Net wor k Wor ki ng Group D. Levi

Request for Comments: 2273 SNWP Research, Inc.
bsol etes: 2263 P. Meyer
Cat egory: Standards Track Secure Conputing Corporation

B. Stewart

Ci sco Systens
January 1998

SNMPv3 Applications
Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice
Copyright (C The Internet Society (1998). Al Rights Reserved.

I ANA Not e

Due to a clerical error in the assignnent of the snnpMbdules in this
meno, this RFC provides the corrected nunber assignnents for this
protocol. This meno obsol etes RFC 2263.

Abst r act

This neno describes five types of SNWP applications which nake use of
an SNMP engi ne as described in [RFC2271]. The types of application
descri bed are Command Cenerators, Command Responders, Notification
Oiginators, Notification Receivers, and Proxy Forwarders.

This neno al so defines MB nodul es for specifying targets of
managemnment operations, for notification filtering, and for proxy
f orwar di ng.

Tabl e of Contents

L OV I VI BW Lt e
1.1 Command Generator Applications
1.2 Command Responder Applications
1.3 Notification Originator Applications
1.4 Notification Receiver Applications
1.5 Proxy Forwarder Applications
2 Management Targets

GQWWWWWwWN

Levi, et. al. St andards Track [Page 1]

RFC 2273 SNMPv3 Applications January 1998

CRRRRRARRDOOWWWWEWHWW

~N o

7.
7.

8
9

Elements OF Procedure i
1 Conmand Cenerator Applications
2 Conmand Responder Applications
3 Notification Originator Applications
4 Notification Receiver Applications
5 Proxy Forwarder Applications
5.1 Request Forwarding
5.1.1 Processing an Incoming Request
5.1.2 Processing an Incomng Response oou...
5.1.3 Processing an Incomng Report Indication
5.2 Notification Forwarding
The Structure of the MB Mudules
1 The Managenent Target MB Module
1.1 Tag Li St S .
1.2 Definitions
2 The Notification MB NModule
2.1 Defini tions ...
3 The Proxy MB Module e
3.1 Defini tions .. e
I dentification of Managenent Targets in Notification

O ginat Or S ..
Notification Filtering i,
Managenment Target Translation in Proxy Forwarder

Applicati onNs e
1 Managenment Target Translation for Request Forwarding
2 Managenent Target Translation for Notification Forwarding
Intellectual Property
Acknow edgment S

10 Security Considerati ons i,
11 Ref BreNCES . o
12 Editors’ Addresst

A
B

Trap Configuration Exanple
Ful I Copyright Statement

1. Overview

Thi s docunent describes five types of SNWP applications:

Levi,

13
16
18
19
19
22
23
24
27
27

28
41
42
53
53

59
60

61
61

62
63
64
65
65

68
70

- Applications which initiate SNWP Get, GetNext, GetBulk, and/or

Set requests, called ’'command generators.

- Applications which respond to SNWP Get, GetNext, GCetBulKk,
and/ or Set requests, called 'command responders.’

- Applications which generate notifications, called
"notification originators.

et. al. St andards Track [Page 2]

RFC 2273 SNMPv3 Applications January 1998

- Applications which receive notifications, called "notification
receivers.'’

- Applications which forward SNWP Get, GetNext, GetBul k, and/or
Set requests or notifications, called ’proxy forwarder.’

Note that there are no restrictions on which types of applications
may be associated with a particular SNWP engine. For exanple, a
singl e SNWP engi ne may, in fact, be associated with both comrand
generator and command responder applications.

1.1. Command Cenerator Applications

A command generator application initiates SNWP Get, GetNext, GetBulk,

and/ or Set requests, as well as processing the response to a request
whi ch it generated.

1.2. Command Responder Applications

A command responder application receives SNWP Get, GetNext, GCetBulk,
and/ or Set requests destined for the local systemas indicated by the
fact that the contextEnginelD in the received request is equal to
that of the | ocal engine through which the request was received. The
conmand responder application will performthe appropriate protoco
operation, using access control, and will generate a response nessage
to be sent to the request’s originator

1.3. Notification Oiginator Applications

A notification originator application conceptually nonitors a system
for particular events or conditions, and generates Trap and/or Inform
nmessages based on these events or conditions. A notification
originator nmust have a nmechani smfor deternining where to send
messages, and what SNMP version and security paraneters to use when
sendi ng nessages. A nmechanismand MB nodule for this purpose is

provided in this docunent.
1.4. Notification Receiver Applications

A notification receiver application listens for notification

messages, and generates response nessages when a nessage contai ni ng
an Inform PDU is received.

1.5. Proxy Forwarder Applications
A proxy forwarder application forwards SNMP nessages. Note that

i npl ementation of a proxy forwarder application is optional. The
sections describing proxy (4.5, 5.3, and 8) may be skipped for

Levi, et. al. St andards Track [Page 3]

RFC 2273 SNMPv3 Applications January 1998

(1

(2)

(3)

i mpl enentations that do not include a proxy forwarder application

The term "proxy" has historically been used very loosely, wth
multiple different nmeanings. These different neanings include (anong
ot hers):

the forwarding of SNMP requests to other SNMP entities without
regard for what managed object types are being accessed; for
exanple, in order to forward an SNWP request from one transport
domain to another, or to translate SNWP requests of one version
into SNVP requests of another version

the translati on of SNWP requests into operations of sonme non- SNVP
management protocol; and

support for aggregated managed objects where the value of one
managed obj ect instance depends upon the values of nmultiple other
(renpote) itens of nmanagenent information

Each of these scenarios can be advantageous; for exanple, support for
aggregati on of managenent information can significantly reduce the
bandwi dth requirenents of |arge-scal e managenent activities.

