h)

Draws a series of line segments around the given box.

• void fl_frame2 (const char ∗s, int x, int y, int w, int h)

Draws a series of line segments around the given box.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

988 File Documentation

• uchar ∗ fl_gray_ramp ()
• void fl_internal_boxtype (Fl_Boxtype t, Fl_Box_Draw_F ∗f)

Sets the drawing function for a given box type.

• void fl_no_box (int, int, int, int, Fl_Color)
Draws a box of type FL_NO_BOX.

• void fl_rectbound (int x, int y, int w, int h, Fl_Color bgcolor)
Draws a bounded rectangle with a given position, size and color.

• void fl_thin_down_box (int x, int y, int w, int h, Fl_Color c)
Draws a box of type FL_THIN_DOWN_BOX.

• void fl_thin_down_frame (int x, int y, int w, int h, Fl_Color)
Draws a frame of type FL_THIN_DOWN_FRAME.

• void fl_thin_up_box (int x, int y, int w, int h, Fl_Color c)
Draws a box of type FL_THIN_UP_BOX.

• void fl_thin_up_frame (int x, int y, int w, int h, Fl_Color)
Draws a frame of type FL_THIN_UP_FRAME.

• void fl_up_box (int x, int y, int w, int h, Fl_Color c)
Draws a box of type FL_UP_BOX.

• void fl_up_frame (int x, int y, int w, int h, Fl_Color)
Draws a frame of type FL_UP_FRAME.

31.4.1 Detailed Description

drawing code for common box types.

31.4.2 Function Documentation

31.4.2.1 void fl_internal_boxtype (Fl_Boxtype t, Fl_Box_Draw_F ∗ f)

Sets the drawing function for a given box type.

Parameters:

← t box type
← f box drawing function

31.4.2.2 void fl_rectbound (int x, int y, int w, int h, Fl_Color bgcolor)

Draws a bounded rectangle with a given position, size and color.

Equivalent to drawing a box of type FL_BORDER_BOX.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.5 fl_color.cxx File Reference 989

31.5 fl_color.cxx File Reference

Color handling.

#include "Fl_XColor.H"

#include <FL/Fl.H>

#include <FL/x.H>

#include <FL/fl_draw.H>

#include "fl_cmap.h"

Defines

• #define fl_overlay 0
HAVE_OVERLAY determines whether fl_overlay is variable or defined as 0.

Functions

• Fl_Color fl_color_average (Fl_Color color1, Fl_Color color2, float weight)
Returns the weighted average color between the two given colors.

• Fl_Color fl_contrast (Fl_Color fg, Fl_Color bg)
Returns a color that contrasts with the background color.

• Fl_Color fl_inactive (Fl_Color c)
Returns the inactive, dimmed version of the given color.

• ulong fl_xpixel (Fl_Color i)
Returns the X pixel number used to draw the given FLTK color index.

• ulong fl_xpixel (uchar r, uchar g, uchar b)
Returns the X pixel number used to draw the given rgb color.

Variables

• uchar fl_bluemask
color mask used in current color map handling

• int fl_blueshift
color shift used in current color map handling

• Fl_Color fl_color_
Current color for drawing operations.

• int fl_extrashift
color shift used in current color map handling

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

990 File Documentation

• uchar fl_greenmask
color mask used in current color map handling

• int fl_greenshift
color shift used in current color map handling

• uchar fl_redmask
color mask used in current color map handling

• int fl_redshift
color shift used in current color map handling

• Fl_XColor fl_xmap [1][256]
HAVE_OVERLAY determines whether fl_xmap is one or two planes.

31.5.1 Detailed Description

Color handling.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.6 Fl_Color_Chooser.H File Reference 991

31.6 Fl_Color_Chooser.H File Reference

Fl_Color_Chooser widget .

#include <FL/Fl_Group.H>

#include <FL/Fl_Box.H>

#include <FL/Fl_Return_Button.H>

#include <FL/Fl_Choice.H>

#include <FL/Fl_Value_Input.H>

Classes

• class Fl_Color_Chooser
The Fl_Color_Chooser widget provides a standard RGB color chooser.

31.6.1 Detailed Description

Fl_Color_Chooser widget .

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

992 File Documentation

31.7 fl_curve.cxx File Reference

Utility for drawing Bezier curves, adding the points to the current fl_begin/fl_vertex/fl_end path.

#include <FL/fl_draw.H>

#include <math.h>

31.7.1 Detailed Description

Utility for drawing Bezier curves, adding the points to the current fl_begin/fl_vertex/fl_end path.

Incremental math implementation: I very much doubt this is optimal! From Foley/vanDam page 511. If
anybody has a better algorithm, please send it!

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.8 Fl_Device.H File Reference 993

31.8 Fl_Device.H File Reference

declaration of classes Fl_Device, Fl_Graphics_Driver, Fl_Surface_Device, Fl_Display_Device, Fl_-
Device_Plugin.

#include <FL/x.H>

#include <FL/Fl_Plugin.H>

#include <FL/Fl_Image.H>

#include <FL/Fl_Bitmap.H>

#include <FL/Fl_Pixmap.H>

#include <FL/Fl_RGB_Image.H>

#include <stdio.h>

Classes

• class Fl_Device

All graphical output devices and all graphics systems.

• class Fl_Device_Plugin

This plugin socket allows the integration of new device drivers for special window or screen types.

• class Fl_Display_Device

A display to which the computer can draw.

• class Fl_GDI_Graphics_Driver

The MSWindows-specific graphics class.

• class Fl_Graphics_Driver

A virtual class subclassed for each graphics driver FLTK uses.

• class Fl_Quartz_Graphics_Driver

The Mac OS X-specific graphics class.

• class Fl_Surface_Device

A surface that’s susceptible to receive graphical output.

• class Fl_Xlib_Graphics_Driver

The Xlib-specific graphics class.

Typedefs

• typedef void(∗ Fl_Draw_Image_Cb)(void ∗data, int x, int y, int w, uchar ∗buf)

signature of image generation callback function.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

994 File Documentation

Variables

• FL_EXPORT Fl_Display_Device ∗ fl_display_device
Points to the platform’s display.

• FL_EXPORT Fl_Graphics_Driver ∗ fl_graphics_driver
Points to the driver that currently receives all graphics requests.

• FL_EXPORT Fl_Surface_Device ∗ fl_surface
Points to the surface that currently receives all graphics requests.

31.8.1 Detailed Description

declaration of classes Fl_Device, Fl_Graphics_Driver, Fl_Surface_Device, Fl_Display_Device, Fl_-
Device_Plugin.

31.8.2 Typedef Documentation

31.8.2.1 typedef void(∗ Fl_Draw_Image_Cb)(void ∗data, int x, int y, int w, uchar ∗buf)

signature of image generation callback function.

Parameters:

← data user data passed to function

← x,y,w position and width of scan line in image

→ buf buffer for generated image data. You must copy w pixels from scanline y, starting at pixel x to
this buffer.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.9 fl_draw.H File Reference 995

31.9 fl_draw.H File Reference

utility header to pull drawing functions together

#include "Enumerations.H"

#include "Fl_Window.H"

#include "Fl_Device.H"

Defines

• #define fl_clip fl_push_clip
The fl_clip() name is deprecated and will be removed from future releases.

Enumerations

• enum {

FL_SOLID = 0, FL_DASH = 1, FL_DOT = 2, FL_DASHDOT = 3,

FL_DASHDOTDOT = 4, FL_CAP_FLAT = 0x100, FL_CAP_ROUND = 0x200, FL_CAP_-
SQUARE = 0x300,

FL_JOIN_MITER = 0x1000, FL_JOIN_ROUND = 0x2000, FL_JOIN_BEVEL = 0x3000 }

Functions

• FL_EXPORT int fl_add_symbol (const char ∗name, void(∗drawit)(Fl_Color), int scalable)
Adds a symbol to the system.

• void fl_arc (double x, double y, double r, double start, double end)
Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using scale
and rotate before calling fl_arc().

• void fl_arc (int x, int y, int w, int h, double a1, double a2)
Draw ellipse sections using integer coordinates.

• void fl_begin_complex_polygon ()
Starts drawing a complex filled polygon.

• void fl_begin_line ()
Starts drawing a list of lines.

• void fl_begin_loop ()
Starts drawing a closed sequence of lines.

• void fl_begin_points ()
Starts drawing a list of points.

• void fl_begin_polygon ()
Starts drawing a convex filled polygon.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

996 File Documentation

• FL_EXPORT char fl_can_do_alpha_blending ()

Checks whether platform supports true alpha blending for RGBA images.

• FL_EXPORT void fl_chord (int x, int y, int w, int h, double a1, double a2)

fl_chord declaration is a place holder - the function does not yet exist

• void fl_circle (double x, double y, double r)

fl_circle() is equivalent to fl_arc(x,y,r,0,360), but may be faster.

• int fl_clip_box (int x, int y, int w, int h, int &X, int &Y, int &W, int &H)

Intersects the rectangle with the current clip region and returns the bounding box of the result.

• Fl_Region fl_clip_region ()

returns the current clipping region.

• FL_EXPORT void fl_clip_region (Fl_Region r)

Replaces the top of the clipping stack with a clipping region of any shape.

• Fl_Color fl_color ()

Returns the last fl_color() that was set.

• void fl_color (uchar r, uchar g, uchar b)

Set the color for all subsequent drawing operations.

• void fl_color (int c)

for back compatibility - use fl_color(Fl_Color c) instead

• void fl_color (Fl_Color c)

Sets the color for all subsequent drawing operations.

• FL_EXPORT void fl_cursor (Fl_Cursor, Fl_Color fg=FL_BLACK, Fl_Color bg=FL_WHITE)

Sets the cursor for the current window to the specified shape and colors.

• void fl_curve (double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3,
double Y3)

Add a series of points on a Bezier curve to the path.

• FL_EXPORT int fl_descent ()

Returns the recommended distance above the bottom of a fl_height() tall box to draw the text at so it looks
centered vertically in that box.

• FL_EXPORT void fl_draw (const char ∗str, int x, int y, int w, int h, Fl_Align align,
void(∗callthis)(const char ∗, int, int, int), Fl_Image ∗img=0, int draw_symbols=1)

The same as fl_draw(const char∗,int,int,int,int,Fl_Align,Fl_Image∗,int) with the addition of the callthis
parameter, which is a pointer to a text drawing function such as fl_draw(const char∗, int, int, int) to do the
real work.

• FL_EXPORT void fl_draw (const char ∗str, int x, int y, int w, int h, Fl_Align align, Fl_Image ∗img=0,
int draw_symbols=1)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.9 fl_draw.H File Reference 997

Fancy string drawing function which is used to draw all the labels.

• void fl_draw (int angle, const char ∗str, int n, int x, int y)
Draws an array of n characters starting at the given location, rotating angle degrees counterclockwise.

• void fl_draw (const char ∗str, int n, int x, int y)
Draws an array of n characters starting at the given location.

• FL_EXPORT void fl_draw (int angle, const char ∗str, int x, int y)
Draws a nul-terminated string starting at the given location and rotating angle degrees counterclockwise.

• FL_EXPORT void fl_draw (const char ∗str, int x, int y)
Draws a nul-terminated string starting at the given location.

• FL_EXPORT void fl_draw_box (Fl_Boxtype, int x, int y, int w, int h, Fl_Color)
Draws a box using given type, position, size and color.

• void fl_draw_image (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int H, int D=3)
Draw image using callback function to generate image data.

• void fl_draw_image (const uchar ∗buf, int X, int Y, int W, int H, int D=3, int L=0)
Draw an 8-bit per color RGB or luminance image.

• FL_EXPORT void fl_draw_image_mono (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int
H, int D=1)

Draw gray-scale image using callback function to generate image data.

• void fl_draw_image_mono (const uchar ∗buf, int X, int Y, int W, int H, int D=1, int L=0)
Draw a gray-scale (1 channel) image.

• FL_EXPORT int fl_draw_pixmap (const char ∗const ∗cdata, int x, int y, Fl_Color=FL_GRAY)
Draw XPM image data, with the top-left corner at the given position.

• FL_EXPORT int fl_draw_pixmap (char ∗const ∗data, int x, int y, Fl_Color=FL_GRAY)
Draw XPM image data, with the top-left corner at the given position.

• FL_EXPORT int fl_draw_symbol (const char ∗label, int x, int y, int w, int h, Fl_Color)
Draw the named symbol in the given rectangle using the given color.

• void fl_end_complex_polygon ()
Ends complex filled polygon, and draws.

• void fl_end_line ()
Ends list of lines, and draws.

• void fl_end_loop ()
Ends closed sequence of lines, and draws.

• void fl_end_points ()
Ends list of points, and draws.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

998 File Documentation

• void fl_end_polygon ()
Ends convex filled polygon, and draws.

• FL_EXPORT const char ∗ fl_expand_text (const char ∗from, char ∗buf, int maxbuf, double maxw,
int &n, double &width, int wrap, int draw_symbols=0)

Copy from to buf, replacing unprintable characters with ∧X and \nnn.

• Fl_Font fl_font ()
Returns the face set by the most recent call to fl_font().

• void fl_font (Fl_Font face, Fl_Fontsize size)
Sets the current font, which is then used in various drawing routines.

• FL_EXPORT void fl_frame (const char ∗s, int x, int y, int w, int h)
Draws a series of line segments around the given box.

• FL_EXPORT void fl_frame2 (const char ∗s, int x, int y, int w, int h)
Draws a series of line segments around the given box.

• void fl_gap ()
Call fl_gap() to separate loops of the path.

• FL_EXPORT int fl_height (int font, int size)
This function returns the actual height of the specified font and size.

• FL_EXPORT int fl_height ()
Returns the recommended minimum line spacing for the current font.

• FL_EXPORT const char ∗ fl_latin1_to_local (const char ∗t, int n=-1)
convert text from Windows/X11 latin1 charcter set to local encoding.

• void fl_line (int x, int y, int x1, int y1, int x2, int y2)
Draws a line from (x,y) to (x1,y1) and another from (x1,y1) to (x2,y2).

• void fl_line (int x, int y, int x1, int y1)
Draws a line from (x,y) to (x1,y1).

• void fl_line_style (int style, int width=0, char ∗dashes=0)
Sets how to draw lines (the "pen").

• FL_EXPORT const char ∗ fl_local_to_latin1 (const char ∗t, int n=-1)
convert text from local encoding to Windowx/X11 latin1 character set.

• FL_EXPORT const char ∗ fl_local_to_mac_roman (const char ∗t, int n=-1)
convert text from local encoding to Mac Roman character set.

• void fl_loop (int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)
Outlines a 4-sided polygon with lines.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.9 fl_draw.H File Reference 999

• void fl_loop (int x, int y, int x1, int y1, int x2, int y2)
Outlines a 3-sided polygon with lines.

• FL_EXPORT const char ∗ fl_mac_roman_to_local (const char ∗t, int n=-1)
convert text from Mac Roman charcter set to local encoding.

• FL_EXPORT void fl_measure (const char ∗str, int &x, int &y, int draw_symbols=1)
Measure how wide and tall the string will be when printed by the fl_draw() function with align parameter.

• FL_EXPORT int fl_measure_pixmap (const char ∗const ∗cdata, int &w, int &h)
Get the dimensions of a pixmap.

• FL_EXPORT int fl_measure_pixmap (char ∗const ∗data, int &w, int &h)
Get the dimensions of a pixmap.

• FL_EXPORT void fl_mult_matrix (double a, double b, double c, double d, double x, double y)
Concatenates another transformation onto the current one.

• int fl_not_clipped (int x, int y, int w, int h)
Does the rectangle intersect the current clip region?

• FL_EXPORT unsigned int fl_old_shortcut (const char ∗s)
Emulation of XForms named shortcuts.

• FL_EXPORT void fl_overlay_clear ()
Erase a selection rectangle without drawing a new one.

• FL_EXPORT void fl_overlay_rect (int x, int y, int w, int h)
Draws a selection rectangle, erasing a previous one by XOR’ing it first.

• void fl_pie (int x, int y, int w, int h, double a1, double a2)
Draw filled ellipse sections using integer coordinates.

• void fl_point (int x, int y)
Draws a single pixel at the given coordinates.

• void fl_polygon (int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)
Fills a 4-sided polygon.

• void fl_polygon (int x, int y, int x1, int y1, int x2, int y2)
Fills a 3-sided polygon.

• void fl_pop_clip ()
Restores the previous clip region.

• FL_EXPORT void fl_pop_matrix ()
Restores the current transformation matrix from the stack.

• void fl_push_clip (int x, int y, int w, int h)
Intersects the current clip region with a rectangle and pushes this new region onto the stack.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1000 File Documentation

• FL_EXPORT void fl_push_matrix ()
Saves the current transformation matrix on the stack.

• void fl_push_no_clip ()
Pushes an empty clip region onto the stack so nothing will be clipped.

• FL_EXPORT uchar ∗ fl_read_image (uchar ∗p, int X, int Y, int W, int H, int alpha=0)
Read an RGB(A) image from the current window or off-screen buffer.

• void fl_rect (int x, int y, int w, int h, Fl_Color c)
Draws with passed color a 1-pixel border inside the given bounding box.

• void fl_rect (int x, int y, int w, int h)
Draws a 1-pixel border inside the given bounding box.

• FL_EXPORT void fl_rectf (int x, int y, int w, int h, uchar r, uchar g, uchar b)
Color a rectangle with "exactly" the passed r,g,b color.

• void fl_rectf (int x, int y, int w, int h, Fl_Color c)
Colors with passsed color a rectangle that exactly fills the given bounding box.

• void fl_rectf (int x, int y, int w, int h)
Colors with current color a rectangle that exactly fills the given bounding box.

• FL_EXPORT void fl_reset_spot (void)
• void fl_restore_clip ()

Undoes any clobbering of clip done by your program.

• FL_EXPORT void fl_rotate (double d)
Concatenates rotation transformation onto the current one.

• void fl_rtl_draw (const char ∗str, int n, int x, int y)
Draws an array of n characters right to left starting at given location.

• FL_EXPORT void fl_scale (double x)
Concatenates scaling transformation onto the current one.

• FL_EXPORT void fl_scale (double x, double y)
Concatenates scaling transformation onto the current one.

• FL_EXPORT void fl_scroll (int X, int Y, int W, int H, int dx, int dy, void(∗draw_area)(void ∗, int,
int, int, int), void ∗data)

Scroll a rectangle and draw the newly exposed portions.

• FL_EXPORT void fl_set_spot (int font, int size, int X, int Y, int W, int H, Fl_Window ∗win=0)
• FL_EXPORT void fl_set_status (int X, int Y, int W, int H)
• FL_EXPORT const char ∗ fl_shortcut_label (unsigned int shortcut, const char ∗∗eom)

Get a human-readable string from a shortcut value.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.9 fl_draw.H File Reference 1001

• FL_EXPORT const char ∗ fl_shortcut_label (unsigned int shortcut)
Get a human-readable string from a shortcut value.

• Fl_Fontsize fl_size ()
Returns the size set by the most recent call to fl_font().

• FL_EXPORT void fl_text_extents (const char ∗, int n, int &dx, int &dy, int &w, int &h)
Determine the minimum pixel dimensions of a sequence of n characters.

• FL_EXPORT void fl_text_extents (const char ∗, int &dx, int &dy, int &w, int &h)
Determine the minimum pixel dimensions of a nul-terminated string.

• FL_EXPORT double fl_transform_dx (double x, double y)
Transforms distance using current transformation matrix.

• FL_EXPORT double fl_transform_dy (double x, double y)
Transforms distance using current transformation matrix.

• FL_EXPORT double fl_transform_x (double x, double y)
Transforms coordinate using the current transformation matrix.

• FL_EXPORT double fl_transform_y (double x, double y)
Transform coordinate using the current transformation matrix.

• void fl_transformed_vertex (double xf, double yf)
Adds coordinate pair to the vertex list without further transformations.

• FL_EXPORT void fl_translate (double x, double y)
Concatenates translation transformation onto the current one.

• void fl_vertex (double x, double y)
Adds a single vertex to the current path.

• FL_EXPORT double fl_width (unsigned int)
Return the typographical width of a single character :.

• FL_EXPORT double fl_width (const char ∗txt, int n)
Return the typographical width of a sequence of n characters.

• FL_EXPORT double fl_width (const char ∗txt)
Return the typographical width of a nul-terminated string.

• void fl_xyline (int x, int y, int x1, int y2, int x3)
Draws a horizontal line from (x,y) to (x1,y), then a vertical from (x1,y) to (x1,y2) and then another horizontal
from (x1,y2) to (x3,y2).

• void fl_xyline (int x, int y, int x1, int y2)
Draws a horizontal line from (x,y) to (x1,y), then vertical from (x1,y) to (x1,y2).

• void fl_xyline (int x, int y, int x1)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1002 File Documentation

Draws a horizontal line from (x,y) to (x1,y).

• void fl_yxline (int x, int y, int y1, int x2, int y3)
Draws a vertical line from (x,y) to (x,y1) then a horizontal from (x,y1) to (x2,y1), then another vertical from
(x2,y1) to (x2,y3).

• void fl_yxline (int x, int y, int y1, int x2)
Draws a vertical line from (x,y) to (x,y1), then a horizontal from (x,y1) to (x2,y1).

• void fl_yxline (int x, int y, int y1)
Draws a vertical line from (x,y) to (x,y1).

Variables

• FL_EXPORT Fl_Color fl_color_
The current color.

• FL_EXPORT char fl_draw_shortcut
• FL_EXPORT Fl_Font fl_font_

current font index

• FL_EXPORT Fl_Fontsize fl_size_
current font size

31.9.1 Detailed Description

utility header to pull drawing functions together

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.10 fl_line_style.cxx File Reference 1003

31.10 fl_line_style.cxx File Reference

Line style drawing utility hiding different platforms.

#include <FL/Fl.H>

#include <FL/fl_draw.H>

#include <FL/x.H>

#include <FL/Fl_Printer.H>

#include "flstring.h"

#include <stdio.h>

Variables

• int fl_line_width_ = 0

31.10.1 Detailed Description

Line style drawing utility hiding different platforms.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1004 File Documentation

31.11 Fl_Paged_Device.cxx File Reference

implementation of class Fl_Paged_Device.

#include <FL/Fl_Paged_Device.H>

#include <FL/Fl.H>

#include <FL/fl_draw.H>

31.11.1 Detailed Description

implementation of class Fl_Paged_Device.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.12 Fl_Paged_Device.H File Reference 1005

31.12 Fl_Paged_Device.H File Reference

declaration of class Fl_Paged_Device.

#include <FL/Fl_Device.H>

Classes

• class Fl_Paged_Device
Represents page-structured drawing surfaces.

• struct Fl_Paged_Device::page_format
width, height and name of a page format

Defines

• #define NO_PAGE_FORMATS 30
Number of elements in enum Page_Format.

31.12.1 Detailed Description

declaration of class Fl_Paged_Device.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1006 File Documentation

31.13 Fl_PostScript.H File Reference

declaration of classes Fl_PostScript_Graphics_Driver, Fl_PostScript_File_Device.

#include <FL/Fl_Paged_Device.H>

#include <FL/fl_draw.H>

Classes

• class Fl_PostScript_File_Device
To send graphical output to a PostScript file.

• class Fl_PostScript_Graphics_Driver
PostScript graphical backend.

31.13.1 Detailed Description

declaration of classes Fl_PostScript_Graphics_Driver, Fl_PostScript_File_Device.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.14 Fl_Printer.H File Reference 1007

31.14 Fl_Printer.H File Reference

declaration of classes Fl_System_Printer, Fl_PostScript_Printer, Fl_Printer, Fl_Device_Plugin.

#include <FL/Fl_Paged_Device.H>

#include <FL/fl_draw.H>

#include <FL/Fl_Pixmap.H>

#include <FL/Fl_RGB_Image.H>

#include <FL/Fl_Bitmap.H>

#include <stdio.h>

#include <FL/Fl_PostScript.H>

Classes

• class Fl_PostScript_Printer
Print support under Unix/Linux.

• class Fl_Printer
OS-independent print support.

• class Fl_System_Printer
Print support under MSWindows and Mac OS X.

Typedefs

• typedef Fl_System_Printer Fl_Printer

31.14.1 Detailed Description

declaration of classes Fl_System_Printer, Fl_PostScript_Printer, Fl_Printer, Fl_Device_Plugin.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1008 File Documentation

31.15 fl_rect.cxx File Reference

Drawing and clipping routines for rectangles.

#include <config.h>

#include <FL/Fl.H>

#include <FL/Fl_Widget.H>

#include <FL/Fl_Printer.H>

#include <FL/fl_draw.H>

#include <FL/x.H>

Defines

• #define STACK_MAX (STACK_SIZE - 1)
• #define STACK_SIZE 10

Functions

• Fl_Region fl_clip_region ()
returns the current clipping region.

• void fl_clip_region (Fl_Region r)
Replaces the top of the clipping stack with a clipping region of any shape.

• void fl_restore_clip ()
Undoes any clobbering of clip done by your program.

• Fl_Region XRectangleRegion (int x, int y, int w, int h)

Variables

• int fl_clip_state_number = 0
• int fl_line_width_

31.15.1 Detailed Description

Drawing and clipping routines for rectangles.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.16 Fl_Shared_Image.H File Reference 1009

31.16 Fl_Shared_Image.H File Reference

Fl_Shared_Image class.

#include "Fl_Image.H"

Classes

• class Fl_Shared_Image
This class supports caching, loading, and drawing of image files.

Typedefs

• typedef Fl_Image ∗(∗ Fl_Shared_Handler)(const char ∗name, uchar ∗header, int headerlen)

Functions

• FL_EXPORT void fl_register_images ()
Register the image formats.

31.16.1 Detailed Description

Fl_Shared_Image class.

31.16.2 Function Documentation

31.16.2.1 FL_EXPORT void fl_register_images ()

Register the image formats.

This function is provided in the fltk_images library and registers all of the "extra" image file formats that
are not part of the core FLTK library.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1010 File Documentation

31.17 fl_show_colormap.H File Reference

The fl_show_colormap() function hides the implementation classes used to provide the popup window and
color selection mechanism.

Functions

• FL_EXPORT Fl_Color fl_show_colormap (Fl_Color oldcol)
Pops up a window to let the user pick an colormap entry.

31.17.1 Detailed Description

The fl_show_colormap() function hides the implementation classes used to provide the popup window and
color selection mechanism.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.18 Fl_Tree.H File Reference 1011

31.18 Fl_Tree.H File Reference

This file contains the definitions of the Fl_Tree class.

#include <FL/Fl.H>

#include <FL/Fl_Group.H>

#include <FL/Fl_Scrollbar.H>

#include <FL/fl_draw.H>

#include <FL/Fl_Tree_Item.H>

#include <FL/Fl_Tree_Prefs.H>

Classes

• class Fl_Tree
Tree widget.

Enumerations

• enum Fl_Tree_Reason {

FL_TREE_REASON_NONE = 0, FL_TREE_REASON_SELECTED, FL_TREE_REASON_-
DESELECTED, FL_TREE_REASON_OPENED,

FL_TREE_REASON_CLOSED }
The reason the callback was invoked.

31.18.1 Detailed Description

This file contains the definitions of the Fl_Tree class.

31.18.2 Enumeration Type Documentation

31.18.2.1 enum Fl_Tree_Reason

The reason the callback was invoked.

Enumerator:

FL_TREE_REASON_NONE unknown reason

FL_TREE_REASON_SELECTED an item was selected

FL_TREE_REASON_DESELECTED an item was de-selected

FL_TREE_REASON_OPENED an item was opened

FL_TREE_REASON_CLOSED an item was closed

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1012 File Documentation

31.19 Fl_Tree_Item.H File Reference

This file contains the definitions for Fl_Tree_Item.

#include <FL/Fl.H>

#include <FL/Fl_Widget.H>

#include <FL/Fl_Image.H>

#include <FL/fl_draw.H>

#include <FL/Fl_Tree_Item_Array.H>

#include <FL/Fl_Tree_Prefs.H>

Classes

• class Fl_Tree_Item
Tree item.

31.19.1 Detailed Description

This file contains the definitions for Fl_Tree_Item.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.20 Fl_Tree_Item_Array.H File Reference 1013

31.20 Fl_Tree_Item_Array.H File Reference

This file defines a class that manages an array of Fl_Tree_Item pointers.

#include "Fl_Export.H"

Classes

• class Fl_Tree_Item_Array
Manages an array of Fl_Tree_Item pointers.

Variables

• class FL_EXPORT Fl_Tree_Item

31.20.1 Detailed Description

This file defines a class that manages an array of Fl_Tree_Item pointers.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1014 File Documentation

31.21 Fl_Tree_Prefs.H File Reference

This file contains the definitions for Fl_Tree’s preferences.

Classes

• class Fl_Tree_Prefs

Tree widget’s preferences.

Enumerations

• enum Fl_Tree_Connector { FL_TREE_CONNECTOR_NONE = 0, FL_TREE_CONNECTOR_-
DOTTED = 1, FL_TREE_CONNECTOR_SOLID = 2 }

Defines the style of connection lines between items.

• enum Fl_Tree_Select { FL_TREE_SELECT_NONE = 0, FL_TREE_SELECT_SINGLE = 1, FL_-
TREE_SELECT_MULTI = 2 }

Tree selection style.

• enum Fl_Tree_Sort { FL_TREE_SORT_NONE = 0, FL_TREE_SORT_ASCENDING = 1, FL_-
TREE_SORT_DESCENDING = 2 }

Sort order options for items added to the tree.

31.21.1 Detailed Description

This file contains the definitions for Fl_Tree’s preferences.

Fl_Tree_Prefs
:

.....:.......
: :

Fl_Tree :
|_____ Fl_Tree_Item

31.21.2 Enumeration Type Documentation

31.21.2.1 enum Fl_Tree_Connector

Defines the style of connection lines between items.

Enumerator:

FL_TREE_CONNECTOR_NONE Use no lines connecting items.

FL_TREE_CONNECTOR_DOTTED Use dotted lines connecting items (default).

FL_TREE_CONNECTOR_SOLID Use solid lines connecting items.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.21 Fl_Tree_Prefs.H File Reference 1015

31.21.2.2 enum Fl_Tree_Select

Tree selection style.

Enumerator:

FL_TREE_SELECT_NONE Nothing selected when items are clicked.

FL_TREE_SELECT_SINGLE Single item selected when item is clicked (default).

FL_TREE_SELECT_MULTI Multiple items can be selected by clicking with.
SHIFT or CTRL or mouse drags.

31.21.2.3 enum Fl_Tree_Sort

Sort order options for items added to the tree.

Enumerator:

FL_TREE_SORT_NONE No sorting; items are added in the order defined (default).

FL_TREE_SORT_ASCENDING Add items in ascending sort order.

FL_TREE_SORT_DESCENDING Add items in descending sort order.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1016 File Documentation

31.22 fl_types.h File Reference

This file contains simple "C"-style type definitions.

Typedefs

Miscellaneous

• typedef unsigned int Fl_Char
24-bit Unicode character - upper 8-bits are unused

• typedef const char ∗ Fl_CString
Flexible length utf8 Unicode read-only string.

• typedef unsigned int Fl_Shortcut
24-bit Unicode character + 8-bit indicator for keyboard flags

• typedef char ∗ Fl_String
Flexible length utf8 Unicode text.

• typedef unsigned char uchar
unsigned char

• typedef unsigned long ulong
unsigned long

31.22.1 Detailed Description

This file contains simple "C"-style type definitions.

31.22.2 Typedef Documentation

31.22.2.1 typedef const char∗ Fl_CString

Flexible length utf8 Unicode read-only string.

See also:

Fl_String

31.22.2.2 typedef char∗ Fl_String

Flexible length utf8 Unicode text.

Todo

FIXME: temporary (?) typedef to mark UTF8 and Unicode conversions

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.23 fl_utf8.h File Reference 1017

31.23 fl_utf8.h File Reference

header for Unicode and UTF8 chracter handling

#include "Fl_Export.H"

#include "fl_types.h"

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include "Xutf8.h"

#include <X11/Xlocale.h>

#include <X11/Xlib.h>

#include <locale.h>

Defines

• #define xchar unsigned short

Functions

• FL_EXPORT int fl_access (const char ∗f, int mode)
• FL_EXPORT int fl_chmod (const char ∗f, int mode)
• FL_EXPORT int fl_execvp (const char ∗file, char ∗const ∗argv)
• FL_EXPORT FILE ∗ fl_fopen (const char ∗f, const char ∗mode)
• FL_EXPORT char ∗ fl_getcwd (char ∗buf, int maxlen)
• FL_EXPORT char ∗ fl_getenv (const char ∗name)
• FL_EXPORT char fl_make_path (const char ∗path)
• FL_EXPORT void fl_make_path_for_file (const char ∗path)
• FL_EXPORT int fl_mkdir (const char ∗f, int mode)
• FL_EXPORT unsigned int fl_nonspacing (unsigned int ucs)

returns true if the character is non-spacing.

• FL_EXPORT int fl_open (const char ∗f, int o,...)
• FL_EXPORT int fl_rename (const char ∗f, const char ∗t)
• FL_EXPORT int fl_rmdir (const char ∗f)
• FL_EXPORT int fl_stat (const char ∗path, struct stat ∗buffer)
• FL_EXPORT int fl_system (const char ∗f)
• FL_EXPORT int fl_tolower (unsigned int ucs)

return the Unicode lower case value of ucs

• FL_EXPORT int fl_toupper (unsigned int ucs)
return the Unicode upper case value of ucs

• FL_EXPORT int fl_unlink (const char ∗f)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1018 File Documentation

• FL_EXPORT char ∗ fl_utf2mbcs (const char ∗s)
converts UTF8 to a local multi-byte character string.

• FL_EXPORT const char ∗ fl_utf8back (const char ∗p, const char ∗start, const char ∗end)
• FL_EXPORT int fl_utf8bytes (unsigned ucs)

Return the number of bytes needed to encode the given UCS4 character in UTF8.

• FL_EXPORT unsigned fl_utf8decode (const char ∗p, const char ∗end, int ∗len)
• FL_EXPORT int fl_utf8encode (unsigned ucs, char ∗buf)
• FL_EXPORT unsigned fl_utf8from_mb (char ∗dst, unsigned dstlen, const char ∗src, unsigned srclen)
• FL_EXPORT unsigned fl_utf8froma (char ∗dst, unsigned dstlen, const char ∗src, unsigned srclen)
• FL_EXPORT unsigned fl_utf8fromwc (char ∗dst, unsigned dstlen, const wchar_t ∗src, unsigned

srclen)
• FL_EXPORT const char ∗ fl_utf8fwd (const char ∗p, const char ∗start, const char ∗end)
• FL_EXPORT int fl_utf8len (char c)

return the byte length of the UTF-8 sequence with first byte c, or -1 if c is not valid.

• FL_EXPORT int fl_utf8len1 (char c)
Return the byte length of the UTF-8 sequence with first byte c, or 1 if c is not valid.

• FL_EXPORT int fl_utf8locale ()
• FL_EXPORT int fl_utf8test (const char ∗src, unsigned len)
• FL_EXPORT unsigned fl_utf8to_mb (const char ∗src, unsigned srclen, char ∗dst, unsigned dstlen)
• FL_EXPORT unsigned fl_utf8toa (const char ∗src, unsigned srclen, char ∗dst, unsigned dstlen)
• FL_EXPORT unsigned fl_utf8toUtf16 (const char ∗src, unsigned srclen, unsigned short ∗dst, un-

signed dstlen)
• FL_EXPORT unsigned fl_utf8towc (const char ∗src, unsigned srclen, wchar_t ∗dst, unsigned

dstlen)
Converts a UTF-8 string into a wide character string.

• FL_EXPORT int fl_utf_nb_char (const unsigned char ∗buf, int len)
returns the number of Unicode chars in the UTF-8 string

• FL_EXPORT int fl_utf_strcasecmp (const char ∗s1, const char ∗s2)
UTF-8 aware strcasecmp - converts to Unicode and tests.

• FL_EXPORT int fl_utf_strncasecmp (const char ∗s1, const char ∗s2, int n)
UTF-8 aware strncasecmp - converts to lower case Unicode and tests.

• FL_EXPORT int fl_utf_tolower (const unsigned char ∗str, int len, char ∗buf)
converts the str string to the lower case equivalent into buf.

• FL_EXPORT int fl_utf_toupper (const unsigned char ∗str, int len, char ∗buf)
converts the str string to the upper case equivalent into buf.

• FL_EXPORT int fl_wcwidth (const char ∗src)
extended wrapper around fl_wcwidth_(unsigned int ucs) function.

• FL_EXPORT int fl_wcwidth_ (unsigned int ucs)
wrapper to adapt Markus Kuhn’s implementation of wcwidth() for FLTK

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.23 fl_utf8.h File Reference 1019

31.23.1 Detailed Description

header for Unicode and UTF8 chracter handling

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1020 File Documentation

31.24 fl_vertex.cxx File Reference

Portable drawing code for drawing arbitrary shapes with simple 2D transformations.

#include <config.h>

#include <FL/fl_draw.H>

#include <FL/x.H>

#include <FL/Fl.H>

#include <FL/math.h>

#include <stdlib.h>

Defines

• #define XPOINT XPoint

Typedefs

• typedef short COORD_T

Enumerations

• enum { LINE, LOOP, POLYGON, POINT_ }

Functions

• void fl_mult_matrix (double a, double b, double c, double d, double x, double y)
Concatenates another transformation onto the current one.

• void fl_pop_matrix ()
Restores the current transformation matrix from the stack.

• void fl_push_matrix ()
Saves the current transformation matrix on the stack.

• void fl_rotate (double d)
Concatenates rotation transformation onto the current one.

• void fl_scale (double x)
Concatenates scaling transformation onto the current one.

• void fl_scale (double x, double y)
Concatenates scaling transformation onto the current one.

• double fl_transform_dx (double x, double y)
Transforms distance using current transformation matrix.

• double fl_transform_dy (double x, double y)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.24 fl_vertex.cxx File Reference 1021

Transforms distance using current transformation matrix.

• double fl_transform_x (double x, double y)
Transforms coordinate using the current transformation matrix.

• double fl_transform_y (double x, double y)
Transform coordinate using the current transformation matrix.

• void fl_translate (double x, double y)
Concatenates translation transformation onto the current one.

Variables

• matrix ∗ fl_matrix = &m

31.24.1 Detailed Description

Portable drawing code for drawing arbitrary shapes with simple 2D transformations.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1022 File Documentation

31.25 Fl_Widget.H File Reference

Fl_Widget, Fl_Label classes .

#include "Enumerations.H"

Classes

• struct Fl_Label
This struct stores all information for a text or mixed graphics label.

• class Fl_Widget
Fl_Widget is the base class for all widgets in FLTK.

Defines

• #define FL_RESERVED_TYPE 100
Reserved type numbers (necessary for my cheapo RTTI) start here.

Typedefs

• typedef void(Fl_Callback)(Fl_Widget ∗, void ∗)
Default callback type definition for all fltk widgets (by far the most used).

• typedef void(Fl_Callback0)(Fl_Widget ∗)
One parameter callback type definition passing only the widget.

• typedef void(Fl_Callback1)(Fl_Widget ∗, long)
Callback type definition passing the widget and a long data value.

• typedef Fl_Callback ∗ Fl_Callback_p
Default callback type pointer definition for all fltk widgets.

• typedef long fl_intptr_t
• typedef unsigned long fl_uintptr_t

31.25.1 Detailed Description

Fl_Widget, Fl_Label classes .

31.25.2 Define Documentation

31.25.2.1 #define FL_RESERVED_TYPE 100

Reserved type numbers (necessary for my cheapo RTTI) start here.

Grep the header files for "RESERVED_TYPE" to find the next available number.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.25 Fl_Widget.H File Reference 1023

31.25.3 Typedef Documentation

31.25.3.1 typedef long fl_intptr_t

Todo

typedef’s fl_intptr_t and fl_uintptr_t should be documented.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1024 File Documentation

31.26 gl.h File Reference

This file defines wrapper functions for OpenGL in FLTK.

#include "Enumerations.H"

#include <GL/gl.h>

Functions

• void gl_color (int c)
back compatability

• FL_EXPORT void gl_color (Fl_Color i)
Sets the curent OpenGL color to an FLTK color.

• FL_EXPORT int gl_descent ()
Returns the current font’s descent.

• FL_EXPORT void gl_draw (const char ∗, int x, int y, int w, int h, Fl_Align)
Draws a string formatted into a box, with newlines and tabs expanded, other control characters changed to
∧X.

• FL_EXPORT void gl_draw (const char ∗, int n, float x, float y)
Draws n characters of the string in the current font at the given position.

• FL_EXPORT void gl_draw (const char ∗, int n, int x, int y)
Draws n characters of the string in the current font at the given position.

• FL_EXPORT void gl_draw (const char ∗, float x, float y)
Draws a nul-terminated string in the current font at the given position.

• FL_EXPORT void gl_draw (const char ∗, int x, int y)
Draws a nul-terminated string in the current font at the given position.

• FL_EXPORT void gl_draw (const char ∗, int n)
Draws an array of n characters of the string in the current font at the current position.

• FL_EXPORT void gl_draw (const char ∗)
Draws a nul-terminated string in the current font at the current position.

• FL_EXPORT void gl_draw_image (const uchar ∗, int x, int y, int w, int h, int d=3, int ld=0)
• FL_EXPORT void gl_finish ()

Releases an OpenGL context.

• FL_EXPORT void gl_font (int fontid, int size)
Sets the current OpenGL font to the same font as calling fl_font().

• FL_EXPORT int gl_height ()
Returns the current font’s height.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.26 gl.h File Reference 1025

• FL_EXPORT void gl_measure (const char ∗, int &x, int &y)

Measure how wide and tall the string will be when drawn by the gl_draw() function.

• FL_EXPORT void gl_rect (int x, int y, int w, int h)

Outlines the given rectangle with the current color.

• void gl_rectf (int x, int y, int w, int h)

Fills the given rectangle with the current color.

• FL_EXPORT void gl_start ()

Creates an OpenGL context.

• FL_EXPORT double gl_width (uchar)

Returns the width of the character in the current font.

• FL_EXPORT double gl_width (const char ∗, int n)

Returns the width of n characters of the string in the current font.

• FL_EXPORT double gl_width (const char ∗)
Returns the width of the string in the current fnt.

31.26.1 Detailed Description

This file defines wrapper functions for OpenGL in FLTK.

To use OpenGL from within an FLTK application you MUST use gl_visual() to select the default visual
before doing show() on any windows. Mesa will crash if yoy try to use a visual not returned by glxChoo-
seVidual.