However, using a single termto cover nmultiple different scenarios
causes confusi on.

To avoi d such confusion, this docunent uses the term"proxy" with a
much nore tightly defined nmeaning. The term"proxy" is used in this
docunent to refer to a proxy forwarder application which forwards

ei ther SNWP requests, notifications, and responses w thout regard for
what nmanaged objects are contained within requests or notifications.
This definition is nost closely related to the first definition
above. Note, however, that in the SNWP architecture [RFC2271], a
proxy forwarder is actually an application, and need not be
associated with what is traditionally thought of as an SNWP agent.

Specifically, the distinction between a traditional SNWP agent and a
proxy forwarder application is sinple:

- a proxy forwarder application forwards requests and/or
notifications to other SNWP engi nes according to the context,
and irrespective of the specific nanaged object types being
accessed, and forwards the response to such previously
forwarded nessages back to the SNMP engi ne from which the
original nmessage was received

- in contrast, the command responder application that is part of
what is traditionally thought of as an SNWP agent, and which
processes SNWP requests according to the (nanes of the)

Levi, et. al. St andards Track [Page 4]

RFC 2273 SNMPv3 Applications January 1998

i ndi vi dual nmanaged obj ect types and instances bei ng accessed,
is NOT a proxy forwarder application fromthe perspective of
this docunent.

Thus, when a proxy forwarder application forwards a request or
notification for a particular contextEnginelD/ contextNane pair, not
only is the information on howto forward the request specifically
associ ated with that context, but the proxy forwarder application has
no need of a detailed definition of a MB view (since the proxy
forwarder application forwards the request irrespective of the
managed object types).

In contrast, a command responder application nust have the detailed
definition of the MB view, and even if it needs to issue requests to
other entities, via SNWP or otherwi se, that need is dependent on the
i ndi vi dual managed obj ect instances being accessed (i.e., not only on
the context).

Note that it is a design goal of a proxy forwarder application to act
as an internediary between the endpoints of a transaction. In
particul ar, when forwardi ng I nformrequests, the associated response
is forwarded when it is received fromthe target to which the Inform
request was forwarded, rather than generating a response i mediately
when an Informrequest is received.

2. Managenent Targets

Some types of applications (notification generators and proxy
forwarders in particular) require a nmechani smfor determ ning where
and how to send generated nessages. This docunent provides a
mechani sm and M B nodul e for this purpose. The set of information
that describes where and how to send a nessage is called a

" Managenent Target’', and consists of two kinds of information:

- Destination information, consisting of a transport domain and
a transport address. This is also terned a transport
endpoi nt .

- SNWP paraneters, consisting of nmessage processing nodel
security nodel, security level, and security nane information

The SNWP- TARGET-M B nodul e described later in this docunent contains
one table for each of these types of information. There can be a
many-to-many relationship in the MB between these two types of
information. That is, there may be nultiple transport endpoints
associated with a particular set of SNWP paranmeters, or a particul ar
transport endpoint nmay be associated with several sets of SNW

par anmeters

Levi, et. al. St andards Track [Page 5]

RFC 2273 SNMPv3 Applications January 1998

3. Elenents O Procedure

The follow ng sections describe the procedures foll owed by each type
of application when generating nmessages for transm ssion or when
processi ng received nessages. Applications conmunicate with the

Di spatcher using the abstract service interfaces defined in [RFC2271].

3.1. Command Cenerator Applications

A command generator initiates an SNWP request by calling the
Di spatcher using the foll owi ng abstract service interface:

statuslnformation = -- sendPduHandl e i f success
-- errorlindication if failure

sendPdu(
IN transportDomain -- transport domain to be used
IN transportAddress -- destination network address
IN nessageProcessi nghodel -- typically, SNWP version
IN securityMdel -- Security Mdel to use
IN securityName -- on behalf of this principa
IN securitylLevel -- Level of Security requested
IN context Engi nel D -- data fromat this entity
IN context Name -- data fromin this context
IN pduVersion -- the version of the PDU
IN PDU -- SNWP Protocol Data Unit
IN expect Response -- TRUE or FALSE

Vher e:
- The transportDonmain is that of the destination of the nmessage.

- The transport Address is that of the destination of the
message

- The nmessageProcessi nghbdel indicates which Message Processing
Model the application wi shes to use.

- The securityModel is the security nodel that the application
W shes to use

- The securityNane is the security nodel independent nane for
the principal on whose behalf the application w shes the
nmessage is to be generated.

- The securitylLevel is the security level that the application
wi shes to use

Levi, et. al. St andards Track [Page 6]

RFC 2273 SNMPv3 Applications January 1998

- The contextEnginel D is provided by the command generator if it
wi shes to explicitly specify the | ocation of the nmanagenent
information it is requesting.

- The contextNanme is provided by the command generator if it
wi shes to explicitly specify the local context nane for the
managenent information it is requesting.

- The pduVersion indicates the version of the PDU to be sent.

- The PDU is a value constructed by the conmand gener at or
cont ai ni ng the managenent operation that the conmand generator
wi shes to perform

- The expect Response argunent indicates that a response is
expect ed.

The result of the sendPdu interface indicates whether the PDU was
successfully sent. If it was successfully sent, the returned val ue
will be a sendPduHandl e. The conmand generator should store the
sendPduHandl e so that it can correlate a response to the origina
request.