This does not work with Fl_Double_Window’s! It will try to draw into the front buffer. Depending on the
system this will either crash or do nothing (when pixmaps are being used as back buffer and GL is being
done by hardware), work correctly (when GL is done with software, such as Mesa), or draw into the front
buffer and be erased when the buffers are swapped (when double buffer hardware is being used)

31.26.2 Function Documentation

31.26.2.1 FL_EXPORT void gl_color (Fl_Color i)

Sets the curent OpenGL color to an FLTK color.

For color-index modes it will use fl_xpixel(c), which is only right if the window uses the default colormap!

31.26.2.2 FL_EXPORT void gl_draw (const char ∗ str, int x, int y, int w, int h, Fl_Align align)

Draws a string formatted into a box, with newlines and tabs expanded, other control characters changed to
∧X.

and aligned with the edges or center. Exactly the same output as fl_draw().

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1026 File Documentation

31.26.2.3 FL_EXPORT void gl_draw (const char ∗ str, int n, float x, float y)

Draws n characters of the string in the current font at the given position.

See also:

On the Mac OS X platform, see gl_texture_pile_height(int)

31.26.2.4 FL_EXPORT void gl_draw (const char ∗ str, int n, int x, int y)

Draws n characters of the string in the current font at the given position.

See also:

On the Mac OS X platform, see gl_texture_pile_height(int)

31.26.2.5 FL_EXPORT void gl_draw (const char ∗ str, float x, float y)

Draws a nul-terminated string in the current font at the given position.

See also:

On the Mac OS X platform, see gl_texture_pile_height(int)

31.26.2.6 FL_EXPORT void gl_draw (const char ∗ str, int x, int y)

Draws a nul-terminated string in the current font at the given position.

See also:

On the Mac OS X platform, see gl_texture_pile_height(int)

31.26.2.7 FL_EXPORT void gl_draw (const char ∗ str, int n)

Draws an array of n characters of the string in the current font at the current position.

See also:

On the Mac OS X platform, see gl_texture_pile_height(int)

31.26.2.8 FL_EXPORT void gl_draw (const char ∗ str)

Draws a nul-terminated string in the current font at the current position.

See also:

On the Mac OS X platform, see gl_texture_pile_height(int)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

31.26 gl.h File Reference 1027

31.26.2.9 FL_EXPORT void gl_rect (int x, int y, int w, int h)

Outlines the given rectangle with the current color.

If Fl_Gl_Window::ortho() has been called, then the rectangle will exactly fill the given pixel rectangle.

31.26.2.10 void gl_rectf (int x, int y, int w, int h) [inline]

Fills the given rectangle with the current color.

See also:

gl_rect(int x, int y, int w, int h)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Index

∼Fl_Check_Browser
Fl_Check_Browser, 403

∼Fl_Double_Window
Fl_Double_Window, 437

∼Fl_File_Chooser
Fl_File_Chooser, 449

∼Fl_Group
Fl_Group, 511

∼Fl_Help_View
Fl_Help_View, 530

∼Fl_Input_
Fl_Input_, 549

∼Fl_Menu_Window
Fl_Menu_Window, 611

∼Fl_Native_File_Chooser
Fl_Native_File_Chooser, 620

∼Fl_Plugin_Manager
Fl_Plugin_Manager, 646

∼Fl_PostScript_Graphics_Driver
Fl_PostScript_Graphics_Driver, 659

∼Fl_Preferences
Fl_Preferences, 669

∼Fl_RGB_Image
Fl_RGB_Image, 694

∼Fl_Scrollbar
Fl_Scrollbar, 709

∼Fl_Shared_Image
Fl_Shared_Image, 716

∼Fl_Surface_Device
Fl_Surface_Device, 733

∼Fl_Table
Fl_Table, 753

∼Fl_Table_Row
Fl_Table_Row, 764

∼Fl_Text_Display
Fl_Text_Display, 797

∼Fl_Widget
Fl_Widget, 920

∼Fl_Window
Fl_Window, 954

_FL_DIAMOND_DOWN_BOX
Enumerations.H, 978

_FL_DIAMOND_UP_BOX
Enumerations.H, 978

_FL_EMBOSSED_LABEL

Enumerations.H, 982
_FL_ENGRAVED_LABEL

Enumerations.H, 982
_FL_GTK_DOWN_BOX

Enumerations.H, 979
_FL_GTK_DOWN_FRAME

Enumerations.H, 979
_FL_GTK_ROUND_DOWN_BOX

Enumerations.H, 979
_FL_GTK_ROUND_UP_BOX

Enumerations.H, 979
_FL_GTK_THIN_DOWN_BOX

Enumerations.H, 979
_FL_GTK_THIN_DOWN_FRAME

Enumerations.H, 979
_FL_GTK_THIN_UP_BOX

Enumerations.H, 979
_FL_GTK_THIN_UP_FRAME

Enumerations.H, 979
_FL_GTK_UP_BOX

Enumerations.H, 979
_FL_GTK_UP_FRAME

Enumerations.H, 979
_FL_ICON_LABEL

Enumerations.H, 982
_FL_IMAGE_LABEL

Enumerations.H, 982
_FL_MULTI_LABEL

Enumerations.H, 982
_FL_OFLAT_BOX

Enumerations.H, 978
_FL_OSHADOW_BOX

Enumerations.H, 978
_FL_OVAL_BOX

Enumerations.H, 978
_FL_OVAL_FRAME

Enumerations.H, 978
_FL_PLASTIC_DOWN_BOX

Enumerations.H, 978
_FL_PLASTIC_DOWN_FRAME

Enumerations.H, 979
_FL_PLASTIC_ROUND_DOWN_BOX

Enumerations.H, 979
_FL_PLASTIC_ROUND_UP_BOX

Enumerations.H, 979

INDEX 1029

_FL_PLASTIC_THIN_DOWN_BOX
Enumerations.H, 979

_FL_PLASTIC_THIN_UP_BOX
Enumerations.H, 979

_FL_PLASTIC_UP_BOX
Enumerations.H, 978

_FL_PLASTIC_UP_FRAME
Enumerations.H, 978

_FL_RFLAT_BOX
Enumerations.H, 978

_FL_ROUNDED_BOX
Enumerations.H, 978

_FL_ROUNDED_FRAME
Enumerations.H, 978

_FL_ROUND_DOWN_BOX
Enumerations.H, 978

_FL_ROUND_UP_BOX
Enumerations.H, 978

_FL_RSHADOW_BOX
Enumerations.H, 978

_FL_SHADOW_BOX
Enumerations.H, 978

_FL_SHADOW_FRAME
Enumerations.H, 978

_FL_SHADOW_LABEL
Enumerations.H, 982

_remove
Fl_Browser, 353

A0
Fl_Paged_Device, 633

A4
Fl_Paged_Device, 633

absolute_top_line_number
Fl_Text_Display, 797

activate
Fl_Menu_Item, 601
Fl_Tree_Item, 878
Fl_Widget, 921

active
Fl_Menu_Item, 601
Fl_Widget, 921

active_r
Fl_Widget, 921

activevisible
Fl_Menu_Item, 602

add
Fl_Browser, 353
Fl_Chart, 397
Fl_Check_Browser, 404
Fl_File_Icon, 455
Fl_Input_Choice, 565
Fl_Menu_, 577
Fl_Menu_Item, 602

Fl_Sys_Menu_Bar, 736
Fl_Tree, 854
Fl_Tree_Item, 878
Fl_Tree_Item_Array, 886

add_awake_handler_
Fl, 326

add_check
Fl, 326

add_color
Fl_File_Icon, 455

add_default_key_bindings
Fl_Text_Editor, 825

add_extra
Fl_File_Chooser, 449

add_fd
Fl, 326

add_handler
fl_events, 237

add_idle
Fl, 327

add_modify_callback
Fl_Text_Buffer, 778

add_timeout
Fl, 327

add_vertex
Fl_File_Icon, 455

addPlugin
Fl_Plugin_Manager, 646

address
Fl_Text_Buffer, 778

align
Fl_Widget, 921

ALWAYS_ON
Fl_Browser_, 374

angle1
Fl_Dial, 432

append
Fl_Text_Buffer, 779

appendfile
Fl_Text_Buffer, 779

arc
Fl_Graphics_Driver, 495

arg
Fl, 327

args
Fl, 328

argument
Fl_Menu_Item, 602
Fl_Widget, 922

array
Fl_Group, 511

as_gl_window
Fl_Gl_Window, 479
Fl_Widget, 922

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1030 INDEX

as_group
Fl_Group, 511
Fl_Widget, 922

as_window
Fl_Widget, 923
Fl_Window, 954

atclose
fl_windows, 233

autosize
Fl_Chart, 397

awake
fl_multithread, 281

b
Fl_Color_Chooser, 421

background
Fl, 329

background2
Fl, 329

bbox
Fl_Browser_, 375
Fl_Scroll, 704

begin
Fl_Group, 512
Fl_Table, 753

begin_complex_polygon
Fl_Graphics_Driver, 495

begin_line
Fl_Graphics_Driver, 495

begin_loop
Fl_Graphics_Driver, 495

begin_points
Fl_Graphics_Driver, 495

begin_polygon
Fl_Graphics_Driver, 495

belowmouse
fl_events, 237

bitmap
Fl_FormsBitmap, 466

BLOCK_CURSOR
Fl_Text_Display, 796

border
Fl_Window, 954

BOTH
Fl_Browser_, 374

BOTH_ALWAYS
Fl_Browser_, 375

bottomline
Fl_Browser, 353

bound_key_function
Fl_Text_Editor, 825

bounds
Fl_Chart, 398
Fl_Slider, 725

Fl_Valuator, 895
box

Fl_Widget, 923
box_dh

Fl, 329
box_dw

Fl, 330
box_dx

Fl, 330
box_dy

Fl, 330
BROWSE_DIRECTORY

Fl_Native_File_Chooser, 620
BROWSE_FILE

Fl_Native_File_Chooser, 620
BROWSE_MULTI_DIRECTORY

Fl_Native_File_Chooser, 620
BROWSE_MULTI_FILE

Fl_Native_File_Chooser, 620
BROWSE_SAVE_DIRECTORY

Fl_Native_File_Chooser, 620
BROWSE_SAVE_FILE

Fl_Native_File_Chooser, 620
buffer

Fl_Text_Display, 797
buffer_modified_cb

Fl_Text_Display, 798
buffer_predelete_cb

Fl_Text_Display, 798
byte_at

Fl_Text_Buffer, 779

Cairo support functions and classes, 287
cairo_autolink_context

group_cairo, 287
cairo_cc

group_cairo, 288
calc_last_char

Fl_Text_Display, 798
calc_line_starts

Fl_Text_Display, 798
callback

Fl_Menu_Item, 602, 603
Fl_Table, 753
Fl_Widget, 923, 924

Callback function typedefs, 229
callback_col

Fl_Table, 754
callback_context

Fl_Table, 754
callback_item

Fl_Tree, 855
callback_reason

Fl_Tree, 855

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1031

callback_row
Fl_Table, 755

can_do
Fl_Gl_Window, 479

can_do_overlay
Fl_Gl_Window, 479

CARET_CURSOR
Fl_Text_Display, 796

CHANGED
Fl_Widget, 919

changed
Fl_Input_Choice, 565
Fl_Widget, 924

char_at
Fl_Text_Buffer, 779

check
Fl, 330
Fl_Menu_Item, 603

check_all
Fl_Check_Browser, 404

check_none
Fl_Check_Browser, 404

checkbox
Fl_Menu_Item, 603

checked
Fl_Check_Browser, 404
Fl_Menu_Item, 603

child
Fl_Group, 512
Fl_Table, 755
Fl_Tree_Item, 878

children
Fl_Table, 755

circle
Fl_Graphics_Driver, 495

clamp
Fl_Valuator, 895

clear
Fl_Browser, 353
Fl_Button, 389
Fl_Check_Browser, 404
Fl_File_Icon, 455
Fl_Group, 512
Fl_Input_Choice, 565
Fl_Menu_, 580
Fl_Menu_Item, 603
Fl_Scroll, 704
Fl_Sys_Menu_Bar, 736
Fl_Table, 755
Fl_Table_Row, 765
Fl_Tree, 855
Fl_Tree_Item_Array, 886

clear_border
Fl_Window, 954

clear_changed
Fl_Input_Choice, 565
Fl_Widget, 925

clear_damage
Fl_Widget, 925

clear_output
Fl_Widget, 925

clear_overlay
Fl_Menu_Window, 611

clear_rect
Fl_Text_Display, 799

clear_selection
Fl_Help_View, 530

clear_submenu
Fl_Menu_, 580
Fl_Sys_Menu_Bar, 736

clear_visible
Fl_Widget, 926

clear_visible_focus
Fl_Widget, 926

clear_widget_pointer
fl_del_widget, 284

client_area
Fl_Tabs, 768

CLIP_CHILDREN
Fl_Widget, 920

clip_box
Fl_Graphics_Driver, 496

clip_children
Fl_Group, 512

close
Fl_Tree, 855, 856

closeicon
Fl_Tree, 856, 857
Fl_Tree_Prefs, 891

col
FL_CHART_ENTRY, 401

col_header
Fl_Table, 755

col_resize
Fl_Table, 755

col_resize_min
Fl_Table, 756

col_to_x
Fl_Text_Display, 799

col_width
Fl_Table, 756

col_width_all
Fl_Table, 756

color
Fl_File_Chooser, 449, 450
Fl_Graphics_Driver, 496
Fl_Tooltip, 844
Fl_Widget, 926

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1032 INDEX

Color & Font functions, 250
color2

Fl_Widget, 927
color_average

Fl_Image, 538
Fl_Pixmap, 641
Fl_RGB_Image, 694
Fl_Shared_Image, 716
Fl_Tiled_Image, 837

column_char
Fl_Browser, 354

column_widths
Fl_Browser, 354

Common Dialogs classes and functions, 300
compose

fl_events, 237
compose_reset

fl_events, 238
contains

Fl_Widget, 927
context

Fl_Gl_Window, 479
CONTEXT_CELL

Fl_Table, 753
CONTEXT_COL_HEADER

Fl_Table, 753
CONTEXT_ENDPAGE

Fl_Table, 753
CONTEXT_NONE

Fl_Table, 753
CONTEXT_RC_RESIZE

Fl_Table, 753
CONTEXT_ROW_HEADER

Fl_Table, 753
CONTEXT_STARTPAGE

Fl_Table, 753
CONTEXT_TABLE

Fl_Table, 753
context_valid

Fl_Gl_Window, 480
COPIED_LABEL

Fl_Widget, 920
COPIED_TOOLTIP

Fl_Widget, 920
copy

Fl_Bitmap, 343
fl_clipboard, 246
Fl_Image, 538
Fl_Input_, 549
Fl_Menu_, 580
Fl_Pixmap, 641
Fl_RGB_Image, 694, 695
Fl_Shared_Image, 716, 717
Fl_Text_Buffer, 779

Fl_Tiled_Image, 837
copy_cuts

Fl_Input_, 549
copy_label

Fl_Widget, 927
Fl_Window, 954

copy_tooltip
Fl_Widget, 928

count
Fl_File_Chooser, 450
Fl_Image, 538
Fl_Native_File_Chooser, 620

count_displayed_characters
Fl_Text_Buffer, 780

count_lines
Fl_Text_Buffer, 780
Fl_Text_Display, 799

current
Fl_Group, 512
Fl_Tooltip, 844
Fl_Window, 955

current_
Fl_Window, 963

cursor
Fl_Window, 955

cursor_color
Fl_Input_, 550
Fl_Text_Display, 799, 800
Fl_Value_Input, 901

cursor_style
Fl_Text_Display, 800

curve
Fl_Graphics_Driver, 496

cut
Fl_Input_, 550, 551

d
Fl_Image, 538, 539

damage
Fl, 330
Fl_Widget, 928

damage_resize
Fl_Widget, 929

data
Fl_Browser, 355
Fl_Image, 539

deactivate
Fl_Menu_Item, 603
Fl_Repeat_Button, 689
Fl_Tree_Item, 879
Fl_Widget, 929

default_atclose
fl_windows, 232

default_callback

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1033

Fl_Widget, 929
default_cursor

Fl_Window, 955
default_key_function

Fl_Text_Editor, 825
default_xclass

Fl_Window, 955
deimage

Fl_Widget, 929, 930
delay

Fl_Tooltip, 844, 845
delete_widget

fl_del_widget, 284
deleted

Fl_Widget_Tracker, 948
deleteEntry

Fl_Preferences, 669
deleteGroup

Fl_Preferences, 669
deleting

Fl_Browser_, 375
depth

Fl_Tree_Item, 879
desaturate

Fl_Image, 539
Fl_Pixmap, 641
Fl_RGB_Image, 695
Fl_Shared_Image, 717
Fl_Tiled_Image, 837

deselect
Fl_Browser_, 375
Fl_Tree, 857

deselect_all
Fl_Tree, 858
Fl_Tree_Item, 879

device_type
Fl_Device, 429
Fl_Display_Device, 434
Fl_GDI_Graphics_Driver, 474
Fl_Graphics_Driver, 507
Fl_Paged_Device, 637
Fl_PostScript_File_Device, 657
Fl_PostScript_Graphics_Driver, 660
Fl_PostScript_Printer, 662
Fl_Printer, 684
Fl_Quartz_Graphics_Driver, 688
Fl_Surface_Device, 733
Fl_System_Printer, 743
Fl_Xlib_Graphics_Driver, 968

DIM_CURSOR
Fl_Text_Display, 796

direction
Fl_Timer, 840

directory

Fl_File_Chooser, 450
Fl_Help_View, 530
Fl_Native_File_Chooser, 620

disable
Fl_Tooltip, 845

display
Fl, 331
Fl_Browser, 355
Fl_Browser_, 375
Fl_Tree, 858

display_insert
Fl_Text_Display, 800

displayed
Fl_Browser, 355
Fl_Browser_, 376
Fl_Tree, 858

dnd
fl_clipboard, 246

dnd_text_ops
Fl, 331

do_callback
Fl_Menu_Item, 604
Fl_Widget, 930, 931

do_widget_deletion
fl_del_widget, 284

down_box
Fl_Button, 389
Fl_File_Input, 460
Fl_Menu_, 581

draw
Fl_Adjuster, 340
Fl_Bitmap, 343, 344
Fl_Box, 347
Fl_Button, 389
Fl_Chart, 398
Fl_Choice, 410
Fl_Clock_Output, 416
Fl_Counter, 426
Fl_Dial, 432
Fl_File_Icon, 455
Fl_FormsBitmap, 466
Fl_FormsPixmap, 469
Fl_Free, 471
Fl_GDI_Graphics_Driver, 474
Fl_Gl_Window, 480
Fl_Glut_Window, 486
Fl_Graphics_Driver, 496, 497
Fl_Group, 513
Fl_Image, 539
Fl_Input, 542
Fl_Label, 571
Fl_Light_Button, 573
Fl_Menu_Bar, 590
Fl_Menu_Button, 594

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1034 INDEX

Fl_Menu_Item, 604
Fl_Pack, 630
Fl_Pixmap, 641
Fl_Positioner, 651
Fl_PostScript_Graphics_Driver, 659, 660
Fl_Progress, 686
Fl_Quartz_Graphics_Driver, 688
Fl_Return_Button, 692
Fl_RGB_Image, 695
Fl_Roller, 698
Fl_Scroll, 705
Fl_Scrollbar, 709
Fl_Shared_Image, 717
Fl_Slider, 725
Fl_Sys_Menu_Bar, 737
Fl_Table, 756
Fl_Tabs, 769
Fl_Text_Display, 800
Fl_Tiled_Image, 837, 838
Fl_Timer, 840
Fl_Value_Input, 901
Fl_Value_Output, 905
Fl_Value_Slider, 909
Fl_Widget, 931
Fl_Window, 956
Fl_Xlib_Graphics_Driver, 968

draw_box
Fl_Widget, 931

draw_box_active
Fl, 331

draw_cell
Fl_Table, 756

draw_child
Fl_Group, 513

draw_children
Fl_Group, 513

draw_cursor
Fl_Text_Display, 801

draw_empty
Fl_Image, 539

draw_image
Fl_Graphics_Driver, 497

draw_image_mono
Fl_Graphics_Driver, 497

draw_label
Fl_Widget, 931, 932

draw_line_numbers
Fl_Text_Display, 801

draw_outside_label
Fl_Group, 513

draw_overlay
Fl_Glut_Window, 486

draw_range
Fl_Text_Display, 801

draw_string
Fl_Text_Display, 801

draw_text
Fl_Text_Display, 802

draw_vline
Fl_Text_Display, 802

Drawing functions, 260
drawtext

Fl_Input_, 551
driver

Fl_Surface_Device, 733

empty_vlines
Fl_Text_Display, 802

enable
Fl_Tooltip, 845

enabled
Fl_Tooltip, 845

end
Fl_Group, 513
Fl_Table, 758
Fl_Text_Selection, 831

end_complex_polygon
Fl_Graphics_Driver, 497

end_line
Fl_Graphics_Driver, 497

end_loop
Fl_Graphics_Driver, 497

end_page
Fl_Paged_Device, 634
Fl_PostScript_File_Device, 654
Fl_Printer, 682
Fl_System_Printer, 740

end_points
Fl_Graphics_Driver, 497

end_polygon
Fl_Graphics_Driver, 498

enter_area
Fl_Tooltip, 845

entries
Fl_Preferences, 669

entry
Fl_Preferences, 669

entryExists
Fl_Preferences, 670

Enumerations.H, 971
_FL_DIAMOND_DOWN_BOX, 978
_FL_DIAMOND_UP_BOX, 978
_FL_EMBOSSED_LABEL, 982
_FL_ENGRAVED_LABEL, 982
_FL_GTK_DOWN_BOX, 979
_FL_GTK_DOWN_FRAME, 979
_FL_GTK_ROUND_DOWN_BOX, 979
_FL_GTK_ROUND_UP_BOX, 979