The Dispatcher is responsible for delivering the response to a
particul ar request to the correct conmand generator application. The
abstract service interface used is:

pr ocessResponsePdu(-- process Response PDU
IN nessageProcessi nghbdel -- typically, SNWP version
IN securityMdel -- Security Mdel in use
IN securityName -- on behalf of this principa
IN securitylevel -- Level of Security
IN contextEnginelD -- data fronmfat this SNWP entity
IN context Name -- data fromin this context
IN pduVersion -- the version of the PDU
IN PDU -- SNWP Protocol Data Unit
IN statuslnfornmation -- success or errorlndication
IN sendPduHandl e -- handl e from sendPDU

)
Vher e:

- The nmessageProcessi nghbdel is the value fromthe received
response.

- The securityModel is the value fromthe received response.

- The securityNane is the value fromthe received response.

Levi, et. al. St andards Track [Page 7]

RFC 2273 SNMPv3 Applications January 1998

- The securitylLevel is the value fromthe received response.
- The contextEnginelD is the value fromthe received response.
- The contextNane is the value fromthe received response.

- The pduVersion indicates the version of the PDU in the
recei ved response.

- The PDU is the value fromthe received response.

- The statuslnformation indicates success or failure in
recei ving the response.

- The sendPduHandl e is the value returned by the sendPdu cal
whi ch generated the original request to which this is a
response.

The procedure when a command generator receives a nessage is as
fol | ows:

(1) If the received val ues of nessageProcessi nghbdel, securityModel,
securityName, context Engi nel D, cont ext Name, and pduVersion are not
all equal to the values used in the original request, the response
i s discarded

(2) The operation type, request-id, error-status, error-index, and
vari abl e-bi ndi ngs are extracted fromthe PDU and saved. |f the
request-id is not equal to the value used in the original request,
the response is discarded.

(3) At this point, it is up to the application to take an appropriate
action. The specific action is inplenmentation dependent. If the
statusinformation indicates that the request failed, an appropriate
action mght be to attenpt to transmt the request again, or to
notify the person operating the application that a failure
occurred.

3.2. Command Responder Applications
Bef ore a command responder application can process nessages, it mnust

first associate itself with an SNMP engi ne. The abstract service
interface used for this purpose is:

Levi, et. al. St andards Track [Page 8]

RFC 2273 SNMPv3 Applications January 1998

statuslnformation = -- success or errorlndication
regi st er Cont ext Engi nel D
IN context Engi nel D -- take responsibility for this one
IN pduType -- the pduType(s) to be registered
)
Wer e:

- The statuslnformation indicates success or failure of the
registration attenpt.

- The contextEnginelD is equal to the snnpEngi nel D of the SNWP
engine with which the comand responder is registering.

- The pduType indicates a Get, GetNext, GetBulk, or Set pdu

Note that if another command responder application is already
registered with an SNMP engine, any further attenpts to register with
t he sane cont ext Engi nel D and pduType will be denied. This inplies
that separate command responder applications could register
separately for the various pdu types. However, in practice this is
undesirable, and only a single comrand responder application should
be registered with an SNMP engi ne at any given tine.

A command responder application can disassociate with an SNMP engi ne
using the followi ng abstract service interface:

unr egi st er Cont ext Engi nel Y
IN context Engi nel D -- give up responsibility for this one
IN pduType -- the pduType(s) to be unregistered
)

Wher e:

- The contextEnginelD is equal to the snnpEngi nel D of the SNWP
engine with which the comand responder is cancelling the
regi stration.

- The pduType indicates a Get, GetNext, GetBulk, or Set pdu
Once the command responder has registered with the SNVWP engine, it

waits to receive SNWP nessages. The abstract service interface used
for receiving nessages is:

processPdu(-- process Request/Notification PDU
IN nessageProcessi nghbdel -- typically, SNWP version
IN securityMdel -- Security Mdel in use
IN securityNane -- on behalf of this principa

Levi, et. al. St andards Track [Page 9]

RFC 2273

(1)

(2)

Z2Z2Z2Z22Z222

Wher e:

SNMPv3 Applications January 1998
securitylLevel -- Level of Security
cont ext Engi nel D -- data fromat this SNWP entity
cont ext Nane -- data fromin this context
pduVer si on -- the version of the PDU
PDU -- SNMP Protocol Data Unit
maxSi zeResponseScopedPDU -- naxi num si ze of the Response PDU
st at eRef erence -- reference to state information
) -- needed when sendi ng a response

The messagePr ocessi nghbdel indicates which Message Processing
Model received and processed t he nessage.

The securityMdel is the value fromthe received nessage
The securityNanme is the value fromthe received nessage.
The securitylLevel is the value fromthe recei ved nessage
The contextEnginelD is the value fromthe received nessage
The contextNane is the value fromthe recei ved nessage.

The pduVersion indicates the version of the PDU in the
recei ved nessage

The PDU is the value fromthe recei ved nessage.

The maxSi zeResponseScopedPDU i s the nmaxi num al | owabl e size of
a ScopedPDU cont ai ni ng a Response PDU (based on the maxi num
nmessage size that the originator of the nessage can accept).

The stateReference is a value which references cached

i nformati on about each received request nessage. This value
nmust be returned to the Dispatcher in order to generate a
response.

The procedure when a nessage is received is as foll ows.

The operation type is determned fromthe ASN. 1 tag val ue
associated with the PDU parameter. The operation type should
al ways be one of the types previously registered by the
appl i cation.

The request-id is extracted fromthe PDU and saved.

Levi, et.

al . St andards Track [Page 10]

RFC 2273 SNMPv3 Applications January 1998

(3)

(4)
(5)

Levi,

If the SNMPv2 operation type is GetBul k, the non-repeaters and
max-repetitions values are extracted fromthe PDU and saved.

The vari abl e-bi ndings are extracted fromthe PDU and saved.

The managenent operation represented by the SNMPv2 operation type
is performed with respect to the relevant MB view within the
context named by the contextNane, according to the procedures set
forth in [RFC1905]. The relevant MB view is determ ned by the
securitylLevel, securityModel, contextNanme, securityNane, and SNWPv2
operation type. To deternmi ne whether a particul ar object instance
is within the relevant MB view, the follow ng abstract service
interface is called:

statusl nformation = -- success or errorlndication
i sSAccessAl | owed(
IN securityMdel -- Security Mdel in use
IN securityNane -- principal who wants to access
IN securitylLevel -- Level of Security
IN viewlype -- read, wite, or notify view
I N context Name -- context containing variabl eNare
IN variabl eNane -- O D for the managed object

)
Wer e:

- The securityModel is the value fromthe received nessage
- The securityNane is the value fromthe received nessage.
- The securitylLevel is the value fromthe received nessage

- The viewlype indicates whether the PDU type is a read or wite
operati on.

- The contextNane is the value fromthe recei ved nessage.

- The variableNane is the object instance of the variable for
whi ch access rights are to be checked.

Normal Iy, the result of the managenent operation will be a new PDU
val ue, and processing will continue in step (6) below. However, at
any tine during the processing of the nanagenent operation:

- If the isAccessAll owed ASI returns a noSuchView,
noAccessEntry, or noG oupNanme error, processing of the
managenent operation is halted, a PDU value is contructed
using the values fromthe originally received PDU, but

et. al. St andards Track [Page 11]

RFC 2273

(6)

Levi,

SNMPv3 Applications January 1998

replacing the error_status with an authorizationError code,
and error_index value of 0, and control is passed to step (6)
bel ow.

If the isAccessAllowed ASI returns an otherError, processing
of the nmanagenent operation is halted, a different PDU val ue
is contructed using the values fromthe originally received
PDU, but replacing the error_status with a genError code, and
control is passed to step (6) bel ow.

If the isAccessAll owed ASI returns a noSuchContext error
processi ng of the nmanagenent operation is halted, no result
PDU i s generated, the snnpUnknownContexts counter is

i ncrenented, and control is passed to step (6) bel ow.

If the context named by the context Nane paraneter is
unavai |l abl e, processing of the managenment operation is halted,
no result PDU is generated, the snnpUnavail abl eCont exts
counter is increnmented, and control is passed to step (6)

bel ow

The Dispatcher is called to generate a response or report nessage.
The abstract service interface is:

r et ur nResponsePdu(

Z 2222222222

messagePr ocessi nghbdel -- typically, SNWP version

securit yModel -- Security Mdel in use

securit yName -- on behalf of this principa

securitylLevel -- same as on incom ng request

cont ext Engi nel D -- data fromat this SNW entity

cont ext Nane -- data fronmin this context

pduVer si on -- the version of the PDU

PDU -- SNMP Protocol Data Unit

maxSi zeResponseScopedPDU -- naxi mum si ze of the Response PDU

st at eRef erence -- reference to state information
-- as presented with the request

stat usl nformati on -- success or errorlndication

) -- error counter O D/value if error

Wher e:

The messageProcessi nghbdel is the value fromthe processPdu
call.

The securityMdel is the value fromthe processPdu call.

The securityNanme is the value fromthe processPdu call.

al . St andards Track [Page 12]

RFC 2273 SNMPv3 Applications January 1998

- The securitylLevel is the value fromthe processPdu call
- The contextEnginelD is the value fromthe processPdu call.
- The contextNane is the value fromthe processPdu call.

- The pduVersion indicates the version of the PDU to be
returned. |If no result PDU was generated, the pduVersion is
an undefi ned val ue.

- The PDU is the result generated in step (5) above. If no
result PDU was generated, the PDU is an undefined val ue.

- The nmaxSi zeResponseScopedPDU is a | ocal value indicating the
maxi mum si ze of a ScopedPDU that the application can accept.

- The stateReference is the value fromthe processPdu call.

- The statuslinformation either contains an indication that no
error occurred and that a response should be generated, or
contains an indication that an error occurred along with the
O D and counter value of the appropriate error counter object.

Note that a conmmand responder application should always call the

ret urnResponsePdu abstract service interface, even in the event of an
error such as a resource allocation error. |In the event of such an
error, the PDU val ue passed to returnResponsePdu shoul d contain
appropriate values for errorStatus and errorlndex.

3.3. Notification Originator Applications

A notification originator application generates SNWP notification
messages. A notification nessage may, for exanple, contain an
SNMPv2-Trap PDU or an Inform PDU. However, a particul ar

i npl ementation is not required to be capabl e of generating both types
of messages.

Notification originator applications require a nechanismfor
identifying the managenment targets to which notifications should be
sent. The particul ar nechanismused is inplenmentati on dependent.
However, if an inplenentati on nmakes the configuration of nmanagenent
targets SNVWP manageable, it MJST use the SNWP- TARGET- M B nodul e
described in this docunent.

Wien a notification originator wi shes to generate a notification, it
must first determine in which context the information to be conveyed
in the notification exists, i.e., it nust determ ne the

cont ext Engi nel D and contextNanme. |t nust then deternine the set of

Levi, et. al. St andards Track [Page 13]

RFC 2273 SNMPv3 Applications January 1998

(1

(2)

(3)

(4)

managenent targets to which the notification should be sent. The
application nust also determi ne, for each nmanagenent target, whether
the notification nessage should contain an SNMPv2-Trap PDU or |nform
PDU, and if it is to contain an Inform PDU, the nunber of retries and
retransm ssion al gorithm

The mechani sm by which a notification originator deternmines this
information is inplenentation dependent. Once the application has
determined this information, the followi ng procedure is perforned for
each managenent target:

Any appropriate filtering mechanisns are applied to deternine

whet her the notification should be sent to the managenent target.