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1035

_FL_GTK_THIN_DOWN_BOX, 979
_FL_GTK_THIN_DOWN_FRAME, 979
_FL_GTK_THIN_UP_BOX, 979
_FL_GTK_THIN_UP_FRAME, 979
_FL_GTK_UP_BOX, 979
_FL_GTK_UP_FRAME, 979
_FL_ICON_LABEL, 982
_FL_IMAGE_LABEL, 982
_FL_MULTI_LABEL, 982
_FL_OFLAT_BOX, 978
_FL_OSHADOW_BOX, 978
_FL_OVAL_BOX, 978
_FL_OVAL_FRAME, 978
_FL_PLASTIC_DOWN_BOX, 978
_FL_PLASTIC_DOWN_FRAME, 979
_FL_PLASTIC_ROUND_DOWN_BOX, 979
_FL_PLASTIC_ROUND_UP_BOX, 979
_FL_PLASTIC_THIN_DOWN_BOX, 979
_FL_PLASTIC_THIN_UP_BOX, 979
_FL_PLASTIC_UP_BOX, 978
_FL_PLASTIC_UP_FRAME, 978
_FL_RFLAT_BOX, 978
_FL_ROUNDED_BOX, 978
_FL_ROUNDED_FRAME, 978
_FL_ROUND_DOWN_BOX, 978
_FL_ROUND_UP_BOX, 978
_FL_RSHADOW_BOX, 978
_FL_SHADOW_BOX, 978
_FL_SHADOW_FRAME, 978
_FL_SHADOW_LABEL, 982
FL_ACTIVATE, 981
FL_BORDER_BOX, 978
FL_BORDER_FRAME, 978
FL_CLOSE, 980
FL_DEACTIVATE, 981
FL_DND_DRAG, 981
FL_DND_ENTER, 981
FL_DND_LEAVE, 981
FL_DND_RELEASE, 981
FL_DOWN_BOX, 978
FL_DOWN_FRAME, 978
FL_DRAG, 980
FL_EMBOSSED_BOX, 978
FL_EMBOSSED_FRAME, 978
FL_ENGRAVED_BOX, 978
FL_ENGRAVED_FRAME, 978
FL_ENTER, 979
FL_FLAT_BOX, 978
FL_FOCUS, 980
FL_FREE_BOXTYPE, 979
FL_FREE_LABELTYPE, 982
FL_HIDE, 981
FL_KEYBOARD, 980
FL_KEYDOWN, 980

FL_KEYUP, 980
FL_LEAVE, 980
FL_MOUSEWHEEL, 981
FL_MOVE, 980
FL_NO_BOX, 978
FL_NO_EVENT, 979
FL_NO_LABEL, 982
FL_NORMAL_LABEL, 982
FL_PASTE, 981
FL_PUSH, 979
FL_RELEASE, 979
FL_SELECTIONCLEAR, 981
FL_SHORTCUT, 980
FL_SHOW, 981
FL_THIN_DOWN_BOX, 978
FL_THIN_DOWN_FRAME, 978
FL_THIN_UP_BOX, 978
FL_THIN_UP_FRAME, 978
FL_UNFOCUS, 980
FL_UP_BOX, 978
FL_UP_FRAME, 978
FL_WHEN_CHANGED, 982
FL_WHEN_ENTER_KEY, 982
FL_WHEN_ENTER_KEY_ALWAYS, 982
FL_WHEN_ENTER_KEY_CHANGED, 982
FL_WHEN_NEVER, 982
FL_WHEN_NOT_CHANGED, 982
FL_WHEN_RELEASE, 982
FL_WHEN_RELEASE_ALWAYS, 982
Fl_Align, 977
FL_ALIGN_BOTTOM, 983
FL_ALIGN_CENTER, 983
FL_ALIGN_CLIP, 983
FL_ALIGN_IMAGE_BACKDROP, 983
FL_ALIGN_IMAGE_NEXT_TO_TEXT, 983
FL_ALIGN_IMAGE_OVER_TEXT, 983
FL_ALIGN_INSIDE, 984
FL_ALIGN_LEFT, 984
FL_ALIGN_RIGHT, 984
FL_ALIGN_TEXT_NEXT_TO_IMAGE, 984
FL_ALIGN_TEXT_OVER_IMAGE, 984
FL_ALIGN_TOP, 984
FL_ALIGN_WRAP, 984
fl_box, 983
Fl_Boxtype, 978
Fl_Color, 977
fl_down, 983
Fl_Event, 979
Fl_Font, 977
Fl_Fontsize, 977
fl_frame, 983
Fl_Labeltype, 981
FL_MAJOR_VERSION, 976
FL_MINOR_VERSION, 976

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1036 INDEX

FL_PATCH_VERSION, 976
fl_rgb_color, 983
FL_VERSION, 976
Fl_When, 982

errmsg
Fl_Native_File_Chooser, 620

error
group_comdlg, 307

errorcolor
Fl_File_Input, 460

ERRORS_TO_CP1252
fl_unicode, 291

ERRORS_TO_ISO8859_1
fl_unicode, 291

event
fl_events, 238

event_alt
fl_events, 238

event_button
fl_events, 238

event_button1
fl_events, 238

event_button2
fl_events, 238

event_button3
fl_events, 238

event_buttons
fl_events, 239

event_clicks
fl_events, 239

event_command
fl_events, 239

event_ctrl
fl_events, 239

event_dx
fl_events, 239

event_dy
fl_events, 240

event_inside
fl_events, 240

event_is_click
fl_events, 240

event_key
fl_events, 240, 241

event_length
fl_events, 241

event_original_key
fl_events, 241

event_shift
fl_events, 241

event_state
fl_events, 241

event_text
fl_events, 242

event_x_root
fl_events, 242

event_y_root
fl_events, 242

Events handling functions, 234
exists

Fl_Widget_Tracker, 948
extend_range_for_styles

Fl_Text_Display, 802

fatal
group_comdlg, 307

File names and URI utility functions, 309
file_encoding_warning_message

Fl_Text_Buffer, 787
filename

Fl_Help_View, 530
Fl_Native_File_Chooser, 621

filenames
Fl_File_Sort_F, 310
fl_filename_absolute, 310
fl_filename_expand, 310
fl_filename_ext, 311
fl_filename_isdir, 311
fl_filename_match, 311
fl_filename_name, 312
fl_filename_relative, 312
fl_filename_setext, 313
fl_open_uri, 313

filetype
Fl_File_Browser, 442

filter
Fl_File_Browser, 442
Fl_File_Chooser, 450
Fl_Native_File_Chooser, 621

filter_value
Fl_File_Chooser, 450
Fl_Native_File_Chooser, 621, 622

find
Fl_File_Icon, 456
Fl_Group, 513
Fl_Help_View, 530
Fl_Table, 758

find_child
Fl_Tree_Item, 879

find_child_item
Fl_Tree_Item, 879

find_clicked
Fl_Tree, 858
Fl_Tree_Item, 880

find_index
Fl_Menu_, 581, 582

find_item
Fl_Browser_, 376

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1037

Fl_Menu_, 582
Fl_Tree, 859
Fl_Tree_Item, 880

find_line
Fl_Browser, 356

find_line_end
Fl_Text_Display, 802

find_shortcut
Fl_Menu_Item, 604

find_wrap_range
Fl_Text_Display, 803

find_x
Fl_Text_Display, 803

findchar_backward
Fl_Text_Buffer, 780

findchar_forward
Fl_Text_Buffer, 780

first
Fl_File_Icon, 456
Fl_Menu_Item, 604
Fl_Tree, 859

first_selected_item
Fl_Tree, 859

first_window
fl_windows, 232

Fl, 315
add_awake_handler_, 326
add_check, 326
add_fd, 326
add_idle, 327
add_timeout, 327
arg, 327
args, 328
background, 329
background2, 329
box_dh, 329
box_dw, 330
box_dx, 330
box_dy, 330
check, 330
damage, 330
display, 331
dnd_text_ops, 331
draw_box_active, 331
Fl_Option, 325
flush, 331
foreground, 331
get_awake_handler_, 331
get_boxtype, 331
get_system_colors, 332
gl_visual, 332
help, 337
idle, 337
option, 332

OPTION_ARROW_FOCUS, 325
OPTION_DND_TEXT, 326
OPTION_SHOW_TOOLTIPS, 326
OPTION_VISIBLE_FOCUS, 325
own_colormap, 333
ready, 333
release, 333
reload_scheme, 333
remove_check, 333
remove_fd, 334
remove_timeout, 334
repeat_timeout, 334
run, 334
scheme, 334
scrollbar_size, 335
set_boxtype, 335
set_idle, 335
set_labeltype, 335
version, 336
visible_focus, 336
visual, 336
wait, 336

FL_ACTIVATE
Enumerations.H, 981

FL_BORDER_BOX
Enumerations.H, 978

FL_BORDER_FRAME
Enumerations.H, 978

Fl_Browser_
ALWAYS_ON, 374
BOTH, 374
BOTH_ALWAYS, 375
HORIZONTAL, 374
HORIZONTAL_ALWAYS, 374
VERTICAL, 374
VERTICAL_ALWAYS, 375

FL_CAP_FLAT
fl_drawings, 266

FL_CAP_ROUND
fl_drawings, 266

FL_CAP_SQUARE
fl_drawings, 266

FL_CLOSE
Enumerations.H, 980

FL_DASH
fl_drawings, 266

FL_DASHDOT
fl_drawings, 266

FL_DASHDOTDOT
fl_drawings, 266

FL_DEACTIVATE
Enumerations.H, 981

FL_DND_DRAG
Enumerations.H, 981

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1038 INDEX

FL_DND_ENTER
Enumerations.H, 981

FL_DND_LEAVE
Enumerations.H, 981

FL_DND_RELEASE
Enumerations.H, 981

FL_DOT
fl_drawings, 266

FL_DOWN_BOX
Enumerations.H, 978

FL_DOWN_FRAME
Enumerations.H, 978

FL_DRAG
Enumerations.H, 980

fl_drawings
FL_CAP_FLAT, 266
FL_CAP_ROUND, 266
FL_CAP_SQUARE, 266
FL_DASH, 266
FL_DASHDOT, 266
FL_DASHDOTDOT, 266
FL_DOT, 266
FL_JOIN_BEVEL, 266
FL_JOIN_MITER, 266
FL_JOIN_ROUND, 266
FL_SOLID, 266

FL_EMBOSSED_BOX
Enumerations.H, 978

FL_EMBOSSED_FRAME
Enumerations.H, 978

FL_ENGRAVED_BOX
Enumerations.H, 978

FL_ENGRAVED_FRAME
Enumerations.H, 978

FL_ENTER
Enumerations.H, 979

FL_FLAT_BOX
Enumerations.H, 978

FL_FOCUS
Enumerations.H, 980

FL_FREE_BOXTYPE
Enumerations.H, 979

FL_FREE_LABELTYPE
Enumerations.H, 982

FL_HIDE
Enumerations.H, 981

FL_JOIN_BEVEL
fl_drawings, 266

FL_JOIN_MITER
fl_drawings, 266

FL_JOIN_ROUND
fl_drawings, 266

FL_KEYBOARD
Enumerations.H, 980

FL_KEYDOWN
Enumerations.H, 980

FL_KEYUP
Enumerations.H, 980

FL_LEAVE
Enumerations.H, 980

Fl_Menu_Button
POPUP1, 593
POPUP12, 593
POPUP123, 593
POPUP13, 593
POPUP2, 593
POPUP23, 593
POPUP3, 593

FL_MOUSEWHEEL
Enumerations.H, 981

FL_MOVE
Enumerations.H, 980

Fl_Native_File_Chooser
BROWSE_DIRECTORY, 620
BROWSE_FILE, 620
BROWSE_MULTI_DIRECTORY, 620
BROWSE_MULTI_FILE, 620
BROWSE_SAVE_DIRECTORY, 620
BROWSE_SAVE_FILE, 620
NEW_FOLDER, 619
NO_OPTIONS, 619
PREVIEW, 620
SAVEAS_CONFIRM, 619

FL_NO_BOX
Enumerations.H, 978

FL_NO_EVENT
Enumerations.H, 979

FL_NO_LABEL
Enumerations.H, 982

FL_NORMAL_LABEL
Enumerations.H, 982

Fl_Paged_Device
A0, 633
A4, 633
LANDSCAPE, 634
LETTER, 633
ORIENTATION, 634
PORTRAIT, 634
REVERSED, 634

FL_PASTE
Enumerations.H, 981

Fl_Preferences
SYSTEM, 667
USER, 667

FL_PUSH
Enumerations.H, 979

FL_RELEASE
Enumerations.H, 979

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1039

FL_SELECTIONCLEAR
Enumerations.H, 981

FL_SHORTCUT
Enumerations.H, 980

FL_SHOW
Enumerations.H, 981

FL_SOLID
fl_drawings, 266

Fl_Table
CONTEXT_CELL, 753
CONTEXT_COL_HEADER, 753
CONTEXT_ENDPAGE, 753
CONTEXT_NONE, 753
CONTEXT_RC_RESIZE, 753
CONTEXT_ROW_HEADER, 753
CONTEXT_STARTPAGE, 753
CONTEXT_TABLE, 753

Fl_Text_Display
BLOCK_CURSOR, 796
CARET_CURSOR, 796
DIM_CURSOR, 796
HEAVY_CURSOR, 796
NORMAL_CURSOR, 796
WRAP_AT_BOUNDS, 797
WRAP_AT_COLUMN, 796
WRAP_AT_PIXEL, 797
WRAP_NONE, 796

FL_THIN_DOWN_BOX
Enumerations.H, 978

FL_THIN_DOWN_FRAME
Enumerations.H, 978

FL_THIN_UP_BOX
Enumerations.H, 978

FL_THIN_UP_FRAME
Enumerations.H, 978

Fl_Tree.H
FL_TREE_REASON_CLOSED, 1011
FL_TREE_REASON_DESELECTED, 1011
FL_TREE_REASON_NONE, 1011
FL_TREE_REASON_OPENED, 1011
FL_TREE_REASON_SELECTED, 1011

FL_TREE_CONNECTOR_DOTTED
Fl_Tree_Prefs.H, 1014

FL_TREE_CONNECTOR_NONE
Fl_Tree_Prefs.H, 1014

FL_TREE_CONNECTOR_SOLID
Fl_Tree_Prefs.H, 1014

Fl_Tree_Prefs.H
FL_TREE_CONNECTOR_DOTTED, 1014
FL_TREE_CONNECTOR_NONE, 1014
FL_TREE_CONNECTOR_SOLID, 1014
FL_TREE_SELECT_MULTI, 1015
FL_TREE_SELECT_NONE, 1015
FL_TREE_SELECT_SINGLE, 1015

FL_TREE_SORT_ASCENDING, 1015
FL_TREE_SORT_DESCENDING, 1015
FL_TREE_SORT_NONE, 1015

FL_TREE_REASON_CLOSED
Fl_Tree.H, 1011

FL_TREE_REASON_DESELECTED
Fl_Tree.H, 1011

FL_TREE_REASON_NONE
Fl_Tree.H, 1011

FL_TREE_REASON_OPENED
Fl_Tree.H, 1011

FL_TREE_REASON_SELECTED
Fl_Tree.H, 1011

FL_TREE_SELECT_MULTI
Fl_Tree_Prefs.H, 1015

FL_TREE_SELECT_NONE
Fl_Tree_Prefs.H, 1015

FL_TREE_SELECT_SINGLE
Fl_Tree_Prefs.H, 1015

FL_TREE_SORT_ASCENDING
Fl_Tree_Prefs.H, 1015

FL_TREE_SORT_DESCENDING
Fl_Tree_Prefs.H, 1015

FL_TREE_SORT_NONE
Fl_Tree_Prefs.H, 1015

FL_UNFOCUS
Enumerations.H, 980

FL_UP_BOX
Enumerations.H, 978

FL_UP_FRAME
Enumerations.H, 978

FL_WHEN_CHANGED
Enumerations.H, 982

FL_WHEN_ENTER_KEY
Enumerations.H, 982

FL_WHEN_ENTER_KEY_ALWAYS
Enumerations.H, 982

FL_WHEN_ENTER_KEY_CHANGED
Enumerations.H, 982

FL_WHEN_NEVER
Enumerations.H, 982

FL_WHEN_NOT_CHANGED
Enumerations.H, 982

FL_WHEN_RELEASE
Enumerations.H, 982

FL_WHEN_RELEASE_ALWAYS
Enumerations.H, 982

Fl_Widget
CHANGED, 919
CLIP_CHILDREN, 920
COPIED_LABEL, 920
COPIED_TOOLTIP, 920
FORCE_POSITION, 919
GROUP_RELATIVE, 920

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1040 INDEX

INACTIVE, 919
INVISIBLE, 919
MENU_WINDOW, 920
MODAL, 920
NO_OVERLAY, 920
NOBORDER, 919
NON_MODAL, 919
OUTPUT, 919
OVERRIDE, 920
SHORTCUT_LABEL, 919
TOOLTIP_WINDOW, 920
USERFLAG1, 920
USERFLAG2, 920
USERFLAG3, 920
VISIBLE_FOCUS, 920

fl_add_symbol
fl_drawings, 267

Fl_Adjuster, 339
draw, 340
Fl_Adjuster, 340
Fl_Adjuster, 340
handle, 340
soft, 341

fl_alert
group_comdlg, 301

Fl_Align
Enumerations.H, 977

FL_ALIGN_BOTTOM
Enumerations.H, 983

FL_ALIGN_CENTER
Enumerations.H, 983

FL_ALIGN_CLIP
Enumerations.H, 983

FL_ALIGN_IMAGE_BACKDROP
Enumerations.H, 983

FL_ALIGN_IMAGE_NEXT_TO_TEXT
Enumerations.H, 983

FL_ALIGN_IMAGE_OVER_TEXT
Enumerations.H, 983

FL_ALIGN_INSIDE
Enumerations.H, 984

FL_ALIGN_LEFT
Enumerations.H, 984

FL_ALIGN_RIGHT
Enumerations.H, 984

FL_ALIGN_TEXT_NEXT_TO_IMAGE
Enumerations.H, 984

FL_ALIGN_TEXT_OVER_IMAGE
Enumerations.H, 984

FL_ALIGN_TOP
Enumerations.H, 984

FL_ALIGN_WRAP
Enumerations.H, 984

fl_arc

fl_drawings, 267
Fl_Graphics_Driver, 500, 501

fl_arc.cxx, 985
fl_arci.cxx, 986
fl_ask

group_comdlg, 301
fl_attributes

fl_color, 252, 253
fl_color_average, 253
fl_contrast, 253
fl_font, 253
fl_height, 254
fl_latin1_to_local, 254
fl_local_to_latin1, 254
fl_local_to_mac_roman, 255
fl_mac_roman_to_local, 255
fl_show_colormap, 255
fl_size, 256
fl_text_extents, 256
fl_width, 257
fl_xpixel, 257
free_color, 257
get_color, 258
get_font, 258
get_font_name, 258
get_font_sizes, 258
set_color, 258, 259
set_font, 259
set_fonts, 259

fl_beep
group_comdlg, 302

fl_begin_complex_polygon
fl_drawings, 267
Fl_Graphics_Driver, 501

fl_begin_offscreen
fl_drawings, 268

fl_begin_points
fl_drawings, 268
Fl_Graphics_Driver, 501

Fl_Bitmap, 342
copy, 343
draw, 343, 344
Fl_Bitmap, 343
Fl_Bitmap, 343
label, 344
uncache, 344

Fl_BMP_Image, 345
Fl_BMP_Image, 345
Fl_BMP_Image, 345

Fl_Box, 346
draw, 347
Fl_Box, 346
Fl_Box, 346
handle, 347

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1041

fl_box
Enumerations.H, 983

Fl_Boxtype
Enumerations.H, 978

fl_boxtype.cxx, 987
fl_internal_boxtype, 988
fl_rectbound, 988

Fl_Browser, 348
_remove, 353
add, 353
bottomline, 353
clear, 353
column_char, 354
column_widths, 354
data, 355
display, 355
displayed, 355
find_line, 356
Fl_Browser, 352
Fl_Browser, 352
format_char, 356
full_height, 357
hide, 357
icon, 358
incr_height, 358
insert, 358, 359
item_at, 359
item_draw, 359
item_first, 360
item_height, 360
item_last, 360
item_next, 361
item_prev, 361
item_select, 361
item_selected, 362
item_swap, 362
item_text, 362
item_width, 362
lineno, 363
lineposition, 363
load, 363
make_visible, 364
middleline, 364
move, 364
remove, 364
remove_icon, 365
replace, 365
select, 365
selected, 365
show, 366
size, 366
swap, 367
text, 367
topline, 368

value, 368
visible, 368

Fl_Browser_, 370
bbox, 375
deleting, 375
deselect, 375
display, 375
displayed, 376
find_item, 376
Fl_Browser_, 375
Fl_Browser_, 375
full_height, 376
full_width, 376
handle, 377
has_scrollbar, 377
hposition, 377, 378
hscrollbar, 386
incr_height, 378
inserting, 378
item_at, 378
item_first, 379
item_height, 379
item_last, 379
item_next, 379
item_prev, 380
item_quick_height, 380
item_select, 380
item_selected, 380
item_swap, 381
item_text, 381
item_width, 381
leftedge, 381
new_list, 382
position, 382
redraw_line, 382
redraw_lines, 383
replacing, 383
resize, 383
scrollbar, 386
scrollbar_left, 383
scrollbar_right, 383
scrollbar_size, 383, 384
scrollbar_width, 384
select, 385
select_only, 385
selection, 385
sort, 385
swapping, 386
textfont, 386