If such filtering mechani snms determine that the notification should
not be sent, processing continues with the next managenent target.
O herw se,

The appropriate set of variable-bindings is retrieved fromloca

M B instrumentation within the relevant MB view. The relevant MB
view is determ ned by the securitylLevel, securityMbdel

cont ext Nane, and securityNane of the managenent target. To
determ ne whether a particular object instance is within the

rel evant M B view, the isAccessAllowed abstract service interface
is used, in the sane manner as described in the preceding section
If the statusinformation returned by isAccessAl | owed does not

i ndi cate accessAllowed, the notification is not sent to the
managenent target.

A PDU is constructed using a |locally unique request-id value, an
operation type of SNWPv2-Trap or Inform an error-status and
error-index value of 0, and the vari abl e-bi ndi ngs supplied
previously in step (2).

If the notification contains an SNWPv2-Trap PDU, the Dispatcher is
called using the followi ng abstract service interface:
statuslnformation = -- sendPduHandl e if success
-- errorlindication if failure
sendPdu(
IN transportDomain -- transport domain to be used
IN transportAddress -- destination network address
IN nessageProcessi nghodel -- typically, SNWP version
IN securityMdel -- Security Mdel to use
IN securityNane -- on behalf of this principa
IN securitylLevel -- Level of Security requested
IN context Engi nel D -- data fromat this entity
IN context Name -- data fromin this context
IN pduVersion -- the version of the PDU

Levi, et. al. St andards Track [Page 14]

RFC 2273 SNMPv3 Applications January 1998

IN PDU -- SNWP Protocol Data Unit
IN expect Response -- TRUE or FALSE
)

Wher e:
- The transportDonain is that of the nanagenent target.
- The transport Address is that of the managenent target.
- The messageProcessi nghbdel is that of the managenent target.
- The securityModel is that of the nmanagenent target.
- The securityNane is that of the managenent target.
- The securitylLevel is that of the managenent target.

- The contextEnginelD is the value originally deternined for the
notification.

- The contextNane is the value originally determ ned for the
notification.

- The pduVersion is the version of the PDU to be sent.
- The PDU is the value constructed in step (3) above.

- The expect Response argunent indicates that no response is
expect ed.

O herwi se,
(5) If the notification contains an |Inform PDU, then
a) The Dispatcher is called using the sendPdu abstract service
interface as described in step (4) above, except that the

expect Response argunent indicates that a response is expected.

b) The application caches information about the nmanagenent
target.

c) If aresponse is received within an appropriate tine interva
fromthe transport endpoint of the managenent target, the
notification is considered acknow edged and t he cached
information is deleted. Oherwi se,

Levi, et. al. St andards Track [Page 15]

RFC 2273 SNMPv3 Applications January 1998

d) If a response is not received within an appropriate tinme
period, or if a report indication is received, infornmation
about the managenent target is retrieved fromthe cache, and
steps a) through d) are repeated. The nunber of tines these
steps are repeated is equal to the previously deternmned retry
count. If this retry count is exceeded, the acknow edgenent
of the notification is considered to have failed, and
processing of the notification for this nmanagenment target is
hal t ed.

Responses to Inform PDU notifications will be received via the
processResponsePDU abstract service interface.

3.4. Notification Receiver Applications
Notification receiver applications receive SNMP Notification nessages
fromthe Dispatcher. Before any nmessages can be received, the
notification receiver nmust register with the Di spatcher using the
regi st er Cont ext Engi nel D abstract service interface. The paraneters
used are:

- The contextEnginelD is an undefined 'wldcard val ue.
Notifications are delivered to a registered notification
recei ver regardl ess of the contextEnginelD contained in the
notification nmessage.

- The pduType indicates the type of notifications that the
application w shes to receive (for exanple, SNWv2-Trap PDUs
or | nform PDUs).

Once the notification receiver has registered with the Dispatcher
nmessages are received using the processPdu abstract service
interface. Paraneters are:

- The nmessageProcessi nghbdel indicates which Message Processing
Model received and processed t he nessage.

- The securityModel is the value fromthe received nessage
- The securityNane is the value fromthe received nessage.
- The securitylLevel is the value fromthe received nessage
- The contextEnginelD is the value fromthe recei ved nessage

- The contextNane is the value fromthe recei ved nessage.

Levi, et. al. St andards Track [Page 16]

RFC 2273 SNMPv3 Applications January 1998

(1

(2)

(3)

- The pduVersion indicates the version of the PDU in the
recei ved nessage

- The PDU is the value fromthe recei ved nessage.

- The nmaxSi zeResponseScopedPDU i s the nmaxi num al | owabl e size of
a ScopedPDU cont ai ni ng a Response PDU (based on the maxi num
nessage size that the originator of the nessage can accept).

- |If the nmessage contains an SNWPv2-Trap PDU, the stateReference
i s undefined and unused. Oherw se, the stateReference is a
val ue which references cached information about the
notification. This value nust be returned to the D spatcher
in order to generate a response.

When an SNMPv2-Trap PDU is delivered to a notification receiver
application, it first extracts the SNVP operation type, request-id,
error-status, error-index, and variabl e-bindings fromthe PDU. After
this, processing depends on the particular inplenentation

When an Inform PDU is received, the notification receiver application
follows the foll ow ng procedure

The SNWVPv2 operation type, request-id, error-status, error-index,
and vari abl e-bi ndings are extracted fromthe PDU

A Response PDU is constructed using the extracted request-id and
vari abl e-bi ndi ngs, and with error-status and error-index both set
to O.

The Dispatcher is called to generate a response nessage using the
returnResponsePdu abstract service interface. Paraneters are:

- The nmessageProcessi nghbdel is the value fromthe processPdu
call.

- The securityMddel is the value fromthe processPdu call

- The securityNane is the value fromthe processPdu call

- The securitylLevel is the value fromthe processPdu call.

- The contextEnginelD is the value fromthe processPdu call.
- The contextNanme is the value fromthe processPdu call.

- The pduVersion indicates the version of the PDU to be
returned.

Levi, et. al. St andards Track [Page 17]

RFC 2273 SNMPv3 Applications January 1998

- The PDU is the result generated in step (2) above.

- The maxSi zeResponseScopedPDU is a | ocal value indicating the
maxi mum si ze of a ScopedPDU that the application can accept.

- The stateReference is the value fromthe processPdu call.

- The statuslinformation indicates that no error occurred and
that a response shoul d be generated.

3.5. Proxy Forwarder Applications

A proxy forwarder application deals with forwardi ng SNMP nessages.
There are four basic types of nessages which a proxy forwarder
application may need to forward. These are grouped according to the
PDU type contained in a nessage, or according to whether a report
indication is contained in the nessage. The four basic types of
nessages are:

- Those containing PDU types which were generated by a comand
generator application (for exanple, Get, GetNext, GCetBulk, and
Set PDU types). These deal with requesting or nodifying
information |located within a particul ar context.

- Those containing PDU types which were generated by a
notification originator application (for exanple, SNWPv2-Trap
and Inform PDU types). These deal with notifications
concerning information | ocated within a particul ar context.

- Those containing a Response PDU type. Forwarding of Response
PDUs al ways occurs as a result of receiving a response to a
previously forwarded nessage.

- Those containing a report indication. Forwarding of report
i ndi cations always occurs as a result of receiving a report
i ndication for a previously forwarded nessage.

For the first type, the proxy forwarder’s role is to deliver a
request for managenent infornmation to an SNVWP engine which is
"closer" or "downstreamin the path" to the SNWMP engi ne which has
access to that information, and to deliver the response containing
the informati on back to the SNWP engi ne fromwhich the request was
received. The context infornmation in a request is used to determ ne
whi ch SNMP engi ne has access to the requested information, and this
is used to deternine where and how to forward the request.

Levi, et. al. St andards Track [Page 18]

RFC 2273 SNMPv3 Applications January 1998

For the second type, the proxy forwarder’'s role is to deternine which
SNMP engi nes should receive notifications about managenent
information froma particular location. The context information in a
notification message deternines the location to which the information
contained in the notification applies. This is used to determ ne

whi ch SNWVP engi nes shoul d receive notification about this

i nformation.

For the third type, the proxy forwarder’s role is to deternine which
previously forwarded request or notification (if any) the response
mat ches, and to forward the response back to the initiator of the
request or notification

For the fourth type, the proxy forwarder’s role is to deternine which
previously forwarded request or notification (if any) the report

i ndi cation matches, and to forward the report indication back to the
initiator of the request or notification

When forwardi ng nessages, a proxy forwarder application nust perform
a translation of incom ng nmanagenment target information into outgoing
managenent target information. Howthis translation is perforned is
i npl enmentation specific. In many cases, this will be driven by a
preconfigured translation table. |If a proxy forwarder application
makes the contents of this table SNWP nmanageable, it MJST use the
SNMP- PROXY- M B nodul e defined in this docunent.

3.5.1. Request Forwarding

There are two phases for request forwarding. First, the incon ng
request needs to be passed through the proxy application. Then, the
resulting response needs to be passed back. These phases are
described in the followi ng two sections.

3.5.1.1. Processing an Incom ng Request

A proxy forwarder application that wishes to forward request nessages
must first register with the D spatcher using the

regi st er Cont ext Engi nel D abstract service interface. The proxy
forwarder nust register each contextEnginelD for which it w shes to
forward nessages, as well as for each pduType. Note that as the
configuration of a proxy forwarder is changed, the particul ar

cont ext Engi nel D values for which it is forwardi ng may change. The
proxy forwarder should call the registerContextEnginel D and

unr egi st er Cont ext Engi nel D abstract service interfaces as needed to
reflect its current configuration

Levi, et. al. St andards Track [Page 19]

RFC 2273 SNMPv3 Applications January 1998

(1)

(2)

Levi,

A proxy forwarder application should never attenpt to register a
val ue of contextEnginelD which is equal to the snnpEngi nel D of the
SNMP engine to which the proxy forwarder is associ ated.

Once the proxy forwarder has registered for the appropriate
context Engi neld values, it can start processing nessages. The
foll owi ng procedure i s used:

A nmessage i s received using the processPdu abstract service
interface. The incom ng managenent target information received
fromthe processPdu interface is translated into outgoing
managenent target infornation. Note that this translation may vary
for different val ues of contextEngi nel D and/ or contextName. The
translation should result in a single nmanagenent target.

I f appropriate outgoi ng managenent target information cannot be
found, the proxy forwarder increnents the snnpProxyDrops counter

[RFC1907], and then calls the Dispatcher using the
returnResponsePdu abstract service interface. Paraneters are:

- The nmessageProcessi nghbdel is the value fromthe processPdu
call.

- The securityMddel is the value fromthe processPdu call

- The securityNane is the value fromthe processPdu call

- The securitylevel is the value fromthe processPdu call

- The contextEnginelD is the value fromthe processPdu call.
- The contextNanme is the value fromthe processPdu call.

- The pduVersion is the value fromthe processPdu call

- The PDU is an undefined val ue.

- The nmaxSi zeResponseScopedPDU is a | ocal value indicating the
maxi mum si ze of a ScopedPDU that the application can accept.

- The stateReference is the value fromthe processPdu call.

- The statuslinformation indicates that an error occurred and
i ncludes the O D and val ue of the snnpProxyDrops object.