Fl_Button, 387
clear, 389
down_box, 389
draw, 389
Fl_Button, 389

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1042 INDEX

Fl_Button, 389
handle, 390
set, 390
shortcut, 390, 391
value, 391

Fl_Cairo_State, 392
Fl_Cairo_Window, 393

set_draw_cb, 394
fl_can_do_alpha_blending

fl_drawings, 268
Fl_Chart, 395

add, 397
autosize, 397
bounds, 398
draw, 398
Fl_Chart, 397
Fl_Chart, 397
insert, 398
maxsize, 398
replace, 399
size, 399
textcolor, 399
textfont, 399
textsize, 399

FL_CHART_ENTRY, 401
col, 401
str, 401
val, 401

Fl_Check_Browser, 402
∼Fl_Check_Browser, 403
add, 404
check_all, 404
check_none, 404
checked, 404
clear, 404
Fl_Check_Browser, 403
Fl_Check_Browser, 403
handle, 404
nchecked, 404
nitems, 404
remove, 405
set_checked, 405
text, 405
value, 405

Fl_Check_Button, 406
Fl_Check_Button, 406
Fl_Check_Button, 406

Fl_Choice, 408
draw, 410
Fl_Choice, 409
Fl_Choice, 409
handle, 410
value, 410, 411

fl_choice

group_comdlg, 302
fl_circle

fl_drawings, 268
Fl_Graphics_Driver, 501

fl_clip_box
fl_drawings, 268
Fl_Graphics_Driver, 502

fl_clip_region
fl_drawings, 269

fl_clipboard
copy, 246
dnd, 246
paste, 247
selection, 247
selection_owner, 247

Fl_Clock, 412
Fl_Clock, 413
Fl_Clock, 413
handle, 414

Fl_Clock_Output, 415
draw, 416
Fl_Clock_Output, 416
Fl_Clock_Output, 416
hour, 417
minute, 417
second, 417
value, 417

Fl_Color
Enumerations.H, 977

fl_color
fl_attributes, 252, 253
Fl_Graphics_Driver, 502

fl_color.cxx, 989
fl_color_average

fl_attributes, 253
Fl_Color_Chooser, 419

b, 421
Fl_Color_Chooser, 421
Fl_Color_Chooser, 421
g, 421
hsv, 421
hsv2rgb, 421
hue, 422
mode, 422
r, 422
rgb, 422
rgb2hsv, 422
saturation, 423
value, 423

fl_color_chooser
group_comdlg, 302, 303

Fl_Color_Chooser.H, 991
fl_contrast

fl_attributes, 253

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1043

fl_copy_offscreen
fl_drawings, 269

Fl_Counter, 424
draw, 426
Fl_Counter, 425
Fl_Counter, 425
handle, 426
lstep, 426
step, 427

fl_create_offscreen
fl_drawings, 269

Fl_CString
fl_types.h, 1016

fl_cursor
fl_drawings, 269

fl_curve
fl_drawings, 270
Fl_Graphics_Driver, 502

fl_curve.cxx, 992
fl_del_widget

clear_widget_pointer, 284
delete_widget, 284
do_widget_deletion, 284
release_widget_pointer, 284
watch_widget_pointer, 285

fl_delete_offscreen
fl_drawings, 270

Fl_Device, 428
device_type, 429
type, 428

Fl_Device.H, 993
Fl_Draw_Image_Cb, 994

Fl_Device_Plugin, 430
print, 430

Fl_Dial, 431
angle1, 432
draw, 432
Fl_Dial, 432
Fl_Dial, 432
handle, 432

fl_dir_chooser
group_comdlg, 304

Fl_Display_Device, 434
device_type, 434

Fl_Double_Window, 436
∼Fl_Double_Window, 437
flush, 437
hide, 437
resize, 438
show, 438

fl_down
Enumerations.H, 983

fl_draw
fl_drawings, 270

fl_draw.H, 995
fl_draw_box

fl_drawings, 271
fl_draw_image

fl_drawings, 271
Fl_Graphics_Driver, 503

Fl_Draw_Image_Cb
Fl_Device.H, 994

fl_draw_image_mono
fl_drawings, 272
Fl_Graphics_Driver, 504

fl_draw_pixmap
fl_drawings, 272, 273

fl_draw_symbol
fl_drawings, 273

fl_drawings
fl_add_symbol, 267
fl_arc, 267
fl_begin_complex_polygon, 267
fl_begin_offscreen, 268
fl_begin_points, 268
fl_can_do_alpha_blending, 268
fl_circle, 268
fl_clip_box, 268
fl_clip_region, 269
fl_copy_offscreen, 269
fl_create_offscreen, 269
fl_cursor, 269
fl_curve, 270
fl_delete_offscreen, 270
fl_draw, 270
fl_draw_box, 271
fl_draw_image, 271
fl_draw_image_mono, 272
fl_draw_pixmap, 272, 273
fl_draw_symbol, 273
fl_expand_text, 273
fl_frame, 273
fl_frame2, 274
fl_gap, 274
fl_line_style, 274
fl_measure, 275
fl_measure_pixmap, 275
fl_mult_matrix, 275
fl_not_clipped, 275
fl_old_shortcut, 276
fl_pie, 276
fl_polygon, 276
fl_pop_clip, 276
fl_push_clip, 277
fl_push_matrix, 277
fl_read_image, 277
fl_rect, 277
fl_rectf, 277

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1044 INDEX

fl_reset_spot, 278
fl_rotate, 278
fl_scale, 278
fl_scroll, 278
fl_set_spot, 278
fl_set_status, 279
fl_shortcut_label, 279
fl_transform_dx, 279
fl_transform_dy, 279
fl_transform_x, 280
fl_transform_y, 280
fl_transformed_vertex, 280
fl_translate, 280
fl_vertex, 280

Fl_End, 440
Fl_Event

Enumerations.H, 979
fl_eventnames

fl_events, 244
fl_events

add_handler, 237
belowmouse, 237
compose, 237
compose_reset, 238
event, 238
event_alt, 238
event_button, 238
event_button1, 238
event_button2, 238
event_button3, 238
event_buttons, 239
event_clicks, 239
event_command, 239
event_ctrl, 239
event_dx, 239
event_dy, 240
event_inside, 240
event_is_click, 240
event_key, 240, 241
event_length, 241
event_original_key, 241
event_shift, 241
event_state, 241
event_text, 242
event_x_root, 242
event_y_root, 242
fl_eventnames, 244
fl_fontnames, 245
focus, 243
get_key, 243
get_mouse, 243
handle, 243
pushed, 243, 244
test_shortcut, 244

fl_expand_text
fl_drawings, 273

Fl_File_Browser, 441
filetype, 442
filter, 442
Fl_File_Browser, 442
Fl_File_Browser, 442
iconsize, 442
load, 443

Fl_File_Chooser, 444
∼Fl_File_Chooser, 449
add_extra, 449
color, 449, 450
count, 450
directory, 450
filter, 450
filter_value, 450
Fl_File_Chooser, 449
Fl_File_Chooser, 449
hide, 450
iconsize, 450
label, 451
preview, 451
rescan, 451
show, 451
textcolor, 451
textfont, 451
textsize, 451, 452
type, 452
value, 452
visible, 452

fl_file_chooser
group_comdlg, 304

fl_file_chooser_callback
group_comdlg, 305

fl_file_chooser_ok_label
group_comdlg, 305

Fl_File_Icon, 453
add, 455
add_color, 455
add_vertex, 455
clear, 455
draw, 455
find, 456
first, 456
Fl_File_Icon, 454
Fl_File_Icon, 454
label, 456
labeltype, 456
load, 456
load_fti, 457
load_image, 457
load_system_icons, 457
next, 457

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1045

pattern, 457
size, 457
type, 458
value, 458

Fl_File_Input, 459
down_box, 460
errorcolor, 460
Fl_File_Input, 460
Fl_File_Input, 460
handle, 461
value, 461

Fl_File_Sort_F
filenames, 310

fl_filename_absolute
filenames, 310

fl_filename_expand
filenames, 310

fl_filename_ext
filenames, 311

fl_filename_isdir
filenames, 311

fl_filename_match
filenames, 311

fl_filename_name
filenames, 312

fl_filename_relative
filenames, 312

fl_filename_setext
filenames, 313

Fl_Fill_Dial, 462
Fl_Fill_Dial, 462
Fl_Fill_Dial, 462

Fl_Fill_Slider, 463
Fl_Fill_Slider, 463
Fl_Fill_Slider, 463

Fl_Float_Input, 464
Fl_Float_Input, 464
Fl_Float_Input, 464

Fl_Font
Enumerations.H, 977

fl_font
fl_attributes, 253
Fl_Graphics_Driver, 504

Fl_Font_Descriptor, 465
fl_fontnames

fl_events, 245
Fl_Fontsize

Enumerations.H, 977
Fl_FormsBitmap, 466

bitmap, 466
draw, 466
set, 467

Fl_FormsPixmap, 468
draw, 469

Fl_FormsPixmap, 468
Fl_FormsPixmap, 468
Pixmap, 469
set, 469

fl_frame
Enumerations.H, 983
fl_drawings, 273

fl_frame2
fl_drawings, 274

Fl_Free, 470
draw, 471
Fl_Free, 471
Fl_Free, 471
handle, 471

fl_gap
fl_drawings, 274
Fl_Graphics_Driver, 504

Fl_GDI_Graphics_Driver, 473
device_type, 474
draw, 474
Fl_GDI_Graphics_Driver, 473
Fl_GDI_Graphics_Driver, 473

Fl_GIF_Image, 475
Fl_GIF_Image, 475
Fl_GIF_Image, 475

Fl_Gl_Window, 476
as_gl_window, 479
can_do, 479
can_do_overlay, 479
context, 479
context_valid, 480
draw, 480
Fl_Gl_Window, 478
Fl_Gl_Window, 478
flush, 480
hide_overlay, 480
make_current, 480
make_overlay_current, 480
mode, 481
ortho, 481
redraw_overlay, 481
resize, 481
show, 482
swap_buffers, 483
valid, 483

Fl_Glut_Bitmap_Font, 484
Fl_Glut_Window, 485

draw, 486
draw_overlay, 486
Fl_Glut_Window, 486
Fl_Glut_Window, 486
make_current, 487

Fl_Graphics_Driver, 488
arc, 495

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1046 INDEX

begin_complex_polygon, 495
begin_line, 495
begin_loop, 495
begin_points, 495
begin_polygon, 495
circle, 495
clip_box, 496
color, 496
curve, 496
device_type, 507
draw, 496, 497
draw_image, 497
draw_image_mono, 497
end_complex_polygon, 497
end_line, 497
end_loop, 497
end_points, 497
end_polygon, 498
fl_arc, 500, 501
fl_begin_complex_polygon, 501
fl_begin_points, 501
fl_circle, 501
fl_clip_box, 502
fl_color, 502
fl_curve, 502
fl_draw_image, 503
fl_draw_image_mono, 504
fl_font, 504
fl_gap, 504
Fl_Graphics_Driver, 495
fl_line_style, 505
fl_not_clipped, 505
fl_pie, 505
fl_polygon, 506
fl_pop_clip, 506
fl_push_clip, 506
fl_rect, 506
fl_transformed_vertex, 506
fl_vertex, 506
Fl_Graphics_Driver, 495
font, 498
gap, 498
line, 498
line_style, 498
loop, 498
not_clipped, 498
pie, 498
point, 499
polygon, 499
pop_clip, 499
push_clip, 499
push_no_clip, 499
rect, 499
rectf, 499

rtl_draw, 499
transformed_vertex, 499
vertex, 500
xyline, 500
yxline, 500

Fl_Group, 508
∼Fl_Group, 511
array, 511
as_group, 511
begin, 512
child, 512
clear, 512
clip_children, 512
current, 512
draw, 513
draw_child, 513
draw_children, 513
draw_outside_label, 513
end, 513
find, 513
Fl_Group, 511
Fl_Group, 511
focus, 514
handle, 514
init_sizes, 514
insert, 515
remove, 515
resizable, 516
resize, 517
sizes, 517
update_child, 517

fl_height
fl_attributes, 254

Fl_Help_Dialog, 519
Fl_Help_Dialog, 520
Fl_Help_Dialog, 520
h, 520
hide, 520
load, 521
position, 521
resize, 521
show, 521
textsize, 521
value, 521
visible, 521
w, 522
x, 522
y, 522

Fl_Help_Font_Style, 523
Fl_Help_Link, 524
Fl_Help_Target, 525
Fl_Help_View, 526

∼Fl_Help_View, 530
clear_selection, 530

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1047

directory, 530
filename, 530
find, 530
leftline, 530
link, 530
load, 531
resize, 531
scrollbar_size, 531
select_all, 532
size, 532
textcolor, 532
textfont, 532
textsize, 533
title, 533
topline, 533
value, 533

Fl_Hold_Browser, 535
Fl_Hold_Browser, 535
Fl_Hold_Browser, 535

Fl_Image, 536
color_average, 538
copy, 538
count, 538
d, 538, 539
data, 539
desaturate, 539
draw, 539
draw_empty, 539
Fl_Image, 538
Fl_Image, 538
h, 539
inactive, 540
label, 540
ld, 540
uncache, 540
w, 540

Fl_Input, 541
draw, 542
Fl_Input, 541
Fl_Input, 541
handle, 542

fl_input
group_comdlg, 306

Fl_Input_, 545
∼Fl_Input_, 549
copy, 549
copy_cuts, 549
cursor_color, 550
cut, 550, 551
drawtext, 551
Fl_Input_, 549
Fl_Input_, 549
handle_mouse, 551
handletext, 551

index, 551
input_type, 552
insert, 552
line_end, 552
line_start, 553
mark, 553
maximum_size, 553
position, 554
readonly, 555
replace, 555
resize, 555
shortcut, 556
size, 556
static_value, 557
tab_nav, 557, 558
textcolor, 558
textfont, 558, 559
textsize, 559
undo, 559
up_down_position, 559
value, 560
word_end, 561
word_start, 561
wrap, 561

Fl_Input_Choice, 563
add, 565
changed, 565
clear, 565
clear_changed, 565
Fl_Input_Choice, 565
Fl_Input_Choice, 565
input, 565
menu, 565, 566
menubutton, 566
resize, 566
set_changed, 566
value, 566

Fl_Int_Input, 567
Fl_Int_Input, 567
Fl_Int_Input, 567

fl_internal_boxtype
fl_boxtype.cxx, 988

fl_intptr_t
Fl_Widget.H, 1023

Fl_JPEG_Image, 568
Fl_JPEG_Image, 568
Fl_JPEG_Image, 568

Fl_Label, 570
draw, 571
measure, 571
type, 571

Fl_Labeltype
Enumerations.H, 981

fl_latin1_to_local

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1048 INDEX

fl_attributes, 254
Fl_Light_Button, 572

draw, 573
Fl_Light_Button, 573
Fl_Light_Button, 573
handle, 573

fl_line_style
fl_drawings, 274
Fl_Graphics_Driver, 505

fl_line_style.cxx, 1003
fl_local_to_latin1

fl_attributes, 254
fl_local_to_mac_roman

fl_attributes, 255
fl_mac_roman_to_local

fl_attributes, 255
fl_mac_set_about

group_macosx, 298
FL_MAJOR_VERSION

Enumerations.H, 976
fl_measure

fl_drawings, 275
fl_measure_pixmap

fl_drawings, 275
Fl_Menu_, 574

add, 577
clear, 580
clear_submenu, 580
copy, 580
down_box, 581
find_index, 581, 582
find_item, 582
Fl_Menu_, 577
Fl_Menu_, 577
global, 583
insert, 583
item_pathname, 584
menu, 584
mode, 585
mvalue, 585
picked, 585
remove, 585
replace, 585
shortcut, 586
size, 586
test_shortcut, 586
text, 586
textcolor, 586, 587
textfont, 587
textsize, 587
value, 587

Fl_Menu_Bar, 589
draw, 590
Fl_Menu_Bar, 590

Fl_Menu_Bar, 590
handle, 590

Fl_Menu_Button, 592
draw, 594
Fl_Menu_Button, 594
Fl_Menu_Button, 594
handle, 594
popup, 594
popup_buttons, 593

Fl_Menu_Item, 596
activate, 601
active, 601
activevisible, 602
add, 602
argument, 602
callback, 602, 603
check, 603
checkbox, 603
checked, 603
clear, 603
deactivate, 603
do_callback, 604
draw, 604
find_shortcut, 604
first, 604
hide, 605
insert, 605
label, 605
labelcolor, 605
labelfont, 606
labelsize, 606
labeltype, 606
measure, 606
next, 606, 607
popup, 607
pulldown, 607
radio, 607
set, 607
setonly, 607
shortcut, 608
show, 608
submenu, 608
test_shortcut, 608
uncheck, 608
value, 608
visible, 608

Fl_Menu_Window, 610
∼Fl_Menu_Window, 611
clear_overlay, 611
Fl_Menu_Window, 611
Fl_Menu_Window, 611
flush, 611
hide, 611
set_overlay, 611

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1049

show, 611
fl_message

group_comdlg, 306
fl_message_icon

group_comdlg, 306
FL_MINOR_VERSION

Enumerations.H, 976
fl_mult_matrix

fl_drawings, 275
Fl_Multi_Browser, 613

Fl_Multi_Browser, 613
Fl_Multi_Browser, 613

Fl_Multiline_Input, 614
Fl_Multiline_Input, 614
Fl_Multiline_Input, 614

Fl_Multiline_Output, 616
Fl_Multiline_Output, 616
Fl_Multiline_Output, 616

fl_multithread
awake, 281
lock, 282
thread_message, 282
unlock, 282

Fl_Native_File_Chooser, 617
∼Fl_Native_File_Chooser, 620
count, 620
directory, 620
errmsg, 620
filename, 621
filter, 621
filter_value, 621, 622
Fl_Native_File_Chooser, 620
Fl_Native_File_Chooser, 620
Option, 619
options, 622
preset_file, 622
show, 622
title, 622
Type, 620

fl_nonspacing
fl_unicode, 291

fl_not_clipped
fl_drawings, 275
Fl_Graphics_Driver, 505

fl_old_shortcut
fl_drawings, 276

fl_open_uri
filenames, 313

Fl_Option
Fl, 325

Fl_Output, 624
Fl_Output, 625
Fl_Output, 625

Fl_Overlay_Window, 626

Fl_Overlay_Window, 627
Fl_Overlay_Window, 627
hide, 627
redraw_overlay, 627
resize, 627
show, 628

Fl_Pack, 629
draw, 630
Fl_Pack, 630
Fl_Pack, 630

Fl_Paged_Device, 631
device_type, 637
end_page, 634
margins, 634
origin, 634
Page_Format, 633
Page_Layout, 633
print_widget, 635
print_window_part, 635
printable_rect, 635
rotate, 636
scale, 636
start_job, 636
start_page, 636
translate, 637

Fl_Paged_Device.cxx, 1004
Fl_Paged_Device.H, 1005
Fl_Paged_Device::page_format, 638
fl_password

group_comdlg, 306
FL_PATCH_VERSION

Enumerations.H, 976
fl_pie

fl_drawings, 276
Fl_Graphics_Driver, 505

Fl_Pixmap, 639
color_average, 641
copy, 641
desaturate, 641
draw, 641
Fl_Pixmap, 640
Fl_Pixmap, 640
label, 641, 642
uncache, 642

Fl_Plugin, 643
Fl_Plugin, 644
Fl_Plugin, 644

Fl_Plugin_Manager, 645
∼Fl_Plugin_Manager, 646
addPlugin, 646
load, 646
removePlugin, 646

Fl_PNG_Image, 647
Fl_PNG_Image, 647

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1050 INDEX

Fl_PNG_Image, 647
Fl_PNM_Image, 648

Fl_PNM_Image, 648
Fl_PNM_Image, 648

fl_polygon
fl_drawings, 276
Fl_Graphics_Driver, 506

fl_pop_clip
fl_drawings, 276
Fl_Graphics_Driver, 506

Fl_Positioner, 649
draw, 651
Fl_Positioner, 651
Fl_Positioner, 651
handle, 651
value, 651
xbounds, 652
xstep, 652
xvalue, 652
ybounds, 652
ystep, 652
yvalue, 652

Fl_PostScript.H, 1006
Fl_PostScript_File_Device, 653

device_type, 657
end_page, 654
margins, 655
origin, 655
printable_rect, 655
rotate, 655
scale, 656
start_job, 656
start_page, 657
translate, 657

Fl_PostScript_Graphics_Driver, 658
∼Fl_PostScript_Graphics_Driver, 659
device_type, 660
draw, 659, 660

Fl_PostScript_Printer, 661
device_type, 662
start_job, 661

Fl_Preferences, 663
∼Fl_Preferences, 669
deleteEntry, 669
deleteGroup, 669
entries, 669
entry, 669
entryExists, 670
Fl_Preferences, 667, 668
Fl_Preferences, 667, 668
flush, 670
get, 670–672
getUserdataPath, 672
group, 673

groupExists, 673
groups, 673
ID, 667
newUUID, 674
Root, 667
set, 674–676
size, 676