Processi ng of the nessage stops at this point. Oherw se,

et. al. St andards Track [Page 20]

RFC 2273 SNMPv3 Applications January 1998

(3)

(4)

(5)

Levi,

A new PDU is constructed. A unique value of request-id should be
used in the new PDU (this value will enable a subsequent response
nmessage to be correlated with this request). The renai nder of the
new PDU is identical to the received PDU, unless the incom ng SNW
version is SNWPv2 or SNMPv3 and the outgoing SNWP version is
SNMPv1, in which case the proxy forwarder nmust apply the
translation rules as docunented in [RFC1908].
The proxy forwarder calls the Dispatcher to generate the forwarded
message, using the sendPdu abstract service interface. The
paraneters are:

- The transportDonmain is that of the outgoing nanagenent target.

- The transport Address is that of the outgoi ng managenent
target.

- The nmessageProcessi nghbdel is that of the outgoi ng nanagenent
target.

- The securityModel is that of the outgoing managenent target.
- The securityNane is that of the outgoing managenent target.
- The securitylLevel is that of the outgoing managenent target.
- The contextEnginelD is the value originally received.

- The contextNane is the value originally received.

- The pduVersion is the version of the PDU to be sent.

- The PDU is the value constructed in step (3) above.

- The expect Response argunent indicates that a response is

expected. |If the sendPdu call is unsuccessful, the proxy
forwarder perforns the steps described in (2) above.
O herw se:

The proxy forwarder caches the following information in order to
mat ch an i ncom ng response to the forwarded request:

- The sendPduHandl e returned fromthe call to sendPdu
- The request-id fromthe received PDU

- the context Engi nel D

et. al. St andards Track [Page 21]

RFC 2273 SNMPv3 Applications January 1998

(6)

- the context Nane,

- the stateReference,

- the incom ng managenent target information
- the outgoing managenent information,

- any other information needed to match an i ncom ng response to
the forwarded request.

If this information cannot be cached (possibly due to a | ack of
resources), the proxy forwarder perforns the steps described in (2)
above. O herw se:

Processing of the request stops until a response to the forwarded
request is received, or until an appropriate tinme interval has
expired. |If this tinme interval expires before a response has been
recei ved, the cached infornmation about this request is renoved.

3.5.1.2. Processing an | nconi ng Response

A

proxy forwarder follows the follow ng procedure when an inconing

response i s received

(1)

(2)
(3)

(4)

(5)

Levi,

The incom ng response is received using the processResponsePdu
interface. The proxy forwarder uses the received paraneters to

| ocate an entry in its cache of pending forwarded requests. This
is done by matching the received paraneters with the cached val ues
of sendPduHandl e, context Engi nel D, cont ext Nane, out goi ng nanagenent
target information, and the request-id contained in the received
PDU (the proxy forwarder nust extract the request-id for this
purpose). |If an appropriate cache entry cannot be found,
processing of the response is halted. O herw se:

The cache information is extracted, and renoved fromthe cache.

A new Response PDU is constructed, using the request-id value from
the original forwarded request (as extracted fromthe cache). All
other values are identical to those in the received Response PDU
If the incom ng SNVMP version is SNVPvl and the outgoi ng SNWP
version is SNWPv2 or SNWPv3, the proxy forwarder nust apply the
translation rules docunmented in [RFC1908].

The proxy forwarder calls the D spatcher using the
returnResponsePdu abstract service interface. Paraneters are:

et. al. St andards Track [Page 22]

RFC 2273 SNMPv3 Applications January 1998
- The messageProcessi nghbdel indicates the Message Processing
Model by which the original incom ng nessage was processed.

- The securityMddel is that of the original inconm ng nmanagenent
target extracted fromthe cache.

- The securityNane is that of the original incom ng nanagenent
target extracted fromthe cache.

- The securitylLevel is that of the original inconm ng nmanagenent
target extracted fromthe cache.

- The contextEnginelD is the value extracted fromthe cache.
- The contextNanme is the value extracted fromthe cache.

- The pduVersion indicates the version of the PDU to be
returned.

- The PDU is the (possibly translated) Response PDU

- The maxSi zeResponseScopedPDU is a | ocal val ue indicating the
maxi mum si ze of a ScopedPDU that the application can accept.

- The stateReference is the value extracted fromthe cache.

- The statuslinformation indicates that no error occurred and
that a Response PDU nmessage shoul d be generat ed.

3.5.1.3. Processing an Incom ng Report Indication

A proxy forwarder follows the foll ow ng procedure when an inconing
report indication is received:

(1) The incomng report indication is received using the
processResponsePdu i nterface. The proxy forwarder uses the
recei ved paraneters to locate an entry in its cache of pending
forwarded requests. This is done by nmatching the received
paraneters with the cached val ues of sendPduHandle. |f an
appropriate cache entry cannot be found, processing of the report
indication is halted. Oherw se:

(2) The cache information is extracted, and renoved fromthe cache.

(3) If the original incom ng managenent target information indicates
SNMPv1, processing of the report indication is halted.

Levi, et. al. St andards Track [Page 23]

RFC 2273 SNMPv3 Applications January 1998

(4) The proxy forwarder calls the Dispatcher using the
returnResponsePdu abstract service interface. Paraneters are:

- The nmessageProcessi nghbdel indicates the Message Processing
Model by which the original incom ng nmessage was processed.

- The securityMddel is that of the original inconm ng nanagenent
target extracted fromthe cache.

- The securityNane is that of the original incom ng managenent
target extracted fromthe cache.

- The securitylLevel is that of the original incom ng nanagenent
target extracted fromthe cache.

- The contextEnginelD is the value extracted fromthe cache.
- The contextName is the value extracted fromthe cache.