Fl_Preferences::Name, 677
Name, 677

Fl_Printer, 679
device_type, 684
end_page, 682
margins, 682
origin, 682
printable_rect, 682
rotate, 683
scale, 683
start_job, 683
start_page, 683
translate, 684

Fl_Printer.H, 1007
Fl_Progress, 685

draw, 686
Fl_Progress, 686
Fl_Progress, 686
maximum, 686
minimum, 686
value, 686

fl_push_clip
fl_drawings, 277
Fl_Graphics_Driver, 506

fl_push_matrix
fl_drawings, 277

Fl_Quartz_Graphics_Driver, 687
device_type, 688
draw, 688
Fl_Quartz_Graphics_Driver, 687
Fl_Quartz_Graphics_Driver, 687

fl_read_image
fl_drawings, 277

fl_rect
fl_drawings, 277
Fl_Graphics_Driver, 506

fl_rect.cxx, 1008
fl_rectbound

fl_boxtype.cxx, 988
fl_rectf

fl_drawings, 277
fl_register_images

Fl_Shared_Image.H, 1009
Fl_Repeat_Button, 689

deactivate, 689
Fl_Repeat_Button, 689
Fl_Repeat_Button, 689

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1051

handle, 690
FL_RESERVED_TYPE

Fl_Widget.H, 1022
fl_reset_spot

fl_drawings, 278
Fl_Return_Button, 691

draw, 692
Fl_Return_Button, 691
Fl_Return_Button, 691
handle, 692

fl_rgb_color
Enumerations.H, 983

Fl_RGB_Image, 693
∼Fl_RGB_Image, 694
color_average, 694
copy, 694, 695
desaturate, 695
draw, 695
Fl_RGB_Image, 694
Fl_RGB_Image, 694
label, 695
uncache, 695

Fl_Roller, 697
draw, 698
Fl_Roller, 698
Fl_Roller, 698
handle, 698

fl_rotate
fl_drawings, 278

Fl_Round_Button, 700
Fl_Round_Clock, 701

Fl_Round_Clock, 701
Fl_Round_Clock, 701

fl_scale
fl_drawings, 278

fl_screen
h, 248
screen_xywh, 248, 249
w, 249
x, 249
y, 249

Fl_Scroll, 702
bbox, 704
clear, 704
draw, 705
Fl_Scroll, 704
Fl_Scroll, 704
handle, 705
resize, 705
scroll_to, 706
scrollbar_size, 706
xposition, 706
yposition, 706

fl_scroll

fl_drawings, 278
Fl_Scrollbar, 708

∼Fl_Scrollbar, 709
draw, 709
Fl_Scrollbar, 709
Fl_Scrollbar, 709
handle, 709
linesize, 710
value, 710, 711

Fl_Secret_Input, 712
Fl_Secret_Input, 712
Fl_Secret_Input, 712

Fl_Select_Browser, 713
Fl_Select_Browser, 713
Fl_Select_Browser, 713

fl_set_spot
fl_drawings, 278

fl_set_status
fl_drawings, 279

Fl_Shared_Image, 714
∼Fl_Shared_Image, 716
color_average, 716
copy, 716, 717
desaturate, 717
draw, 717
Fl_Shared_Image, 716
Fl_Shared_Image, 716
get, 717
num_images, 717
refcount, 718
release, 718
uncache, 718

Fl_Shared_Image.H, 1009
fl_register_images, 1009

fl_shortcut_label
fl_drawings, 279

fl_show_colormap
fl_attributes, 255

fl_show_colormap.H, 1010
Fl_Simple_Counter, 719
Fl_Single_Window, 720

flush, 721
make_current, 721
show, 721

fl_size
fl_attributes, 256

Fl_Slider, 723
bounds, 725
draw, 725
Fl_Slider, 724
Fl_Slider, 724
handle, 725
scrollvalue, 725
slider, 726

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1052 INDEX

slider_size, 726
Fl_Spinner, 727

Fl_Spinner, 729
Fl_Spinner, 729
format, 729
handle, 729
maximum, 729
maxinum, 729
minimum, 730
mininum, 730
range, 730
resize, 730
step, 730
textcolor, 730, 731
textfont, 731
textsize, 731
type, 731
value, 731

Fl_String
fl_types.h, 1016

Fl_Surface_Device, 732
∼Fl_Surface_Device, 733
device_type, 733
driver, 733
Fl_Surface_Device, 733
Fl_Surface_Device, 733
set_current, 733

Fl_Sys_Menu_Bar, 735
add, 736
clear, 736
clear_submenu, 736
draw, 737
Fl_Sys_Menu_Bar, 736
Fl_Sys_Menu_Bar, 736
insert, 737
menu, 738
remove, 738
replace, 738

Fl_System_Printer, 739
device_type, 743
end_page, 740
margins, 740
origin, 741
printable_rect, 741
rotate, 741
scale, 741
start_job, 742
start_page, 742
translate, 742

Fl_Table, 744
∼Fl_Table, 753
begin, 753
callback, 753
callback_col, 754

callback_context, 754
callback_row, 755
child, 755
children, 755
clear, 755
col_header, 755
col_resize, 755
col_resize_min, 756
col_width, 756
col_width_all, 756
draw, 756
draw_cell, 756
end, 758
find, 758
Fl_Table, 753
Fl_Table, 753
get_selection, 758
handle, 759
init_sizes, 759
insert, 759, 760
is_interactive_resize, 760
is_selected, 760
remove, 760
row_header, 760
row_height, 760
row_height_all, 761
row_resize, 761
row_resize_min, 761
set_selection, 761
table_box, 761
TableContext, 753
top_row, 761
visible_cells, 762
when, 762

Fl_Table_Row, 763
∼Fl_Table_Row, 764
clear, 765
Fl_Table_Row, 764
Fl_Table_Row, 764
handle, 765
row_selected, 765
select_all_rows, 765
select_row, 765
type, 766

Fl_Tabs, 767
client_area, 768
draw, 769
Fl_Tabs, 768
Fl_Tabs, 768
handle, 769
value, 770

Fl_Text_Buffer, 771
add_modify_callback, 778
address, 778

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1053

append, 779
appendfile, 779
byte_at, 779
char_at, 779
copy, 779
count_displayed_characters, 780
count_lines, 780
file_encoding_warning_message, 787
findchar_backward, 780
findchar_forward, 780
Fl_Text_Buffer, 778
Fl_Text_Buffer, 778
highlight, 781
highlight_text, 781
insert, 781
insert_, 781
insertfile, 781
length, 782
line_end, 782
line_start, 782
line_text, 782
loadfile, 783
mPredeleteProcs, 787
mTabDist, 787
next_char, 783
outputfile, 783
prev_char, 783
remove, 783
remove_, 784
replace, 784
rewind_lines, 784
search_backward, 784
search_forward, 784
secondary_selection_text, 785
selection_text, 785
skip_displayed_characters, 785
text, 785
text_range, 786
transcoding_warning_action, 787
word_end, 786
word_start, 786

Fl_Text_Display, 788
∼Fl_Text_Display, 797
absolute_top_line_number, 797
buffer, 797
buffer_modified_cb, 798
buffer_predelete_cb, 798
calc_last_char, 798
calc_line_starts, 798
clear_rect, 799
col_to_x, 799
count_lines, 799
cursor_color, 799, 800
cursor_style, 800

display_insert, 800
draw, 800
draw_cursor, 801
draw_line_numbers, 801
draw_range, 801
draw_string, 801
draw_text, 802
draw_vline, 802
empty_vlines, 802
extend_range_for_styles, 802
find_line_end, 802
find_wrap_range, 803
find_x, 803
Fl_Text_Display, 797
Fl_Text_Display, 797
get_absolute_top_line_number, 804
handle_vline, 804
highlight_data, 805
in_selection, 805
insert, 805
insert_position, 806
line_end, 806
line_start, 806
longest_vline, 807
maintain_absolute_top_line_number, 807
maintaining_absolute_top_line_number, 807
measure_deleted_lines, 807
measure_proportional_character, 807
measure_vline, 808
move_down, 808
move_left, 808
move_right, 808
move_up, 809
offset_line_starts, 809
overstrike, 809
position_style, 809
position_to_line, 810
position_to_linecol, 810
position_to_xy, 811
redisplay_range, 811
reset_absolute_top_line_number, 811
resize, 811
rewind_lines, 811
scroll, 812
scroll_, 812
scroll_timer_cb, 812
scrollbar_align, 812
scrollbar_width, 813
shortcut, 813
show_cursor, 813
show_insert_position, 813
skip_lines, 814
string_width, 814
textcolor, 814

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1054 INDEX

textfont, 814, 815
textsize, 815
update_h_scrollbar, 815
update_line_starts, 815
update_v_scrollbar, 816
vline_length, 816
word_end, 816
word_start, 816
wrap_mode, 816
wrap_uses_character, 817
wrapped_column, 817
wrapped_line_counter, 818
wrapped_row, 818
x_to_col, 819
xy_to_position, 819
xy_to_rowcol, 819

Fl_Text_Display::Style_Table_Entry, 821
Fl_Text_Editor, 822

add_default_key_bindings, 825
bound_key_function, 825
default_key_function, 825
Fl_Text_Editor, 825
Fl_Text_Editor, 825
insert_mode, 825, 826
kf_backspace, 826
kf_c_s_move, 826
kf_copy, 826
kf_cut, 826
kf_delete, 826
kf_down, 826
kf_end, 826
kf_home, 826
kf_insert, 826
kf_left, 826
kf_m_s_move, 827
kf_move, 827
kf_page_down, 827
kf_page_up, 827
kf_paste, 827
kf_right, 827
kf_select_all, 827
kf_shift_move, 827
kf_undo, 827
kf_up, 827
remove_all_key_bindings, 827, 828
remove_key_binding, 828

Fl_Text_Editor::Key_Binding, 829
fl_text_extents

fl_attributes, 256
Fl_Text_Selection, 830

end, 831
position, 831
selected, 831
set, 831

start, 832
update, 832

Fl_Tile, 833
Fl_Tile, 834
Fl_Tile, 834
handle, 834
position, 835
resize, 835

Fl_Tiled_Image, 836
color_average, 837
copy, 837
desaturate, 837
draw, 837, 838
Fl_Tiled_Image, 837
Fl_Tiled_Image, 837

Fl_Timer, 839
direction, 840
draw, 840
Fl_Timer, 840
Fl_Timer, 840
handle, 840
suspended, 841

Fl_Toggle_Button, 842
Fl_Toggle_Button, 842
Fl_Toggle_Button, 842

Fl_Tooltip, 843
color, 844
current, 844
delay, 844, 845
disable, 845
enable, 845
enabled, 845
enter_area, 845
font, 845
hoverdelay, 845
size, 846
textcolor, 846

fl_transform_dx
fl_drawings, 279

fl_transform_dy
fl_drawings, 279

fl_transform_x
fl_drawings, 280

fl_transform_y
fl_drawings, 280

fl_transformed_vertex
fl_drawings, 280
Fl_Graphics_Driver, 506

fl_translate
fl_drawings, 280

Fl_Tree, 847
add, 854
callback_item, 855
callback_reason, 855

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1055

clear, 855
close, 855, 856
closeicon, 856, 857
deselect, 857
deselect_all, 858
display, 858
displayed, 858
find_clicked, 858
find_item, 859
first, 859
first_selected_item, 859
insert, 860
insert_above, 860
is_close, 860
is_open, 861
is_scrollbar, 861
is_selected, 862
item_clicked, 862
item_pathname, 862
labelfont, 863
labelsize, 863
last, 863
load, 864
next, 864
next_selected_item, 864
next_visible_item, 865
open, 865
open_toggle, 866
openicon, 866
prev, 867
remove, 867
root_label, 867
scrollbar_size, 867, 868
select, 868
select_all, 869
select_only, 869
select_toggle, 870
selectbox, 870
set_item_focus, 870
show_item, 870, 871
show_self, 871
showcollapse, 871
showroot, 871
sortorder, 871
usericon, 872
vposition, 872

Fl_Tree.H, 1011
Fl_Tree_Reason, 1011

Fl_Tree_Connector
Fl_Tree_Prefs.H, 1014

Fl_Tree_Item, 873
activate, 878
add, 878
child, 878

deactivate, 879
depth, 879
deselect_all, 879
find_child, 879
find_child_item, 879
find_clicked, 880
find_item, 880
Fl_Tree_Item, 878
Fl_Tree_Item, 878
hide_widgets, 880
insert, 881
insert_above, 881
next, 881
next_displayed, 881
next_sibling, 881
parent, 882
prev, 882
prev_displayed, 882
prev_sibling, 882
remove_child, 882, 883
select, 883
select_all, 883
show_self, 883
show_widgets, 883
swap_children, 883
visible_r, 884

Fl_Tree_Item.H, 1012
Fl_Tree_Item_Array, 885

add, 886
clear, 886
Fl_Tree_Item_Array, 886
Fl_Tree_Item_Array, 886
insert, 886
remove, 886

Fl_Tree_Item_Array.H, 1013
Fl_Tree_Prefs, 888

closeicon, 891
labelfont, 891
openicon, 891
selectmode, 891
showcollapse, 891, 892
showroot, 892
sortorder, 892

Fl_Tree_Prefs.H, 1014
Fl_Tree_Connector, 1014
Fl_Tree_Select, 1014
Fl_Tree_Sort, 1015

Fl_Tree_Reason
Fl_Tree.H, 1011

Fl_Tree_Select
Fl_Tree_Prefs.H, 1014

Fl_Tree_Sort
Fl_Tree_Prefs.H, 1015

fl_types.h, 1016

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1056 INDEX

Fl_CString, 1016
Fl_String, 1016

fl_unicode
ERRORS_TO_CP1252, 291
ERRORS_TO_ISO8859_1, 291
fl_nonspacing, 291
fl_utf8back, 291
fl_utf8bytes, 291
fl_utf8decode, 292
fl_utf8encode, 292
fl_utf8from_mb, 292
fl_utf8froma, 293
fl_utf8fromwc, 293
fl_utf8fwd, 293
fl_utf8len, 293
fl_utf8len1, 294
fl_utf8locale, 294
fl_utf8test, 294
fl_utf8to_mb, 294
fl_utf8toa, 295
fl_utf8toUtf16, 295
fl_utf8towc, 295
fl_utf_strcasecmp, 296
fl_utf_strncasecmp, 296
fl_utf_tolower, 296
fl_utf_toupper, 296
fl_wcwidth, 296
fl_wcwidth_, 297
STRICT_RFC3629, 291

fl_utf8.h, 1017
fl_utf8back

fl_unicode, 291
fl_utf8bytes

fl_unicode, 291
fl_utf8decode

fl_unicode, 292
fl_utf8encode

fl_unicode, 292
fl_utf8from_mb

fl_unicode, 292
fl_utf8froma

fl_unicode, 293
fl_utf8fromwc

fl_unicode, 293
fl_utf8fwd

fl_unicode, 293
fl_utf8len

fl_unicode, 293
fl_utf8len1

fl_unicode, 294
fl_utf8locale

fl_unicode, 294
fl_utf8test

fl_unicode, 294

fl_utf8to_mb
fl_unicode, 294

fl_utf8toa
fl_unicode, 295

fl_utf8toUtf16
fl_unicode, 295

fl_utf8towc
fl_unicode, 295

fl_utf_strcasecmp
fl_unicode, 296

fl_utf_strncasecmp
fl_unicode, 296

fl_utf_tolower
fl_unicode, 296

fl_utf_toupper
fl_unicode, 296

Fl_Valuator, 893
bounds, 895
clamp, 895
Fl_Valuator, 895
Fl_Valuator, 895
format, 896
handle_drag, 896
handle_release, 896
increment, 896
maximum, 896
minimum, 896
precision, 896
range, 897
round, 897
set_value, 897
step, 897
value, 897

Fl_Value_Input, 899
cursor_color, 901
draw, 901
Fl_Value_Input, 901
Fl_Value_Input, 901
handle, 901
resize, 902
shortcut, 902
soft, 902
textcolor, 902, 903
textfont, 903
textsize, 903

Fl_Value_Output, 904
draw, 905
Fl_Value_Output, 905
Fl_Value_Output, 905
handle, 905
soft, 906
textcolor, 906
textfont, 906
textsize, 906

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1057

Fl_Value_Slider, 908
draw, 909
Fl_Value_Slider, 909
Fl_Value_Slider, 909
handle, 909
textcolor, 910
textfont, 910
textsize, 910

FL_VERSION
Enumerations.H, 976

fl_vertex
fl_drawings, 280
Fl_Graphics_Driver, 506

fl_vertex.cxx, 1020
fl_wcwidth

fl_unicode, 296
fl_wcwidth_

fl_unicode, 297
Fl_When

Enumerations.H, 982
Fl_Widget, 911

∼Fl_Widget, 920
activate, 921
active, 921
active_r, 921
align, 921
argument, 922
as_gl_window, 922
as_group, 922
as_window, 923
box, 923
callback, 923, 924
changed, 924
clear_changed, 925
clear_damage, 925
clear_output, 925
clear_visible, 926
clear_visible_focus, 926
color, 926
color2, 927
contains, 927
copy_label, 927
copy_tooltip, 928
damage, 928
damage_resize, 929
deactivate, 929
default_callback, 929
deimage, 929, 930
do_callback, 930, 931
draw, 931
draw_box, 931
draw_label, 931, 932
Fl_Widget, 920
Fl_Widget, 920

h, 932
handle, 932
hide, 933
image, 933
inside, 933
label, 934
label_shortcut, 934
labelcolor, 935
labelfont, 935
labelsize, 936
labeltype, 936
measure_label, 937
output, 937
parent, 937
position, 937
redraw, 938
redraw_label, 938
resize, 938
selection_color, 938, 939
set_changed, 939
set_output, 939
set_visible, 939
set_visible_focus, 939
show, 939
size, 940
take_focus, 940
takesevents, 940
test_shortcut, 940, 941
tooltip, 941, 942
type, 942
user_data, 942
visible, 943
visible_focus, 943
visible_r, 943
w, 944
when, 944
window, 945
x, 945
y, 945

Fl_Widget.H, 1022
fl_intptr_t, 1023
FL_RESERVED_TYPE, 1022

Fl_Widget_Tracker, 947
deleted, 948
exists, 948
widget, 948

fl_width
fl_attributes, 257

Fl_Window, 949
∼Fl_Window, 954
as_window, 954
border, 954
clear_border, 954
copy_label, 954

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1058 INDEX

current, 955
current_, 963
cursor, 955
default_cursor, 955
default_xclass, 955
draw, 956
Fl_Window, 953
Fl_Window, 953
flush, 956
force_position, 956
free_position, 957
fullscreen, 957
handle, 957
hide, 957
hotspot, 958
icon, 958
iconize, 958
iconlabel, 958
label, 958
make_current, 959
menu_window, 959
modal, 959
non_modal, 959
override, 959
resize, 959
set_menu_window, 959
set_modal, 960
set_non_modal, 960
set_tooltip_window, 960
show, 960, 961
shown, 961
size_range, 961
tooltip_window, 962
xclass, 962

fl_windows
atclose, 233
default_atclose, 232
first_window, 232
grab, 232
modal, 232
next_window, 232
set_atclose, 233

Fl_Wizard, 964
Fl_Wizard, 964
Fl_Wizard, 964
next, 965
prev, 965
value, 965

Fl_XBM_Image, 966
Fl_XBM_Image, 966
Fl_XBM_Image, 966

Fl_Xlib_Graphics_Driver, 967
device_type, 968
draw, 968

Fl_Xlib_Graphics_Driver, 967
Fl_Xlib_Graphics_Driver, 967

fl_xpixel
fl_attributes, 257

Fl_XPM_Image, 969
Fl_XPM_Image, 969
Fl_XPM_Image, 969

flush
Fl, 331
Fl_Double_Window, 437
Fl_Gl_Window, 480
Fl_Menu_Window, 611
Fl_Preferences, 670
Fl_Single_Window, 721
Fl_Window, 956

focus
fl_events, 243
Fl_Group, 514

font
Fl_Graphics_Driver, 498
Fl_Tooltip, 845

FORCE_POSITION
Fl_Widget, 919

force_position
Fl_Window, 956

foreground
Fl, 331

format
Fl_Spinner, 729
Fl_Valuator, 896

format_char
Fl_Browser, 356

free_color
fl_attributes, 257

free_position
Fl_Window, 957

full_height
Fl_Browser, 357
Fl_Browser_, 376

full_width
Fl_Browser_, 376

fullscreen
Fl_Window, 957

g
Fl_Color_Chooser, 421

gap
Fl_Graphics_Driver, 498

get
Fl_Preferences, 670–672
Fl_Shared_Image, 717

get_absolute_top_line_number
Fl_Text_Display, 804

get_awake_handler_

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1059

Fl, 331
get_boxtype

Fl, 331
get_color

fl_attributes, 258
get_font

fl_attributes, 258
get_font_name

fl_attributes, 258
get_font_sizes

fl_attributes, 258
get_key

fl_events, 243
get_mouse

fl_events, 243
get_selection

Fl_Table, 758
get_system_colors

Fl, 332
getUserdataPath

Fl_Preferences, 672
gl.h, 1024

gl_color, 1025
gl_draw, 1025, 1026
gl_rect, 1026
gl_rectf, 1027

gl_color
gl.h, 1025

gl_draw
gl.h, 1025, 1026

gl_rect
gl.h, 1026

gl_rectf
gl.h, 1027

gl_texture_pile_height
group_macosx, 298, 299

gl_visual
Fl, 332

global
Fl_Menu_, 583

grab
fl_windows, 232

group
Fl_Preferences, 673

GROUP_RELATIVE
Fl_Widget, 920

group_cairo
cairo_autolink_context, 287
cairo_cc, 288

group_comdlg
error, 307
fatal, 307
fl_alert, 301
fl_ask, 301

fl_beep, 302
fl_choice, 302
fl_color_chooser, 302, 303
fl_dir_chooser, 304
fl_file_chooser, 304
fl_file_chooser_callback, 305
fl_file_chooser_ok_label, 305
fl_input, 306
fl_message, 306
fl_message_icon, 306
fl_password, 306
warning, 307

group_macosx
fl_mac_set_about, 298
gl_texture_pile_height, 298, 299

groupExists
Fl_Preferences, 673

groups
Fl_Preferences, 673

h
Fl_Help_Dialog, 520
Fl_Image, 539
fl_screen, 248
Fl_Widget, 932

handle
Fl_Adjuster, 340
Fl_Box, 347
Fl_Browser_, 377
Fl_Button, 390
Fl_Check_Browser, 404
Fl_Choice, 410
Fl_Clock, 414
Fl_Counter, 426
Fl_Dial, 432
fl_events, 243
Fl_File_Input, 461
Fl_Free, 471
Fl_Group, 514
Fl_Input, 542
Fl_Light_Button, 573
Fl_Menu_Bar, 590
Fl_Menu_Button, 594
Fl_Positioner, 651
Fl_Repeat_Button, 690
Fl_Return_Button, 692
Fl_Roller, 698
Fl_Scroll, 705
Fl_Scrollbar, 709
Fl_Slider, 725
Fl_Spinner, 729
Fl_Table, 759
Fl_Table_Row, 765
Fl_Tabs, 769