- The pduVersion indicates the version of the PDU to be
returned.

- The PDU i s unused.

- The maxSi zeResponseScopedPDU is a | ocal val ue indicating the
maxi mum si ze of a ScopedPDU that the application can accept.

- The stateReference is the value extracted fromthe cache.

- The statuslnfornmation contain the contextEnginel D
cont ext Nane, counter O D, and counter value received in the
report indication.

3.5.2. Notification Forwarding

A proxy forwarder receives notifications in the sane nanner as a
notification receiver application, using the processPdu abstract
service interface. The follow ng procedure is used when a
notification is received:

(1) The incom ng managenent target information received fromthe
processPdu interface is translated into outgoi ng nanagenent target
information. Note that this translation may vary for different
val ues of contextEngi neld and/or contextName. The translation may
result in nultiple managenment targets.

Levi, et. al. St andards Track [Page 24]

RFC 2273 SNMPv3 Applications January 1998

(2)

(3)

Levi,

| f appropriate outgoing nanagenent target infornmation cannot be
found and the notification was a Trap, processing of the
notification is halted. |If appropriate outgoi ng nanagenent target
i nformati on cannot be found and the notification was an Inform the
proxy forwarder increments the snnpProxyDrops object, and calls the
Di spatcher using the returnResponsePdu abstract service interface.
The paraneters are:

- The nmessageProcessi nghbdel is the received val ue.

- The securityModel is the received val ue.

- The securityName is the received val ue.

- The securitylLevel is the received val ue.

- The contextEnginelD is the received val ue.

- The contextNane is the received val ue.

- The pduVersion is the received val ue.

- The PDU is an undefined and unused val ue.

- The nmaxSi zeResponseScopedPDU is a | ocal value indicating the
maxi mum si ze of a ScopedPDU that the application can accept.

- The stateReference is the received val ue.

- The statuslinformation indicates that an error occurred and
that a Report nessage shoul d be generat ed.

Processing of the nessage stops at this point. Oherw se,

The proxy forwarder generates a notification using the procedures
described in the preceding section on Notification Oiginators,
with the foll owi ng exceptions

- The cont ext Engi nel D and cont ext Name val ues fromthe origina
received notification are used.

- The outgoi ng managenent targets previously determ ned are
used.

- No filtering mechani sns are applied.

et. al. St andards Track [Page 25]

RFC 2273 SNMPv3 Applications January 1998

(4)

(5)

(6)

(7)

Levi,

- The vari abl e-bindings fromthe original received notification
are used, rather than retrieving variabl e-bindings fromloca
M B instrunentation. |In particular, no access-control is
applied to these vari abl e- bi ndi ngs.

- |If for any of the outgoing nanagenent targets, the incom ng
SNWP version is SNMPvl and the outgoing SNVWP version is SNWPv2
or SNWPv3, the proxy forwarder nust apply the translation
rul es as docunented in [RFC1908].

- If for any of the outgoing nmanagenent targets, the incom ng
SNMP version is SNMPv2 or SNMPv3, and the outgoi ng SNWVP
version is SNWPv1l, this outgoing nanagenent target is not used
when generating the forwarded notifications.

If the original received notification contains an SNWv2-Trap PDU
processing of the notification is now conpleted. Oherw se, the
original received notification nust contain an |Inform PDU, and
processi ng conti nues.

If the forwarded notifications included any |Inform PDUs, processing
conti nues when the procedures described in the section for
Notification Originators determ ne that either

- None of the generated notifications containing |nform PDUs
have been successfully acknowl edged within the | ongest of the
time intervals, in which case processing of the origina
notification is halted, or,

- At least one of the generated notifications containing Inform
PDUs is successfully acknow edged, in which case a response to
the original received notification containing an InformPDU is
generated as described in the follow ng steps.

A Response PDU is constructed, using the values of request-id and
vari abl e-bi ndings fromthe original received InformPDU, and
error-status and error-index val ues of O.

The Dispatcher is called using the returnResponsePdu abstract
service interface. Paraneters are

- The messageProcessi nghbdel is the originally received val ue.
- The securityModel is the originally received val ue.
- The securityNane is the originally received val ue.

- The securitylLevel is the originally received val ue.

et. al. St andards Track [Page 26]

RFC 2273 SNMPv3 Applications January 1998

4.

4,

1

- The contextEnginelD is the originally received val ue.
- The contextNanme is the originally received val ue.

- The pduVersion indicates the version of the PDU constructed in
step (6) above.

- The PDU is the value constructed in step (6) above.

- The maxSi zeResponseScopedPDU is a | ocal val ue indicating the
maxi mum si ze of a ScopedPDU that the application can accept.

- The stateReference is the originally received val ue.

- The statuslinformation indicates that no error occurred and
that a Response PDU nmessage shoul d be generat ed.

The Structure of the M B Mbdul es

There are three separate M B nodul es described in this docunment, the
managenment target M B, the notification MB, and the proxy MB. The
foll owi ng sections describe the structure of these three M B nodul es.

The use of these M Bs by particular types of applications is
described later in this docunent:

- The use of the managenent target M B and the notification MB
in notification originator applications is described in
section 6.

- The use of the notification MB for filtering notifications in
notification originator applications is described in section
7.

- The use of the managenent target M B and the proxy MB in
proxy forwardi ng applications is described in section 8.

The Managenent Target M B Modul e

The SNWVP- TARGET- M B nodul e cont ai ns objects for defining managenent
targets. It consists of two tables and conformance/ conpliance
st at enent s.

The first table, the snnpTarget Addr Tabl e, contains information about
transport domains and addresses. It also contains an object,
snnpTar get Addr TagLi st, which provides a nechani sm for grouping
entries.

Levi, et. al.