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1060 INDEX

Fl_Tile, 834
Fl_Timer, 840
Fl_Value_Input, 901
Fl_Value_Output, 905
Fl_Value_Slider, 909
Fl_Widget, 932
Fl_Window, 957

handle_drag
Fl_Valuator, 896

handle_mouse
Fl_Input_, 551

handle_release
Fl_Valuator, 896

handle_vline
Fl_Text_Display, 804

handletext
Fl_Input_, 551

has_scrollbar
Fl_Browser_, 377

HEAVY_CURSOR
Fl_Text_Display, 796

help
Fl, 337

hide
Fl_Browser, 357
Fl_Double_Window, 437
Fl_File_Chooser, 450
Fl_Help_Dialog, 520
Fl_Menu_Item, 605
Fl_Menu_Window, 611
Fl_Overlay_Window, 627
Fl_Widget, 933
Fl_Window, 957

hide_overlay
Fl_Gl_Window, 480

hide_widgets
Fl_Tree_Item, 880

highlight
Fl_Text_Buffer, 781

highlight_data
Fl_Text_Display, 805

highlight_text
Fl_Text_Buffer, 781

HORIZONTAL
Fl_Browser_, 374

HORIZONTAL_ALWAYS
Fl_Browser_, 374

hotspot
Fl_Window, 958

hour
Fl_Clock_Output, 417

hoverdelay
Fl_Tooltip, 845

hposition

Fl_Browser_, 377, 378
hscrollbar

Fl_Browser_, 386
hsv

Fl_Color_Chooser, 421
hsv2rgb

Fl_Color_Chooser, 421
hue

Fl_Color_Chooser, 422

icon
Fl_Browser, 358
Fl_Window, 958

iconize
Fl_Window, 958

iconlabel
Fl_Window, 958

iconsize
Fl_File_Browser, 442
Fl_File_Chooser, 450

ID
Fl_Preferences, 667

idle
Fl, 337

image
Fl_Widget, 933

in_selection
Fl_Text_Display, 805

INACTIVE
Fl_Widget, 919

inactive
Fl_Image, 540

incr_height
Fl_Browser, 358
Fl_Browser_, 378

increment
Fl_Valuator, 896

index
Fl_Input_, 551

init_sizes
Fl_Group, 514
Fl_Table, 759

input
Fl_Input_Choice, 565

input_type
Fl_Input_, 552

insert
Fl_Browser, 358, 359
Fl_Chart, 398
Fl_Group, 515
Fl_Input_, 552
Fl_Menu_, 583
Fl_Menu_Item, 605
Fl_Sys_Menu_Bar, 737

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1061

Fl_Table, 759, 760
Fl_Text_Buffer, 781
Fl_Text_Display, 805
Fl_Tree, 860
Fl_Tree_Item, 881
Fl_Tree_Item_Array, 886

insert_
Fl_Text_Buffer, 781

insert_above
Fl_Tree, 860
Fl_Tree_Item, 881

insert_mode
Fl_Text_Editor, 825, 826

insert_position
Fl_Text_Display, 806

insertfile
Fl_Text_Buffer, 781

inserting
Fl_Browser_, 378

inside
Fl_Widget, 933

INVISIBLE
Fl_Widget, 919

is_close
Fl_Tree, 860

is_interactive_resize
Fl_Table, 760

is_open
Fl_Tree, 861

is_scrollbar
Fl_Tree, 861

is_selected
Fl_Table, 760
Fl_Tree, 862

item_at
Fl_Browser, 359
Fl_Browser_, 378

item_clicked
Fl_Tree, 862

item_draw
Fl_Browser, 359

item_first
Fl_Browser, 360
Fl_Browser_, 379

item_height
Fl_Browser, 360
Fl_Browser_, 379

item_last
Fl_Browser, 360
Fl_Browser_, 379

item_next
Fl_Browser, 361
Fl_Browser_, 379

item_pathname

Fl_Menu_, 584
Fl_Tree, 862

item_prev
Fl_Browser, 361
Fl_Browser_, 380

item_quick_height
Fl_Browser_, 380

item_select
Fl_Browser, 361
Fl_Browser_, 380

item_selected
Fl_Browser, 362
Fl_Browser_, 380

item_swap
Fl_Browser, 362
Fl_Browser_, 381

item_text
Fl_Browser, 362
Fl_Browser_, 381

item_width
Fl_Browser, 362
Fl_Browser_, 381

kf_backspace
Fl_Text_Editor, 826

kf_c_s_move
Fl_Text_Editor, 826

kf_copy
Fl_Text_Editor, 826

kf_cut
Fl_Text_Editor, 826

kf_delete
Fl_Text_Editor, 826

kf_down
Fl_Text_Editor, 826

kf_end
Fl_Text_Editor, 826

kf_home
Fl_Text_Editor, 826

kf_insert
Fl_Text_Editor, 826

kf_left
Fl_Text_Editor, 826

kf_m_s_move
Fl_Text_Editor, 827

kf_move
Fl_Text_Editor, 827

kf_page_down
Fl_Text_Editor, 827

kf_page_up
Fl_Text_Editor, 827

kf_paste
Fl_Text_Editor, 827

kf_right

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1062 INDEX

Fl_Text_Editor, 827
kf_select_all

Fl_Text_Editor, 827
kf_shift_move

Fl_Text_Editor, 827
kf_undo

Fl_Text_Editor, 827
kf_up

Fl_Text_Editor, 827

label
Fl_Bitmap, 344
Fl_File_Chooser, 451
Fl_File_Icon, 456
Fl_Image, 540
Fl_Menu_Item, 605
Fl_Pixmap, 641, 642
Fl_RGB_Image, 695
Fl_Widget, 934
Fl_Window, 958

label_shortcut
Fl_Widget, 934

labelcolor
Fl_Menu_Item, 605
Fl_Widget, 935

labelfont
Fl_Menu_Item, 606
Fl_Tree, 863
Fl_Tree_Prefs, 891
Fl_Widget, 935

labelsize
Fl_Menu_Item, 606
Fl_Tree, 863
Fl_Widget, 936

labeltype
Fl_File_Icon, 456
Fl_Menu_Item, 606
Fl_Widget, 936

LANDSCAPE
Fl_Paged_Device, 634

last
Fl_Tree, 863

ld
Fl_Image, 540

leftedge
Fl_Browser_, 381

leftline
Fl_Help_View, 530

length
Fl_Text_Buffer, 782

LETTER
Fl_Paged_Device, 633

line
Fl_Graphics_Driver, 498

line_end
Fl_Input_, 552
Fl_Text_Buffer, 782
Fl_Text_Display, 806

line_start
Fl_Input_, 553
Fl_Text_Buffer, 782
Fl_Text_Display, 806

line_style
Fl_Graphics_Driver, 498

line_text
Fl_Text_Buffer, 782

lineno
Fl_Browser, 363

lineposition
Fl_Browser, 363

linesize
Fl_Scrollbar, 710

link
Fl_Help_View, 530

load
Fl_Browser, 363
Fl_File_Browser, 443
Fl_File_Icon, 456
Fl_Help_Dialog, 521
Fl_Help_View, 531
Fl_Plugin_Manager, 646
Fl_Tree, 864

load_fti
Fl_File_Icon, 457

load_image
Fl_File_Icon, 457

load_system_icons
Fl_File_Icon, 457

loadfile
Fl_Text_Buffer, 783

lock
fl_multithread, 282

longest_vline
Fl_Text_Display, 807

loop
Fl_Graphics_Driver, 498

lstep
Fl_Counter, 426

Mac OS X-specific functions, 298
maintain_absolute_top_line_number

Fl_Text_Display, 807
maintaining_absolute_top_line_number

Fl_Text_Display, 807
make_current

Fl_Gl_Window, 480
Fl_Glut_Window, 487
Fl_Single_Window, 721

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1063

Fl_Window, 959
make_overlay_current

Fl_Gl_Window, 480
make_visible

Fl_Browser, 364
margins

Fl_Paged_Device, 634
Fl_PostScript_File_Device, 655
Fl_Printer, 682
Fl_System_Printer, 740

mark
Fl_Input_, 553

maximum
Fl_Progress, 686
Fl_Spinner, 729
Fl_Valuator, 896

maximum_size
Fl_Input_, 553

maxinum
Fl_Spinner, 729

maxsize
Fl_Chart, 398

measure
Fl_Label, 571
Fl_Menu_Item, 606

measure_deleted_lines
Fl_Text_Display, 807

measure_label
Fl_Widget, 937

measure_proportional_character
Fl_Text_Display, 807

measure_vline
Fl_Text_Display, 808

menu
Fl_Input_Choice, 565, 566
Fl_Menu_, 584
Fl_Sys_Menu_Bar, 738

MENU_WINDOW
Fl_Widget, 920

menu_window
Fl_Window, 959

menubutton
Fl_Input_Choice, 566

middleline
Fl_Browser, 364

minimum
Fl_Progress, 686
Fl_Spinner, 730
Fl_Valuator, 896

mininum
Fl_Spinner, 730

minute
Fl_Clock_Output, 417

MODAL

Fl_Widget, 920
modal

Fl_Window, 959
fl_windows, 232

mode
Fl_Color_Chooser, 422
Fl_Gl_Window, 481
Fl_Menu_, 585

move
Fl_Browser, 364

move_down
Fl_Text_Display, 808

move_left
Fl_Text_Display, 808

move_right
Fl_Text_Display, 808

move_up
Fl_Text_Display, 809

mPredeleteProcs
Fl_Text_Buffer, 787

mTabDist
Fl_Text_Buffer, 787

Multithreading support functions, 281
mvalue

Fl_Menu_, 585

Name
Fl_Preferences::Name, 677

nchecked
Fl_Check_Browser, 404

NEW_FOLDER
Fl_Native_File_Chooser, 619

new_list
Fl_Browser_, 382

newUUID
Fl_Preferences, 674

next
Fl_File_Icon, 457
Fl_Menu_Item, 606, 607
Fl_Tree, 864
Fl_Tree_Item, 881
Fl_Wizard, 965

next_char
Fl_Text_Buffer, 783

next_displayed
Fl_Tree_Item, 881

next_selected_item
Fl_Tree, 864

next_sibling
Fl_Tree_Item, 881

next_visible_item
Fl_Tree, 865

next_window
fl_windows, 232

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1064 INDEX

nitems
Fl_Check_Browser, 404

NO_OPTIONS
Fl_Native_File_Chooser, 619

NO_OVERLAY
Fl_Widget, 920

NOBORDER
Fl_Widget, 919

NON_MODAL
Fl_Widget, 919

non_modal
Fl_Window, 959

NORMAL_CURSOR
Fl_Text_Display, 796

not_clipped
Fl_Graphics_Driver, 498

num_images
Fl_Shared_Image, 717

offset_line_starts
Fl_Text_Display, 809

open
Fl_Tree, 865

open_toggle
Fl_Tree, 866

openicon
Fl_Tree, 866
Fl_Tree_Prefs, 891

Option
Fl_Native_File_Chooser, 619

option
Fl, 332

OPTION_ARROW_FOCUS
Fl, 325

OPTION_DND_TEXT
Fl, 326

OPTION_SHOW_TOOLTIPS
Fl, 326

OPTION_VISIBLE_FOCUS
Fl, 325

options
Fl_Native_File_Chooser, 622

ORIENTATION
Fl_Paged_Device, 634

origin
Fl_Paged_Device, 634
Fl_PostScript_File_Device, 655
Fl_Printer, 682
Fl_System_Printer, 741

ortho
Fl_Gl_Window, 481

OUTPUT
Fl_Widget, 919

output

Fl_Widget, 937
outputfile

Fl_Text_Buffer, 783
OVERRIDE

Fl_Widget, 920
override

Fl_Window, 959
overstrike

Fl_Text_Display, 809
own_colormap

Fl, 333

Page_Format
Fl_Paged_Device, 633

Page_Layout
Fl_Paged_Device, 633

parent
Fl_Tree_Item, 882
Fl_Widget, 937

paste
fl_clipboard, 247

pattern
Fl_File_Icon, 457

picked
Fl_Menu_, 585

pie
Fl_Graphics_Driver, 498

Pixmap
Fl_FormsPixmap, 469

point
Fl_Graphics_Driver, 499

polygon
Fl_Graphics_Driver, 499

pop_clip
Fl_Graphics_Driver, 499

popup
Fl_Menu_Button, 594
Fl_Menu_Item, 607

POPUP1
Fl_Menu_Button, 593

POPUP12
Fl_Menu_Button, 593

POPUP123
Fl_Menu_Button, 593

POPUP13
Fl_Menu_Button, 593

POPUP2
Fl_Menu_Button, 593

POPUP23
Fl_Menu_Button, 593

POPUP3
Fl_Menu_Button, 593

popup_buttons
Fl_Menu_Button, 593

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1065

PORTRAIT
Fl_Paged_Device, 634

position
Fl_Browser_, 382
Fl_Help_Dialog, 521
Fl_Input_, 554
Fl_Text_Selection, 831
Fl_Tile, 835
Fl_Widget, 937

position_style
Fl_Text_Display, 809

position_to_line
Fl_Text_Display, 810

position_to_linecol
Fl_Text_Display, 810

position_to_xy
Fl_Text_Display, 811

precision
Fl_Valuator, 896

preset_file
Fl_Native_File_Chooser, 622

prev
Fl_Tree, 867
Fl_Tree_Item, 882
Fl_Wizard, 965

prev_char
Fl_Text_Buffer, 783

prev_displayed
Fl_Tree_Item, 882

prev_sibling
Fl_Tree_Item, 882

PREVIEW
Fl_Native_File_Chooser, 620

preview
Fl_File_Chooser, 451

print
Fl_Device_Plugin, 430

print_widget
Fl_Paged_Device, 635

print_window_part
Fl_Paged_Device, 635

printable_rect
Fl_Paged_Device, 635
Fl_PostScript_File_Device, 655
Fl_Printer, 682
Fl_System_Printer, 741

pulldown
Fl_Menu_Item, 607

push_clip
Fl_Graphics_Driver, 499

push_no_clip
Fl_Graphics_Driver, 499

pushed
fl_events, 243, 244

r
Fl_Color_Chooser, 422

radio
Fl_Menu_Item, 607

range
Fl_Spinner, 730
Fl_Valuator, 897

readonly
Fl_Input_, 555

ready
Fl, 333

rect
Fl_Graphics_Driver, 499

rectf
Fl_Graphics_Driver, 499

redisplay_range
Fl_Text_Display, 811

redraw
Fl_Widget, 938

redraw_label
Fl_Widget, 938

redraw_line
Fl_Browser_, 382

redraw_lines
Fl_Browser_, 383

redraw_overlay
Fl_Gl_Window, 481
Fl_Overlay_Window, 627

refcount
Fl_Shared_Image, 718

release
Fl, 333
Fl_Shared_Image, 718

release_widget_pointer
fl_del_widget, 284

reload_scheme
Fl, 333

remove
Fl_Browser, 364
Fl_Check_Browser, 405
Fl_Group, 515
Fl_Menu_, 585
Fl_Sys_Menu_Bar, 738
Fl_Table, 760
Fl_Text_Buffer, 783
Fl_Tree, 867
Fl_Tree_Item_Array, 886

remove_
Fl_Text_Buffer, 784

remove_all_key_bindings
Fl_Text_Editor, 827, 828

remove_check
Fl, 333

remove_child

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1066 INDEX

Fl_Tree_Item, 882, 883
remove_fd

Fl, 334
remove_icon

Fl_Browser, 365
remove_key_binding

Fl_Text_Editor, 828
remove_timeout

Fl, 334
removePlugin

Fl_Plugin_Manager, 646
repeat_timeout

Fl, 334
replace

Fl_Browser, 365
Fl_Chart, 399
Fl_Input_, 555
Fl_Menu_, 585
Fl_Sys_Menu_Bar, 738
Fl_Text_Buffer, 784

replacing
Fl_Browser_, 383

rescan
Fl_File_Chooser, 451

reset_absolute_top_line_number
Fl_Text_Display, 811

resizable
Fl_Group, 516

resize
Fl_Browser_, 383
Fl_Double_Window, 438
Fl_Gl_Window, 481
Fl_Group, 517
Fl_Help_Dialog, 521
Fl_Help_View, 531
Fl_Input_, 555
Fl_Input_Choice, 566
Fl_Overlay_Window, 627
Fl_Scroll, 705
Fl_Spinner, 730
Fl_Text_Display, 811
Fl_Tile, 835
Fl_Value_Input, 902
Fl_Widget, 938
Fl_Window, 959

REVERSED
Fl_Paged_Device, 634

rewind_lines
Fl_Text_Buffer, 784
Fl_Text_Display, 811

rgb
Fl_Color_Chooser, 422

rgb2hsv
Fl_Color_Chooser, 422

Root
Fl_Preferences, 667

root_label
Fl_Tree, 867

rotate
Fl_Paged_Device, 636
Fl_PostScript_File_Device, 655
Fl_Printer, 683
Fl_System_Printer, 741

round
Fl_Valuator, 897

row_header
Fl_Table, 760

row_height
Fl_Table, 760

row_height_all
Fl_Table, 761

row_resize
Fl_Table, 761

row_resize_min
Fl_Table, 761

row_selected
Fl_Table_Row, 765

rtl_draw
Fl_Graphics_Driver, 499

run
Fl, 334

Safe widget deletion support functions, 283
saturation

Fl_Color_Chooser, 423
SAVEAS_CONFIRM

Fl_Native_File_Chooser, 619
scale

Fl_Paged_Device, 636
Fl_PostScript_File_Device, 656
Fl_Printer, 683
Fl_System_Printer, 741

scheme
Fl, 334

Screen functions, 248
screen_xywh

fl_screen, 248, 249
scroll

Fl_Text_Display, 812
scroll_

Fl_Text_Display, 812
scroll_timer_cb

Fl_Text_Display, 812
scroll_to

Fl_Scroll, 706
scrollbar

Fl_Browser_, 386
scrollbar_align

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1067

Fl_Text_Display, 812
scrollbar_left

Fl_Browser_, 383
scrollbar_right

Fl_Browser_, 383
scrollbar_size

Fl, 335
Fl_Browser_, 383, 384
Fl_Help_View, 531
Fl_Scroll, 706
Fl_Tree, 867, 868

scrollbar_width
Fl_Browser_, 384
Fl_Text_Display, 813

scrollvalue
Fl_Slider, 725

search_backward
Fl_Text_Buffer, 784

search_forward
Fl_Text_Buffer, 784

second
Fl_Clock_Output, 417

secondary_selection_text
Fl_Text_Buffer, 785

select
Fl_Browser, 365
Fl_Browser_, 385
Fl_Tree, 868
Fl_Tree_Item, 883

select_all
Fl_Help_View, 532
Fl_Tree, 869
Fl_Tree_Item, 883

select_all_rows
Fl_Table_Row, 765

select_only
Fl_Browser_, 385
Fl_Tree, 869

select_row
Fl_Table_Row, 765

select_toggle
Fl_Tree, 870

selectbox
Fl_Tree, 870

selected
Fl_Browser, 365
Fl_Text_Selection, 831

selection
Fl_Browser_, 385
fl_clipboard, 247

Selection & Clipboard functions, 246
selection_color

Fl_Widget, 938, 939
selection_owner

fl_clipboard, 247
selection_text

Fl_Text_Buffer, 785
selectmode

Fl_Tree_Prefs, 891
set

Fl_Button, 390
Fl_FormsBitmap, 467
Fl_FormsPixmap, 469
Fl_Menu_Item, 607
Fl_Preferences, 674–676
Fl_Text_Selection, 831

set_atclose
fl_windows, 233

set_boxtype
Fl, 335

set_changed
Fl_Input_Choice, 566
Fl_Widget, 939

set_checked
Fl_Check_Browser, 405

set_color
fl_attributes, 258, 259

set_current
Fl_Surface_Device, 733

set_draw_cb
Fl_Cairo_Window, 394

set_font
fl_attributes, 259

set_fonts
fl_attributes, 259

set_idle
Fl, 335

set_item_focus
Fl_Tree, 870

set_labeltype
Fl, 335

set_menu_window
Fl_Window, 959

set_modal
Fl_Window, 960

set_non_modal
Fl_Window, 960

set_output
Fl_Widget, 939

set_overlay
Fl_Menu_Window, 611

set_selection
Fl_Table, 761

set_tooltip_window
Fl_Window, 960

set_value
Fl_Valuator, 897

set_visible

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1068 INDEX

Fl_Widget, 939
set_visible_focus

Fl_Widget, 939
setonly

Fl_Menu_Item, 607
shortcut

Fl_Button, 390, 391
Fl_Input_, 556
Fl_Menu_, 586
Fl_Menu_Item, 608
Fl_Text_Display, 813
Fl_Value_Input, 902

SHORTCUT_LABEL
Fl_Widget, 919

show
Fl_Browser, 366
Fl_Double_Window, 438
Fl_File_Chooser, 451
Fl_Gl_Window, 482
Fl_Help_Dialog, 521
Fl_Menu_Item, 608
Fl_Menu_Window, 611
Fl_Native_File_Chooser, 622
Fl_Overlay_Window, 628
Fl_Single_Window, 721
Fl_Widget, 939
Fl_Window, 960, 961

show_cursor
Fl_Text_Display, 813

show_insert_position
Fl_Text_Display, 813

show_item
Fl_Tree, 870, 871

show_self
Fl_Tree, 871
Fl_Tree_Item, 883

show_widgets
Fl_Tree_Item, 883

showcollapse
Fl_Tree, 871
Fl_Tree_Prefs, 891, 892

shown
Fl_Window, 961

showroot
Fl_Tree, 871
Fl_Tree_Prefs, 892

size
Fl_Browser, 366
Fl_Chart, 399
Fl_File_Icon, 457
Fl_Help_View, 532
Fl_Input_, 556
Fl_Menu_, 586
Fl_Preferences, 676

Fl_Tooltip, 846
Fl_Widget, 940

size_range
Fl_Window, 961

sizes
Fl_Group, 517

skip_displayed_characters
Fl_Text_Buffer, 785

skip_lines
Fl_Text_Display, 814

slider
Fl_Slider, 726

slider_size
Fl_Slider, 726

soft
Fl_Adjuster, 341
Fl_Value_Input, 902
Fl_Value_Output, 906

sort
Fl_Browser_, 385

sortorder
Fl_Tree, 871
Fl_Tree_Prefs, 892

start
Fl_Text_Selection, 832

start_job
Fl_Paged_Device, 636
Fl_PostScript_File_Device, 656
Fl_PostScript_Printer, 661
Fl_Printer, 683
Fl_System_Printer, 742

start_page
Fl_Paged_Device, 636
Fl_PostScript_File_Device, 657
Fl_Printer, 683
Fl_System_Printer, 742

static_value
Fl_Input_, 557

step
Fl_Counter, 427
Fl_Spinner, 730
Fl_Valuator, 897

str
FL_CHART_ENTRY, 401

STRICT_RFC3629
fl_unicode, 291

string_width
Fl_Text_Display, 814

submenu
Fl_Menu_Item, 608

suspended
Fl_Timer, 841

swap
Fl_Browser, 367

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1069

swap_buffers
Fl_Gl_Window, 483

swap_children
Fl_Tree_Item, 883

swapping
Fl_Browser_, 386

SYSTEM
Fl_Preferences, 667

tab_nav
Fl_Input_, 557, 558

table_box
Fl_Table, 761

TableContext
Fl_Table, 753

take_focus
Fl_Widget, 940

takesevents
Fl_Widget, 940

test_shortcut
fl_events, 244
Fl_Menu_, 586
Fl_Menu_Item, 608
Fl_Widget, 940, 941

text
Fl_Browser, 367
Fl_Check_Browser, 405
Fl_Menu_, 586
Fl_Text_Buffer, 785

text_range
Fl_Text_Buffer, 786

textcolor
Fl_Chart, 399
Fl_File_Chooser, 451
Fl_Help_View, 532
Fl_Input_, 558
Fl_Menu_, 586, 587
Fl_Spinner, 730, 731
Fl_Text_Display, 814
Fl_Tooltip, 846
Fl_Value_Input, 902, 903
Fl_Value_Output, 906
Fl_Value_Slider, 910

textfont
Fl_Browser_, 386
Fl_Chart, 399
Fl_File_Chooser, 451
Fl_Help_View, 532
Fl_Input_, 558, 559
Fl_Menu_, 587
Fl_Spinner, 731
Fl_Text_Display, 814, 815
Fl_Value_Input, 903
Fl_Value_Output, 906

Fl_Value_Slider, 910
textsize

Fl_Chart, 399
Fl_File_Chooser, 451, 452
Fl_Help_Dialog, 521
Fl_Help_View, 533
Fl_Input_, 559
Fl_Menu_, 587
Fl_Spinner, 731
Fl_Text_Display, 815
Fl_Value_Input, 903
Fl_Value_Output, 906
Fl_Value_Slider, 910

thread_message
fl_multithread, 282

title
Fl_Help_View, 533
Fl_Native_File_Chooser, 622

tooltip
Fl_Widget, 941, 942

TOOLTIP_WINDOW
Fl_Widget, 920

tooltip_window
Fl_Window, 962

top_row
Fl_Table, 761

topline
Fl_Browser, 368
Fl_Help_View, 533

transcoding_warning_action
Fl_Text_Buffer, 787

transformed_vertex
Fl_Graphics_Driver, 499

translate
Fl_Paged_Device, 637
Fl_PostScript_File_Device, 657
Fl_Printer, 684
Fl_System_Printer, 742

Type
Fl_Native_File_Chooser, 620

type
Fl_Device, 428
Fl_File_Chooser, 452
Fl_File_Icon, 458
Fl_Label, 571
Fl_Spinner, 731
Fl_Table_Row, 766
Fl_Widget, 942

uncache
Fl_Bitmap, 344
Fl_Image, 540
Fl_Pixmap, 642
Fl_RGB_Image, 695

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

1070 INDEX

Fl_Shared_Image, 718
uncheck

Fl_Menu_Item, 608
undo

Fl_Input_, 559
Unicode and UTF-8 functions, 289
unlock

fl_multithread, 282
up_down_position

Fl_Input_, 559
update

Fl_Text_Selection, 832
update_child

Fl_Group, 517
update_h_scrollbar

Fl_Text_Display, 815
update_line_starts

Fl_Text_Display, 815
update_v_scrollbar

Fl_Text_Display, 816
USER

Fl_Preferences, 667
user_data

Fl_Widget, 942
USERFLAG1

Fl_Widget, 920
USERFLAG2

Fl_Widget, 920
USERFLAG3

Fl_Widget, 920
usericon

Fl_Tree, 872

val
FL_CHART_ENTRY, 401

valid
Fl_Gl_Window, 483

value
Fl_Browser, 368
Fl_Button, 391
Fl_Check_Browser, 405
Fl_Choice, 410, 411
Fl_Clock_Output, 417
Fl_Color_Chooser, 423
Fl_File_Chooser, 452
Fl_File_Icon, 458
Fl_File_Input, 461
Fl_Help_Dialog, 521
Fl_Help_View, 533
Fl_Input_, 560
Fl_Input_Choice, 566
Fl_Menu_, 587
Fl_Menu_Item, 608
Fl_Positioner, 651

Fl_Progress, 686
Fl_Scrollbar, 710, 711
Fl_Spinner, 731
Fl_Tabs, 770
Fl_Valuator, 897
Fl_Wizard, 965

version
Fl, 336

vertex
Fl_Graphics_Driver, 500

VERTICAL
Fl_Browser_, 374

VERTICAL_ALWAYS
Fl_Browser_, 375

visible
Fl_Browser, 368
Fl_File_Chooser, 452
Fl_Help_Dialog, 521
Fl_Menu_Item, 608
Fl_Widget, 943

VISIBLE_FOCUS
Fl_Widget, 920

visible_cells
Fl_Table, 762

visible_focus
Fl, 336
Fl_Widget, 943

visible_r
Fl_Tree_Item, 884
Fl_Widget, 943

visual
Fl, 336

vline_length
Fl_Text_Display, 816

vposition
Fl_Tree, 872

w
Fl_Help_Dialog, 522
Fl_Image, 540
fl_screen, 249
Fl_Widget, 944

wait
Fl, 336

warning
group_comdlg, 307

watch_widget_pointer
fl_del_widget, 285

when
Fl_Table, 762
Fl_Widget, 944

widget
Fl_Widget_Tracker, 948

window

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

INDEX 1071

Fl_Widget, 945
Windows handling functions, 231
word_end

Fl_Input_, 561
Fl_Text_Buffer, 786
Fl_Text_Display, 816

word_start
Fl_Input_, 561
Fl_Text_Buffer, 786
Fl_Text_Display, 816

wrap
Fl_Input_, 561

WRAP_AT_BOUNDS
Fl_Text_Display, 797

WRAP_AT_COLUMN
Fl_Text_Display, 796

WRAP_AT_PIXEL
Fl_Text_Display, 797

WRAP_NONE
Fl_Text_Display, 796

wrap_mode
Fl_Text_Display, 816

wrap_uses_character
Fl_Text_Display, 817

wrapped_column
Fl_Text_Display, 817

wrapped_line_counter
Fl_Text_Display, 818

wrapped_row
Fl_Text_Display, 818

x
Fl_Help_Dialog, 522
fl_screen, 249
Fl_Widget, 945

x_to_col
Fl_Text_Display, 819

xbounds
Fl_Positioner, 652

xclass
Fl_Window, 962

xposition
Fl_Scroll, 706

xstep
Fl_Positioner, 652

xvalue
Fl_Positioner, 652

xy_to_position
Fl_Text_Display, 819

xy_to_rowcol
Fl_Text_Display, 819

xyline
Fl_Graphics_Driver, 500

y
Fl_Help_Dialog, 522
fl_screen, 249
Fl_Widget, 945

ybounds
Fl_Positioner, 652

yposition
Fl_Scroll, 706

ystep
Fl_Positioner, 652

yvalue
Fl_Positioner, 652

yxline
Fl_Graphics_Driver, 500

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

	FLTK Programming Manual
	Preface
	Organization
	Conventions
	Abbreviations
	Copyrights and Trademarks

	Introduction to FLTK
	History of FLTK
	Features
	Licensing
	What Does `¨FLTK`¨ Mean?
	Building and Installing FLTK Under UNIX and MacOS X
	Building FLTK Under Microsoft Windows
	Building FLTK Under OS/2
	Internet Resources
	Reporting Bugs

	FLTK Basics
	Writing Your First FLTK Program
	Compiling Programs with Standard Compilers
	Compiling Programs with Makefiles
	Compiling Programs with Microsoft Visual C++
	Naming
	Header Files

	Common Widgets and Attributes
	Buttons
	Text
	Valuators
	Groups
	Setting the Size and Position of Widgets
	Colors
	Box Types
	Labels and Label Types
	Callbacks
	Shortcuts

	Designing a Simple Text Editor
	Determining the Goals of the Text Editor
	Designing the Main Window
	Variables
	Menubars and Menus
	Editing the Text
	The Replace Dialog
	Callbacks
	Other Functions
	The main() Function
	Compiling the Editor
	The Final Product
	Advanced Features

	Drawing Things in FLTK
	When Can You Draw Things in FLTK?
	Drawing Functions
	Colors
	Drawing Images

	Handling Events
	The FLTK Event Model
	Mouse Events
	Focus Events
	Keyboard Events
	Widget Events
	Clipboard Events
	Drag and Drop Events
	Fl::event_() methods
	Event Propagation
	FLTK Compose-Character Sequences

	Adding and Extending Widgets
	Subclassing
	Making a Subclass of Fl_Widget
	The Constructor
	Protected Methods of Fl_Widget
	Handling Events
	Drawing the Widget
	Resizing the Widget
	Making a Composite Widget
	Cut and Paste Support
	Drag And Drop Support
	Making a subclass of Fl_Window

	Using OpenGL
	Using OpenGL in FLTK
	Making a Subclass of Fl_Gl_Window
	Using OpenGL in Normal FLTK Windows
	OpenGL Drawing Functions
	Speeding up OpenGL
	Using OpenGL Optimizer with FLTK

	Programming with FLUID
	What is FLUID?
	Running FLUID Under UNIX
	Running FLUID Under Microsoft Windows
	Compiling .fl files
	A Short Tutorial
	FLUID Reference
	GUI Attributes
	Selecting and Moving Widgets
	Image Labels
	Internationalization with FLUID
	Known limitations

	Advanced FLTK
	Multithreading

	Unicode and UTF-8 Support
	About Unicode, ISO 10646 and UTF-8
	Unicode in FLTK
	Illegal Unicode and UTF8 sequences
	FLTK Unicode and UTF8 functions
	FLTK Unicode versions of system calls

	FLTK Enumerations
	Version Numbers
	Events
	Callback `¨When`¨ Conditions
	Fl::event_button() Values
	Fl::event_key() Values
	Fl::event_state() Values
	Alignment Values
	Fonts
	Colors
	Cursors
	FD `¨When`¨ Conditions
	Damage Masks

	GLUT Compatibility
	Using the GLUT Compatibility Header File
	Known Problems
	Mixing GLUT and FLTK Code
	class Fl_Glut_Window

	Forms Compatibility
	Importing Forms Layout Files
	Using the Compatibility Header File
	Problems You Will Encounter
	Additional Notes

	Operating System Issues
	Accessing the OS Interfaces
	The UNIX (X11) Interface
	The Windows (WIN32) Interface
	The Mac OS Interface

	Migrating Code from FLTK 1.0 to 1.1
	Color Values
	Cut and Paste Support
	File Chooser
	Function Names
	Image Support
	Keyboard Navigation

	Migrating Code from FLTK 1.1 to 1.3
	Migrating From FLTK 1.0
	Fl_Scroll Widget
	Unicode (UTF-8)
	Widget Coordinate Representation

	Developer Information
	Non-ASCII characters
	Document Structure
	Creating Links
	Paragraph Layout
	Hack for missing `¨tiny.gif`¨ file
	Navigation Elements

	Software License
	Example Source Code
	Example Applications

	Deprecated List
	Todo List
	Module Index
	Modules

	Class Index
	Class Hierarchy

	Class Index
	Class List

	File Index
	File List

	Module Documentation
	Callback function typedefs
	Windows handling functions
	Events handling functions
	Selection & Clipboard functions
	Screen functions
	Color & Font functions
	Drawing functions
	Multithreading support functions
	Safe widget deletion support functions
	Cairo support functions and classes
	Unicode and UTF-8 functions
	Mac OS X-specific functions
	Common Dialogs classes and functions
	File names and URI utility functions

	Class Documentation
	Fl Class Reference
	Fl_Adjuster Class Reference
	Fl_Bitmap Class Reference
	Fl_BMP_Image Class Reference
	Fl_Box Class Reference
	Fl_Browser Class Reference
	Fl_Browser_ Class Reference
	Fl_Button Class Reference
	Fl_Cairo_State Class Reference
	Fl_Cairo_Window Class Reference
	Fl_Chart Class Reference
	FL_CHART_ENTRY Struct Reference
	Fl_Check_Browser Class Reference
	Fl_Check_Button Class Reference
	Fl_Choice Class Reference
	Fl_Clock Class Reference
	Fl_Clock_Output Class Reference
	Fl_Color_Chooser Class Reference
	Fl_Counter Class Reference
	Fl_Device Class Reference
	Fl_Device_Plugin Class Reference
	Fl_Dial Class Reference
	Fl_Display_Device Class Reference
	Fl_Double_Window Class Reference
	Fl_End Class Reference
	Fl_File_Browser Class Reference
	Fl_File_Chooser Class Reference
	Fl_File_Icon Class Reference
	Fl_File_Input Class Reference
	Fl_Fill_Dial Class Reference
	Fl_Fill_Slider Class Reference
	Fl_Float_Input Class Reference
	Fl_Font_Descriptor Class Reference
	Fl_FormsBitmap Class Reference
	Fl_FormsPixmap Class Reference
	Fl_Free Class Reference
	Fl_GDI_Graphics_Driver Class Reference
	Fl_GIF_Image Class Reference
	Fl_Gl_Window Class Reference
	Fl_Glut_Bitmap_Font Struct Reference
	Fl_Glut_Window Class Reference
	Fl_Graphics_Driver Class Reference
	Fl_Group Class Reference
	Fl_Help_Dialog Class Reference
	Fl_Help_Font_Style Struct Reference
	Fl_Help_Link Struct Reference
	Fl_Help_Target Struct Reference
	Fl_Help_View Class Reference
	Fl_Hold_Browser Class Reference
	Fl_Image Class Reference
	Fl_Input Class Reference
	Fl_Input_ Class Reference
	Fl_Input_Choice Class Reference
	Fl_Int_Input Class Reference
	Fl_JPEG_Image Class Reference
	Fl_Label Struct Reference
	Fl_Light_Button Class Reference
	Fl_Menu_ Class Reference
	Fl_Menu_Bar Class Reference
	Fl_Menu_Button Class Reference
	Fl_Menu_Item Struct Reference
	Fl_Menu_Window Class Reference
	Fl_Multi_Browser Class Reference
	Fl_Multiline_Input Class Reference
	Fl_Multiline_Output Class Reference
	Fl_Native_File_Chooser Class Reference
	Fl_Output Class Reference
	Fl_Overlay_Window Class Reference
	Fl_Pack Class Reference
	Fl_Paged_Device Class Reference
	Fl_Paged_Device::page_format Struct Reference
	Fl_Pixmap Class Reference
	Fl_Plugin Class Reference
	Fl_Plugin_Manager Class Reference
	Fl_PNG_Image Class Reference
	Fl_PNM_Image Class Reference
	Fl_Positioner Class Reference
	Fl_PostScript_File_Device Class Reference
	Fl_PostScript_Graphics_Driver Class Reference
	Fl_PostScript_Printer Class Reference
	Fl_Preferences Class Reference
	Fl_Preferences::Name Class Reference
	Fl_Printer Class Reference
	Fl_Progress Class Reference
	Fl_Quartz_Graphics_Driver Class Reference
	Fl_Repeat_Button Class Reference
	Fl_Return_Button Class Reference
	Fl_RGB_Image Class Reference
	Fl_Roller Class Reference
	Fl_Round_Button Class Reference
	Fl_Round_Clock Class Reference
	Fl_Scroll Class Reference
	Fl_Scrollbar Class Reference
	Fl_Secret_Input Class Reference
	Fl_Select_Browser Class Reference
	Fl_Shared_Image Class Reference
	Fl_Simple_Counter Class Reference
	Fl_Single_Window Class Reference
	Fl_Slider Class Reference
	Fl_Spinner Class Reference
	Fl_Surface_Device Class Reference
	Fl_Sys_Menu_Bar Class Reference
	Fl_System_Printer Class Reference
	Fl_Table Class Reference
	Fl_Table_Row Class Reference
	Fl_Tabs Class Reference
	Fl_Text_Buffer Class Reference
	Fl_Text_Display Class Reference
	Fl_Text_Display::Style_Table_Entry Struct Reference
	Fl_Text_Editor Class Reference
	Fl_Text_Editor::Key_Binding Struct Reference
	Fl_Text_Selection Class Reference
	Fl_Tile Class Reference
	Fl_Tiled_Image Class Reference
	Fl_Timer Class Reference
	Fl_Toggle_Button Class Reference
	Fl_Tooltip Class Reference
	Fl_Tree Class Reference
	Fl_Tree_Item Class Reference
	Fl_Tree_Item_Array Class Reference
	Fl_Tree_Prefs Class Reference
	Fl_Valuator Class Reference
	Fl_Value_Input Class Reference
	Fl_Value_Output Class Reference
	Fl_Value_Slider Class Reference
	Fl_Widget Class Reference
	Fl_Widget_Tracker Class Reference
	Fl_Window Class Reference
	Fl_Wizard Class Reference
	Fl_XBM_Image Class Reference
	Fl_Xlib_Graphics_Driver Class Reference
	Fl_XPM_Image Class Reference

	File Documentation
	Enumerations.H File Reference
	fl_arc.cxx File Reference
	fl_arci.cxx File Reference
	fl_boxtype.cxx File Reference
	fl_color.cxx File Reference
	Fl_Color_Chooser.H File Reference
	fl_curve.cxx File Reference
	Fl_Device.H File Reference
	fl_draw.H File Reference
	fl_line_style.cxx File Reference
	Fl_Paged_Device.cxx File Reference
	Fl_Paged_Device.H File Reference
	Fl_PostScript.H File Reference
	Fl_Printer.H File Reference
	fl_rect.cxx File Reference
	Fl_Shared_Image.H File Reference
	fl_show_colormap.H File Reference
	Fl_Tree.H File Reference
	Fl_Tree_Item.H File Reference
	Fl_Tree_Item_Array.H File Reference
	Fl_Tree_Prefs.H File Reference
	fl_types.h File Reference
	fl_utf8.h File Reference
	fl_vertex.cxx File Reference
	Fl_Widget.H File Reference
	gl.h File Reference

